A K-means and fuzzy logic-based system for clinical diagnosis (staging) of cervical cancer

Abstract

In cases of the burden arising from cancer world, cervical cancer is the most common type of gynaecological cancer, accounting 8% (527,624 cases in 2012) of all female malignancies, second only to breast and colorectal cancer. Women with cervical cancer constitute patient populations that are in need of ongoing, person-centred supportive care. The unavailability of technologies that can determine the stage of cervical cancer constitutes a problem in the actual diagnosis. Previously physician predict the cancer stage on the basis of their experience in the field, however this is prone to error because man’s judgement are sometimes clouded by emotions. This research seeks to address this problem with the design of a k-means and fuzzy logic based system for clinical diagnosis (staging) of cervical cancer. The K-means algorithm was used for the grouping of data and fuzzy logic for the rule based prognosis of cervical cancer

Description

Keywords

cervical cancer ;, prognosis., fuzzy logic, K-means, diagnosis, staging, algorithm, rule-based

Citation

Abikoye, O.C. , Olajide, E.O. , Babatunde, A.N. & Akintola, A.G. (2017): A K-means and fuzzy logic-based system for clinical diagnosis (staging) of cervical cancer. Int. J. Telemedicine and Clinical Practices. 2(2); 168-196

Collections