Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ayegba, Peace"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Item
    Relevant gene selection using ANOVA-ant colony optimisation approach for malaria vector data classification
    (Inderscience Publishers (IEL), 2022-11-14) Arowolo, Micheal Olaolu; Awotunde, Joseph Bamidele; Ayegba, Peace; Haroon-Sulyman, Shakirat Oluwatosin
    Recent progress in gene expression data research makes it possible to quantify and identify several thousand genes’ expressions simultaneously. For malaria infection and transmission, gene expression data classification using dimensionality reduction is a standard approach in gene expression data analysis and proposed for this study. A major problem occurs in the reduction of high dimensional data, it plays a significant role in improving the precision of classification, allowing biologists and clinicians to correctly predict infections in humans by choosing a limited subclass of appropriate genes and deleting redundant, and noisy genes. The combination of a novel analysis of variance (ANOVA) with ant colony optimisation (ACO) approach as a hybrid feature selection to select relevant genes is suggested in this study to minimise the redundancy between genes, and SVM is used for classification. The proposed method’s efficacy was shown by the experimental outcomes based on the high-dimensional of gene expression data.

University of Ilorin Library © 2024, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng