Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Isselmou"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Item
    Analysis And Classification Of Motor Imagery Using Deep Neural Network
    (institution of Applied Materials and Technology Society with the cooperation of Faculty of Engineering, Universitas Riau, Pekanbaru, Indonesia, 2021-05-25) Ahmad, Isah Salim; Zhang, Shuai; Saminu, Sani; Isselmou; Musa, Jamilu Maaruf; Javaid, Imran; KAMHI, SOUHA; KULSUM, UMMAY
    Motor imagery based on brain-computer interface (BCI) has aĨracted important research aĨention despite its difficulty. It plays a vital role in human cognition and helps in making the decision. Many researchers use electroencephalogram (EEG) signals to study brain activity with leě and right-hand movement. Deep learning (DL) has been employed for motor imagery (MI). In this article, a deep neural network (DNN) is proposed for classiėcation of leě and right movement of EEG signal using Common Spatial PaĨern (CSP) as feature extraction with standard gradient descent (GD) with momentum and adaptive learning rate LR. (GDMLR), the performance is compared using a confusion matrix, the average classiėcation accuracy is 87%, which is improved as compared with state-of-the-art methods that used different datasets.

University of Ilorin Library © 2024, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng