Multivariate Time Series Analysis on the Prices of Staple Foodstuffs in Kwara State, Nigeria

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Science Education, Federal University of Technology Minna.

Abstract

Due to supplementary, complementary and substitute relationship between staple foodstuffs, the prices of one or more staple foodstuffs tend to influence and could be used to predict the prices of some others. This study was therefore aimed at establishing the co-movement between the prices of some major stable foodstuffs - Rice, Maize, Garri, Millet, Guinea-Corn and Beans - in Kwara State, Nigeria. Multivariate time series models were fitted to data on monthly prices of Rice, Maize, Garri, Millet, Guinea-Corn and Beans over a period of twelve years (from January 2000 to December 2012). The cointegration relations among the prices were established by applying Johansen’s cointegration tests. As a result, appropriate Vector Error Correction (VEC) model was fitted to the data. The unit root test for stationarity in the series reveals that all the series were non-stationary but they were only made to be stationary at first difference. The results from the analysis showed that there exist short term adjustments and long-term dynamics among the prices of Rice, Maize, Garri, Millet, Guinea-Corn and Beans in Nigeria over the study period. Further results showed that a Vector Error Correction (VEC) model of lag two with one cointegration equation best fits the data. The forecasting accuracy of the fitted model was determined by out-of-sample forecasts of the future prices of the selected staple foodstuffs. Suitable model’s assessment criteria such as root mean square error, mean absolute error and the like were employed to determine the efficiency of the fitted model. The data employed for the study were collected from the Kwara State office of National Bureau of Statistics, Nigeria. All analyses were performed in the environment of R Statistical package.

Description

Keywords

Vector autoregressive, co-integration, Vector Error correction model and forecasting, Prices

Citation

Collections