PID controller for microsatellite yaw-axis attitude control system using ITAE method.

No Thumbnail Available



Journal Title

Journal ISSN

Volume Title


Ahmad Dahlan University, Indonesia (TELKOMNIKA)


The need for effective design of satellite attitude control (SAC) subsystem for a microsatellite is imperative in order to guarantee both the quality and reliability of the data acquisition. A proportional-integral-derivative (PID) controller was proposed in this study because of its numerous advantages. The performance of PID controller can be greatly improved by adopting an integral time absolute error (ITAE) robust controller design approach. Since the system to be controlled is of the 4th order, it was approximated by its 2nd order version and then used for the controller design. Both the reduced and higher-order pre-filter transfer functions were designed and tested, in order to improve the system performance. As revealed by the results, three out of the four designed systems satisfy the design specifications; and the PD-controlled system without pre-filter transfer function was recommended out of the three systems due to its structural simplicity, which eventually enhances its digital implementation,



ITAE, Microsatellite attitude, Performance parameters, PID controller, Pre-filter