Browsing by Author "Mustapha, Sherif I."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item BIODIESEL PRODUCTION FROM PALM KERNEL OIL USING BENTONITE CLAY-SUPPORTED FE-CO NANOCATALYST(2020-11-21) Aderibigbe, Fatai A.; Adewoye, Tunmise L.; Mustapha, Sherif I.; Mohammed, Ishaq A.; Amosa, Mutiu K.; Saka, Harvis B.; Muhammed-Nuhu, Rafiat A.; Adejumo, Ayoade L.; Owolabi, Rasheed U.This study is focused on the development of a heterogeneous Fe-Co bimetallic nanoparticle on Pindiga bentonite clay support to be used in the production of biodiesel. The local clay was beneficiated and used in the preparation of catalyst by wet impregnation method. The X-ray Fluorescence analysis (XRF) of the bentonite clay showed the presence of several metals and metallic oxides with good catalytic effect. Characterization of the prepared catalyst using Fourier Transform Infared Ray (FTIR), Energy Dispersive Spectrometer,(EDS) X-Ray Dispersion (XRD) and Scanning Electron Microscopy (SEM) confirmed the functional groups, elemental compositions, crystallinity, and morphology of the catalyst respectively. The catalyst was evaluated in biodiesel production using Box-Behnken optimization by varying the methanol: oil mole ratio, reaction temperature, reaction time, and catalyst concentration. An optimum yield of biodiesel (93.8%) was obtained at process condition of 15: 1 methanol: oil mole ratio, 55 C reaction temperature, 1 h, reaction time, and 15%(w/w) catalyst concentration. Physicochemical properties of the biodiesel produced using the developed Fe-Co/bentonite nanocatalyst showed that the biodiesel is of good quality. This was further confirmed by the FAMEs profile. Therefore, the Fe-Co/bentonite nanocatalyst showed potential application as heterogeneous nanocatalyst for the trans-esterification of vegetable oil to biodiesel, an alternative and sustainable replacement for conventional petroleum diesel.Item HETEROGENEOUS CATALYSIS USING BENTONITE SUPPORTED Fe-Co-Ni TRIMETALLIC NANOPARTICLES(2021) Aderibigbe, Fatai A.; Adewoye, Tunmise L.; Mustapha, Sherif I.; Mohammed, Ishaq A.; Saka, Harvis B.; Ajala, Elijah O.; Oluwaseyi, Soile SHerein, the synthesis and characterization of a bentonite-supported Fe-Co-Ni trimetallic nanocatalyst applied in transesterification reaction was reported. The synthesized heterogeneous catalyst was used to investigate the production of biodiesel by varying the reaction parameters using Box-Behnken design response surface methodology (RSM-BBD). An optimum biodiesel yield of 95.2% was obtained at methanol to oil ratio of 10: 1, reaction time of 2 hours, reaction temperature of 55 and catalyst concentration of 5%(w/w of the oil). The biodiesel produced was later analysed using GC-MS analysis and the results shows a fatty acid methyl esters (FAME) profile that confirms the presence of biodiesel.Item MODELLNG AND OPTIMISATION OF OIL EXTRACTION FROM LOOFAH (LUFFA CYLINDRICA) SEEDS USING BINARY SOLVENT MIXTURE(Turkish Chemical Society, 2019) Eletta, Omodele A. A.; Adewoye, Latifat T.; Mustapha, Sherif I.; Adeniyi, Adewale G.; Ogunleye, Oladipupo O.; Aladerokun, Oladimaji E.; Tijani, Idowu A.Toxicity and safety concern coupled with the recent increase in its price has necessitated the need for finding alternative solvents to n-hexane. In this study, the effect of binary solvent (ethanol/n-hexane) composition at various extraction temperatures and times on the oil yield was investigated using response surface methodology (RSM). Artificial neural network (ANN) was used as a modelling tool for predicting the oil yield and the performance of both ANN and RSM models was compared. The optimum oil yield (27.67%) was obtained at extraction temperature (40 °C), extraction time (151.9 min) and binary solvent composition (98% ethanol /2% n-hexane). The predicted oil yield values from ANN model was more accurate than that of RSM when compared with experimental values. The fatty acid profile revealed that the refining process promoted saturation of the extracted oil with 67.75% of palmitic acid present in refined loofah seed oil (RLSO). This study demonstrated the feasibility of using a binary mixture of ethanol and n-hexane as a suitable replacement to the commonly used toxic n-hexane solvent for the extraction of oil from loofah seeds.Item Optimization of nickel (ii) and chromium (iii) removal from contaminated water using sorghum bicolor(2017-06-30) Adewoye, Latifat T.; Mustapha, Sherif I.; Adeniyi, Adewale G.; Tijani, Jimoh O.; Amoloye, Mubarak A.; Ayinde, Lawal JA central composite design (CCD) under the response surface methodology (RSM) was used to study the effect of three adsorption variables (pH, initial concentration, and adsorbent dosage) in order to determine the optimum process conditions for the adsorptions of Ni (II) and Cr (III) onto sulphuric acid modified sorghum bicolor activated carbon (SBAC). This study yielded removal efficiency of 98.89% for Ni (II) and 94.27% for Cr (III) ion under optimal conditions of pH (8), initial metal ion concentration (25 mg/L), adsorbent dosage (10 mg) and pH (7), initial metal ion concentration (5 mg/L), dosage (15 mg); respectively. Statistical analysis of variance results showed a good correlation existed between the experimental and predicted data with R 2 values of 0.99 for Ni and 0.98 for Cr. The equilibrium data for Ni (II) adsorption was best described using Freundlich model while Langmuir model best fit Cr (III) adsorption. The mechanism of adsorption for both Ni and Cr adsorptions on SBAC followed Pseudo second order kinetic model.Item Optimization of the Preparation Conditions for Activated Carbon from Locust Bean Pod (Parkia biglobosa) Using Factorial Design Approach(2018) Eletta, Omodele A. A.; Mustapha, Sherif I.; Tijani, Jimoh O.; Adewoye, Latifat T.; Mohammed, Ishaq A.This study focused on the optimization of the preparation parameters (impregnation concentration, activation temperature and activation time) on the yield and adsorption potential of activated carbon (AC) prepared from Locust bean pod (Parkia biglobosa) using the chemical activation method based on factorial design. The two linear regression models developed from the factorial experimental design using Design Expert Software – 6.0.8 was used to determine the optimum production conditions required to provide a compromise between the AC yield and methylene blue (MB) removal efficiency from aqueous solution. The results demonstrated maximum AC yield of 41.6% and MB removal efficiency of 95.4% under the following optimum preparation conditions; H3PO4 impregnation concentration (60 %), activation temperature (444.4 oC) and activation time (30 min). This study showed that the experimental values obtained were in good agreement with the values predicted from the models under the applied conditions.Item PHENOL removal in refinery wastewater using mixed oxides prepared by green synthesis(2021-01-17) Aderibigbe, Fatai A.; Adewoye, Tunmise L.; Mustapha, Sherif I.; Mohammed, Ishaq A.; Saka, Harvis B.; Amosa, Mutiu K.; Adejumo, Ayoade L.; Owolabi, Rasheed U.; James, Shalom B.Mixed solid oxides are known for their excellent catalytic property and applications in environmental remediation. This study presents a green-synthesis route for magnesium oxide–titanium oxide, a mixed oxide here demonstrated to possess high performance of phenol removal from hydrocarbon refinery process wastewater. Mixed oxide (MgO-TiO 2) was prepared by using the whole extract from leaves of Piliostigma Thonningii as reducing agent. Structural characterization of the mixed oxide was done using X-ray Diffractometer, High Resolution Scanning Electronic Microscopy and Energy Dispersive X-ray. Petroleum refinery raw wastewater having phenol concentration of 19.961 mg/L was treated using the green-synthesized mixed oxide. Adsorptive phenols removal up to 99.5% was achieved with a dosage of 0.04 g/100 mL at temperature of 35 C, and contact time of 1.167 h. By this, the treated water meets the standard acceptable phenol concentration (0.1 mg/L) in wastewater of hydrocarbon refinery.Item Qualitative role of heterogeneous catalysts in biodiesel production from Jatropha curcas oil(Alpha Creation Enterprise, 2020-06-01) Aderibigbe, Fatai A.; Mustapha, Sherif I.; Adewoye, Tunmise L.; Mohammed, Ishaq A.; Gbadegesin, Adebola B.; Niyi, Faith E.; Olowu, Opeyemi I.; Soretire, Akinpelumi G.; Saka, Harvis B.Biodiesel properties are in general attributed to the composition and properties of the oil feedstock used, overlooking the possible impacts of the catalyst preparation details. In light of that, the impacts of different catalyst preparation techniques alongside those of different support materials on the yield, composition, and fuel properties of biodiesels produced from the same oil feedstock were investigated. More specifically, tri-metallic (Fe-Co-Ni) catalyst was synthesized through two different techniques (green synthesis and wet impregnation) using MgO or ZnO as support material. The generated catalyst pairs, i.e., Fe-Co-Ni/MgO and Fe-Co-Ni/ZnO prepared by wet impregnation and Fe-Co-Ni-MgO and Fe-Co-Ni-ZnO prepared by green synthesis (using leaf extracts) were used in the transesterification process of Jatropha curcas oil. Detailed morphological properties, composition, thermal stability, crystalline nature, and functional groups characterization of the catalysts were also carried out. Using Box-Behnken Design response surface methodology, it was found that the green-synthesized Fe-Co-Ni-MgO catalyst resulted in the highest biodiesel yield of 97.9%. More importantly, the fatty acid methyl ester (FAME) profiles of the biodiesels produced using the four catalysts as well as their respective fuel properties were different in spite of using the same oil feedstock.Item Removal of Lead and Chromium from Aqueous Solution onto Flamboyant (Delonix regia) Pod Activated Carbon(2017) Mustapha, Sherif I.; Adewoye, Latifat T.; Aderibigbe, Fatai A.; Alhaji, M. H.; Adekola, Monsurat I.; Tijani, Idowu A.The contamination of water by potentially toxic elements is considered a global problem. It calls for a safe, economic and technological approach in order to curb and prevent the devastating effect of the menace on both human and the aquatic life. In the light of this background, the adsorption potential of flamboyant pod activated carbon (FPAC) for the removal of chromium and lead from aqueous solution was studied. The effect of contact time, pH, initial concentration as well as adsorbent dosage on the removal efficiency of both metal ions was investigated via batch adsorption. Characterization of the FPAC adsorbent was done using Brunaur Emmett Teller and Fourier transform infrared spectroscopy. The maximum adsorption capacity Qe was found to be 34.48 and 16.13 mg/g for Pb (II) and Cr (VI), respectively. The Langmuir isotherm model showed a better fit to the equilibrium data than the Freundlich isotherm model. The mechanism of adsorption for both metal ions onto the FPAC agrees well with pseudo second order kinetic model. The results showed that FPAC has excellent adsorption properties and thus can be used as an effective low-cost adsorbent for the removal of lead and chromium ions from aqueous solution.Item Silver and titanium oxides for the removal of phenols from pharmaceutical wastewater(Elsevier, 2021-01-01) Mustapha, Sherif I.; Aderibigbe, Fatai A.; Adewoye, Tunmise L.; Mohammed, Ishaq A.; Odey, Theresa OThis study is focused on the removal of total phenols from pharmaceutical effluent using an adsorbent of silver and titanium oxides-doped activated carbon. The adsorbent was biosynthesized by reducing AgNO3 and Ti (NO3)4·4H2O into their oxides by whole extracts of Shea butter leaves and subsequently doped on activated carbon. The properties of the adsorbent were investigated for its morphology, elemental composition, crystallinity, and surface functional group modifications using HRSEM, EDS, XRD, and FTIR respectively. It was found to exhibit high crystallinity from rutile titania, with particle sizes in the sub – 200 nm range, and surface-modified with aromatics, nitrates, and nitramines that favor adsorption. Batch adsorption studies were performed at different contact time (20–230 min.), temperature (35–50 °C), and adsorbent dosage (0.1–0.5 g/50 mL). An optimum percent phenol removal of 99.86% (conc. 0.3299 mg/L) was obtained at 3 h. 42 min., temperature of 35 °C, and adsorbent dosage of 0.1 g/50 mL. Using the Ag/Ti co-doped activated carbon, removal of phenol from pharmaceutical effluent followed pseudo-second order model, and fitted the Langmuir isotherm.Item Valorization of Sugarcane Bagasse for Hydrogen Rich Gas Production using Thermodynamic Modeling Approach(2022-12) Mustapha, Sherif I.; Mohammed, Ishaq A.; Aderibigbe, Fatai A.; Adewoye, Tunmise L.; Omoarukhe, Frederick O.; Sowole, A. O.Hydrothermal gasification also known as supercritical water gasification (SWG) has been considered a promising approach for converting wet biomass such as sugarcane bagasse into high-quality syngas. This study presents the thermodynamic modeling of the hydrothermal gasification of sugarcane bagasse using Aspen Plus. The effects of process parameters on the composition and yield of product gases were also investigated. It was found that the effect of temperature and biomass concentration were significant in the production of hydrogen-rich gas, while less impact was observed with pressure. The hydrogen gas (H2) produced with the highest mole fraction (56.70 mol%) and yield (103.26 kmol/kg) was obtained at 750°C and low biomass concentration of 10 wt%, while the lowest yield (1.52 kmol/kg) and mole fraction (2.45 mol%) of H2 were obtained at 450°C and high biomass concentration of 50 wt%. Findings from this study also showed that the highest net calorific value (17.55MJ/kg) was reached at 450˚C and 50 wt% of biomass concentration. This study would help to consolidate research on hydrothermal gasification of sugarcane bagasse and optimization of experimental processes and also serve as an important benchmark in the utilization of biomass as a clean energy source for future projects.