Differential Deep Convolutional Neural Network Model for Brain Tumor Classification

dc.contributor.authorIsselmou, Abd El Kader
dc.contributor.authorGuizhi, Xu
dc.contributor.authorZhang, Shuai
dc.contributor.authorSaminu, Sani
dc.contributor.authorJavaid, Imran
dc.contributor.authorAhmad, Isah Salim
dc.date.accessioned2022-01-10T11:20:55Z
dc.date.available2022-01-10T11:20:55Z
dc.date.issued2021-03-10
dc.description.abstractThe classification of brain tumors is a difficult task in the field of medical image analysis. Improving algorithms and machine learning technology helps radiologists to easily diagnose the tumor without surgical intervention. In recent years, deep learning techniques have made excellent progress in the field of medical image processing and analysis. However, there are many difficulties in classifying brain tumors using magnetic resonance imaging; first, the difficulty of brain structure and the intertwining of tissues in it; and secondly, the difficulty of classifying brain tumors due to the high density nature of the brain. We propose a differential deep convolutional neural network model (differential deep-CNN) to classify different types of brain tumor, including abnormal and normal magnetic resonance (MR) images. Using differential operators in the differential deep-CNN architecture, we derived the additional differential feature maps in the original CNN feature maps. The derivation process led to an improvement in the performance of the proposed approach in accordance with the results of the evaluation parameters used. The advantage of the differential deep-CNN model is an analysis of a pixel directional pattern of images using contrast calculations and its high ability to classify a large database of images with high accuracy and without technical problems. Therefore, the proposed approach gives an excellent overall performance. To test and train the performance of this model, we used a dataset consisting of 25,000 brain magnetic resonance imaging (MRI) images, which includes abnormal and normal images. The experimental results showed that the proposed model achieved an accuracy of 99.25%. This study demonstrates that the proposed differential deep-CNN model can be used to facilitate the automatic classification of brain tumors.en_US
dc.identifier.urihttps://uilspace.unilorin.edu.ng/handle/20.500.12484/7303
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.subjectMRI imagesen_US
dc.subjectclassificationen_US
dc.subjectbrain tumoren_US
dc.subjectdifferential deep-CNNen_US
dc.subjectaccuracyen_US
dc.subjectloss valuesen_US
dc.titleDifferential Deep Convolutional Neural Network Model for Brain Tumor Classificationen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
17J_AKI_brainsciMDPI2021_Differential Deep Convolutional Neural Network Model for Brain Tumor Classification.pdf
Size:
2.25 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections