Browsing by Author "Adebiyi, M. O."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Application of Data Mining Algorithms for Feature Selection and Prediction of Diabetic Retinopathy(Computational Science and Its Applications – ICCSA 2019, 2019) Oladele, Tinuke Omolewa; Ogundokun, R. O.; Kayode, A. A.; Adegun, A. A.; Adebiyi, M. O.Diabetes Retinopathy is a disease which results from a prolonged case of diabetes mellitus and it is the most common cause of loss of vision in man. Data mining algorithms are used in medical and computer fields to find effective ways of forecasting a particular disease. This research was aimed at determining the effect of using feature selection in predicting Diabetes Retinopathy. The dataset used for this study was gotten from diabetes retinopathy Debrecen dataset from the University of California in a form suitable for mining. Feature selection was executed on diabetes retinopathy data then the Imple mentation of k-Nearest Neighbour, C4.5 decision tree, Multi-layer Perceptron (MLP) and Support Vector Machines was conducted on diabetes retinopathy data with and without feature selection. There was access to the algorithms in terms of accuracy and sensitivity. It is observed from the results that, making use of feature selection on algorithms increases the accuracy as well as the sensitivity of the algorithms considered and it is mostly reflected in the support vector machine algorithm. Making use of feature selection for classification also increases the time taken for the prediction of diabetes retinopathy.Item Diagmal: A Malaria Coactive Neuro-Fuzzy Expert System(Computational Science and Its Applications – ICCSA 2020, 2020) Oladele, Tinuke Omolewa; Ogundokun, R. O.; Awotunde, J. B.; Adebiyi, M. O.; Adeniyi, J. K.In the process of clarifying whether a patient or patients is suffering from a disease or not, diagnosis plays a significant role. The procedure is quite slow and cumbersome, and some patients may not be able to pursue the final test results and diagnosis. The method in this paper comprises many fact-finding and data-mining methods. Artificial Intelligence techniques such as Neural Networks and Fuzzy Logic were fussed together in emerging the Coactive Neuro-Fuzzy Expert System diagnostic tool. The authors conducted oral interviews with the medical practitioners whose knowledge were captured into the knowledge based of the Fuzzy Expert System. Neuro-Fuzzy expert system diagnostic software was implemented with Microsoft Visual C# (C Sharp) programming language and Microsoft SQL Server 2012 to manage the database. Questionnaires were administered to the patients and filled by the medical practitioners on behalf of the patients to capture the prevailing symptoms. The study demonstrated the practical application of neuro-fuzzy method in diagnosis of malaria. The hybrid learning rule has greatly enhanced the proposed system performance when compared with existing systems where only the back-propagation learning rule were used for implementation. It was concluded that the diagnostic expert system developed is as accurate as that of the medical experts in decision making. DIAGMAL is hereby recommended to medical practitioners as a diagnostic tool for malaria.