Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Michael, Olugbenga Samuel"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Item
    Estrogen-progestin oral contraceptive and nicotine exposure synergistically confers cardio-renoprotection in female Wistar rats
    (Elsevier, 2020-06-07) Michael, Olugbenga Samuel; Dibia, Chinaza; Adeyanju, Oluwaseun; Olaniyi, Kehinde; Areola, Emmanuel; Olatunji, Lawrence Aderemi
    Approximately fifty percent of premenopausal women who smoke cigarettes or on nicotine replacement therapy are also on hormonal contraceptives, especially oral estrogen-progestin. Oral estrogen-progestin therapy has been reported to promote insulin resistance (IR) which causes lipid influx into non-adipose tissue and impairs Na+/K+ -ATPase activity, especially in the heart and kidney. However, the effects of nicotine on excess lipid and altered Na+/K+ -ATPase activity associated with the use of estrogen-progestin therapy have not been fully elucidated. This study therefore aimed at investigating the effect of nicotine on cardiac and renal lipid influx and Na+/K+ -ATPase activity during estrogen-progestin therapy. Twenty-four female Wistar rats grouped into 4 (n = 6/group) received (p.o.) vehicle, nicotine (1.0 mg/kg) with or without estrogen-progestin steroids (1.0 μg ethinyl estradiol and 5.0 μg levonorgestrel) and estrogen-progestin only daily for 6 weeks. Data showed that estrogen-progestin treatment or nicotine exposure caused IR, hyperinsulinemia, increased cardiac and renal uric acid, malondialdehyde, triglyceride, glycogen synthase kinase-3, plasminogen activator inhibitor-1, reduced bilirubin and circulating estradiol. Estrogen-progestin treatment led to decreased cardiac Na+/K+-ATPase ac tivity while nicotine did not alter Na+/K+-ATPase activity but increased plasma and tissue cotinine. Renal Na+/K+-ATPase activity was not altered by the treatments. However, all these alterations were reversed following combined administration of oral estrogen-progestin therapy and nicotine. The present study therefore demon strates that oral estrogen-progestin therapy and nicotine exposure synergistically prevents IR-linked cardio-renotoxicity with corresponding improvement in cardiac and renal lipid accumulation, oxidative stress, in- flammation and Na+/K+-ATPase activity
  • Item
    Sodium acetate ameliorated systemic and renal oxidative stress in high-fructose insulin-resistant pregnant Wistar rats
    (Springer, 2021-02-27) Oyabambi, Adewumi Oluwafemi; Michael, Olugbenga Samuel; Areola, Emmanuel Damilare; Saliu, Salam Babatunde; Olatunji, Lawrence Aderemi
    Pregnancy is an insulin-resistant condition, especially at near term predisposing maternal kidneys to hyperinsulinemia-induced oxidative stress. The impact of fructose on renal metabolic dysregulation and oxidative stress in pregnancy requires elucidation. Short-chain fatty acids (SCFAs) are known for protective roles in oxidative stress conditions. Therefore, the study aimed at investigating fructose-induced glucose dysregulation and renal oxidative stress in pregnant and non-pregnant rats and the possible preventive role of SCFA, acetate. Thirty female Wistar rats were grouped (n = 5/group). Three groups were made pregnant (P); the other three remained non-pregnant (NP). Both pregnant and non-pregnant rats received drinking water (control), 10% fructose (w/v) (NP+F or P+F), and 10% (w/v) fructose plus sodium acetate (200 mg/kg) (NP+F+A or P+F+A) for 3 weeks. Renal and plasma glutathione antioxidant index (GSH/GSSG), G6PDH, and adenosine were significantly lower in NP+F and P+ F groups compared with control while renal and plasma adenosine deaminase (ADA), xanthine oxidase (XO), uric acid (UA), lactate dehydrogenase (LDH), and malonaldehyde (MDA) were significantly elevated in NP+F and P+F groups compared with controls. HOMA-IR showed marked impairment in both NP+F and P+F groups. The P+F group revealed greater suppression in plasma and renal G6PDH-dependent antioxidant index, adenosine, and aggravation of LDH, MDA compared with the NP+F group (p < 0.05). Sodium acetate reduces plasma and renal surrogate oxidative stress markers, improved G6PD-dependent antioxidant index, and HOMA-IR in NP+F and P+F groups. Pregnancy exacerbates fructose-induced insulin resistance and renal oxidative stress whereas acetate ameliorated fructose-induced redox and glucose dysregulation in pregnant and non pregnant rats.

University of Ilorin Library © 2024, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng