PHENOL removal in refinery wastewater using mixed oxides prepared by green synthesis

Abstract

Mixed solid oxides are known for their excellent catalytic property and applications in environmental remediation. This study presents a green-synthesis route for magnesium oxide–titanium oxide, a mixed oxide here demonstrated to possess high performance of phenol removal from hydrocarbon refinery process wastewater. Mixed oxide (MgO-TiO 2) was prepared by using the whole extract from leaves of Piliostigma Thonningii as reducing agent. Structural characterization of the mixed oxide was done using X-ray Diffractometer, High Resolution Scanning Electronic Microscopy and Energy Dispersive X-ray. Petroleum refinery raw wastewater having phenol concentration of 19.961 mg/L was treated using the green-synthesized mixed oxide. Adsorptive phenols removal up to 99.5% was achieved with a dosage of 0.04 g/100 mL at temperature of 35 C, and contact time of 1.167 h. By this, the treated water meets the standard acceptable phenol concentration (0.1 mg/L) in wastewater of hydrocarbon refinery.

Description

Keywords

green synthesis, magnesium oxide, mixed oxide, phenol, process wastewater, titanium oxide

Citation

Collections