Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Adeniyi, T. T."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Item
    Hand geometry recognition: an approach for closed and separated fingers
    (International Journal of Electrical and Computer Engineering (IJECE), 2022) Adeniyi, J. K.; Oladele, Tinuke Omolewa; Akande, O. N.; Adeniyi, T. T.
    Hand geometry has been a biometric trait that has attracted attention from several researchers. This stems from the fact that it is less intrusive and could be captured without contact with the acquisition device. Its application ranges from forensic examination to basic authentication use. However, restrictions in hand placement have proven to be one of its challenges. Users are either instructed to keep their fingers separate or closed during capture. Hence, this paper presents an approach to hand geometry using finger measurements that considers both closed and separate fingers. The system starts by cropping out the finger section of the hand and then resizing the cropped fingers. 20 distances were extracted from each finger in both separate and closed finger images. A comparison was made between Manhattan distance and Euclidean distance for features extraction. The support vector machine (SVM) was used for classification. The result showed a better result for Euclidean distance with a false acceptance ratio (FAR) of 0.6 and a false rejection ratio (FRR) of 1.2.

University of Ilorin Library © 2024, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng