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Abstract

This study focuses on the deformation analysis using a geodetic method
known as the Least Absolute Sum. The method consists mainly of
independent adjustment of each epoch data, compatibility test on their a
posteriori variances, followed by determination of trend of movements for all
the common points in the network. A triangulation network was designed
consisting of 45 Ytt series Second Order control points within the study area
resulting in a total of 63 triangles,189 observations and 90 unknown
parameters with 99 degrees of freedom. The network adjustment was done
using the method of least squares observation equations. The estimated
variance factors for the 2D (horizontal) network were 7.82989325645394e-08
and 7.7207636996395¢-08 while 0.03944 and 0.052339 represent the
estimated variance factors for the 1D (height) for the first and second epochs
respectively. The compatibility of the two epoch data was tested with the
variance ratio and compatibility test passed. Actual displacement vectors
were computed and transformed into the same computational base using S-
transformation by Least Absolute Sum (LAS), stable and unstable points
were determined using Single Point displacement test, the displacement
vector magnitude was computed, represented graphically to indicate possible
trend of movements that might have occurred. This study finds Least
Absolute Sum (LAS) Technique useful in studying the deformation of large
engineering structures such as high rise buildings, bridges, dams, oil
exploration zones, mining sites and land slide monitoring.
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Introduction

NY object, when acted upon by external forces, deforms, or exhibits changes

n its size or shape. These observable changes are manifestations of internal
stresses or pressures produced by the physical interaction of the external forces
and the material itself. Materials either fail or tear when stresses exceed certain
critical values [7]. It is this risk of failure which practically necessitates
deformation monitoring surveys, which allow the implementation of mitigating
constructive procedures or evacuations to take place early enough, to prevent loss
of life and material. Generally, the deformation measurement techniques can be
divided into geotechnical, structural and geodetic methods. Geotechnical and
strt{ctural methods are direct measurement methods, which uses special
equipment to measure changes in length, inclination, relative height, strain,
etc.,[32; 7). On the other hand, in the geodetic method there are two basic types of
geodetic monitoring networks namely the reference and relative networks [7].
In a reference network, some of the points or stations are assumed to be located
outside of the deformable body or object, thus serving as reference points for the
determination of the absolute displacements of the object points. However, in a
relative network, all surveyed points are assumed to be located on the deformable
body. This study will focus only on the geodetic method using a relative network.
In a geodetic monitoring network, the object or area under investigation is usually
represented by a number of points which are permanently monumented or
marked. All the points are then observed in two or more epochs of time.

The geodetic monitoring network can be either a conventional (terrestrial)
network, a photogrammetry (i.e., aerial or close-range) network, Global
Positioning System (GPS) network or a combination of these network types.
Deformation analysis using the geodetic method mainly consists of a two-step
analysis via independent adjustment of the network of each epoch which involves
testing coordinate differences for significance, by comparison to the accuracy of
their determination, followed by deformation detection between the two epochs.

During deformation analysis it is important to determine the trend of movements
(displacements) for all the common points in a monitoring network. The trend of
movements, then form a basis for preliminary identification of the actual
deformation models. Although deformation analysis is applicable to one-
dimensional (1-D), two dimensional (2-D) and three-dimensional (3-D) monitoring
networks, for this study a 2D (horizontal) and 1D (vertical) networks of gsecondary
controls located around the study area were investigated using Least Absolute

Sum Technique (LAS).

Methodology

The data used were point coordinates of second order control point obtained from

the office of the Surveyor-General of Lagos State serving as the first epoch data,
the second epoch data was observed while the Orthometric heights for these
selected stations in the network are derived from EGM 2008. A total of 4.5
common stations coordinates were used for the two epochs. Deformation analysis
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using geodetic methods consists of independent network adjustment of each epoch
data followed by deformation detection

Network Adjustment of Each Epoch Data

Adjustment of observations for each epoch data separately to obtain the estimate
of the point coordinates X , Y and Z and their full covariance matrix using
observation equation method of Least Square .

15 = Fx%) 2.1.1)
After Linearization the observation equation is written as;

L =AX+V (2.1.2)
L =LP +V, vector of adjusted observation (2.1.3)
X® = X° + X adjusted parameter (2.1.4)
1° = F(X°) (2.1.5)
L = L° — I? , the misclosure vector (2.1.6)

L° = Approximate vector of observation, L? = Vector of original observation
X® = Vector of adjusted parameter

X = Vector of corrections to the approximate values

V = Vector of residuals

__ dF(Xo) |
A= d(xo0) ’
with respect to the unknown parameters of each station

the design matrix A4 was obtained by differentiating the observations

QX?® = (AT PA)™! co factor matrix of X* (2.1.8)
QL? =A(AT PA) AT co factor matrix of L* (2.1.9)
02 = -v:—f%-a posteriori variance factor (2.1.10)

The programming for the network adjustment was done using Matlab. The
adjustment module is based on Observation equation method of least squares. The
point coordinates was used to design a reference network of 63 triangles,
consisting 189 observations and 90 unknown parameters with 99 degrees of
freedom. Table 2.1 below shows the adjusted coordinates of the first and second

epoch data.
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With oZ,and o5, . being the a-posteriori variance factors for the first and second
campaigns respectively

2
The test statistic is T= ?{‘— ~ Fla,df;,df,) (2.2.1)

With j and i representing the larger and smaller variance factors, F is the Fisher's
distribution, a is the chosen significance level (typically a = 0.05) and df, and df,
are the degrees of freedom for i and jobservation campaigns respectively. The
above test is accepted if T < F(a,df;, df;) at a significance level a. The failure of
the above test may be caused by incompatible weighting between the two

campaign observations or incorrect weighting scheme and any further analysis is
stopped at such stage.

Trend Analysis

After the test on the variance ratio, the test is accepted, the displacement vector
(coordinates differences) and its cofactor matrix is then computed as follows;

d=%2-% (2.3.1)
Qa= Qi +Qa (2.3.2)

d is the displacement vector, Q4 is the cofactor matrix of d , X;and %, are the
estimated coordinates of all the common points in the first and second observation

epochs respectively (with same datum definition), Q5 and Qg are the cofactor
matrix of the estimated coordinates £, and 2, .

Least Absolute Sum (LAS)

A robust method known as Least Absolute Sum (LAS) was proposed by [1]. In the
LAS method, some points in a reference network cannot be accepted as stable. In
other words not every point has equal importance. Hence in the beginning, the
weight matrix (W) is accepted as W = I. This indicates that all points in the
network have the same importance. Therefore, the solution is similar to the

Helmert transformation, if only some points are given unit weight and the others
a zero weight, that is, W = diag (1, 0) [2].

d<+1 = [1- H(HTW“‘)H)“' HTw(lt)]dk = sk gk) (2.4.1)

Where I = identity matrix, k = number of iterations,

: : d = displacement vector, S =
S-transformations matrix, and W = weight matrix

Then displacement values (d) are calculated as:

dy = S,d (2.4.2)
Qa1 = SQ4ST (2.4.3)
S = [1 — HHTWH)DHTW 2.4.4)
d; = S,d, (2.4.5)
Qaz = S;Q4S7

(2.4.6)
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Table 2.1: Adjusted Coordinates of the First and Second Epoch Data

512770.871400334

718266.132200109

22.69139892

512770.871403101

[718266.132201002

22.6714835

514506.700499577

718531,839799538

2269178864

514506,.700502712

718531 839892683

226177766

512893.348609673

714574.3245898698

2232421379

12893 348696706

714574 324682748

220283972

515558.463298R852

713569.142998861

22 31915793

515558.163313656

713569.143971483

22.1792805

516586.611797575

T14276.855800185

22 44819168

516586.611803276

714276.855808693

22 4573541

518613.606295812

T13094.787300631

22. 27584535

518613.6963016144

713094, 787305278

22.1277046

H14352.907049268

7146852 11899466

22.40743677

H1A352 907080291

714685.215000243

22.3007829

S517061.729348256

715137 606801309

22 543 7HR0K

517061.729400602

715437.606814866

22.6728747

518422 044396225

714609.031901 365

22.48557176

518422 0443596833

T14609.031912447

224370771

520125.232796594

T13647.970001077

L2 37953486

520125.232796485

713647.97000797

22.3638133

621363.15129068

T16052.213702074

22 48641387

521363.151281339

715052.213730621

22569482

518498.663596491

16974489604 158

22.69806547

518498.66G3595936

716971.48964 1336

22.9511293

BIR|IZS|e|z|w|a|o]e]w]we ]~

514108.928199661

T17481.663299636

22 61380567

6514108.925201137

T17481.663397287

22,5929253

—
-

515601.588799R51

T17526.274999348

22.70542529

515601.588808974

717526.275561109

22.868333

—
o

516850.750999607

T16775.006100767

22 6656666

316960.7510017

716776.036407083

22.851861

—
-3

517138.43110192

T17714.634600756

22 76961739

617138.431104485

717714.634610646

23.058185

—
-

520079.581892186

717605.051806163

22.75625371

520079.58188775

717605.081862575

23.0669356

-
>

521384.589782752

T16820.772199095

22 65690067

521384.589767459

[716820.772291492

22.8672022

19

521584.838793279

T13618.512600229

22.32802007

521584.838781534

713648 512604235

22.2474788

523697.2681691038

712610.341101032

22 17827755

523697.284671975

712610.341115527

21.9320408

525256.684295581

T12069.400902666

22.09307778

H26206. 684279501

712069.400939104

21.7478426

H23497. 6005891544

T14124.5 78899686

22 34578404

623497 609877763

714124.578999448

22.304579

525443.70859301 1

T14191.748497196

22.32616293

525443.708582496

714191.748578731

22.212263

527124.733794408

713617.7556492013

22.25907939

527124 733796371

[713617.7655536764

22.0740095

YTT25

522501.845287421

715583.224889731

12219919881

522501 B45274277

715583,225000239

22.5282929

YTT26

526736.830187412

T15474.552302427

122 454949366

526736.830 178688

T15474.5524335881

22.4668134

YTT27

5278B7.037115264

714877.7064714568

22.40016023

527887.037436763

T144977.706532537

22.3521075

YTT28

518840.786507038

T18875.794600559

22.89331219

518840, 786598195

T18875.791694225

23.3294168

YTT29

520145.435490858

718953.625108137

22 0183002

520140.435486309

T18953.625181671

23.4036233

YTT30

5224441.869566192

TISTRAS14112478

2297815103

522444.869536481

T19784 514127727

23.494706

YTT31

522025.385773317

T18114.274704924

[22.79568104

522025 386549735

TIB114.274751322

23.1433067

YTT32

523186 583369713

717539.965614425

122, 71579058

5623186.58134 1969

T17339.9656.18825

229760665

YTT33

5287056.879517028

T13B17.503486292

122, 263023740

528705.8785315345

713817.504864103

22.0818816

YTT34

528043.110511926

T12435. 184 798628

2213055794

528043.110316779

T12435.484909801

21.8191489

YTT35

528419 988415911

710633.958211361

121.92731111

5284 19.98831332

710633.958237693

214137506

YTT36

529967.93452679

711032 6846074905

121 96829762

HU0067.934544663

711032 684711616

21.4742604

YTT37

528261 861876

TIT210 698619623

22.63104409

528261.861862215

717210 698704528

22.5097254

YTT38

626425 689061994

TI8724 127100844

22.81301857

626125.689028949

718724.127113802

23.1712292

YTT39

25076 16RORG105

T19408 B19474891

12291308931

H25076.4R8977532

TI9H08 818551119

23.3689151

YTT40

526225.935350985

T20282.571171673

[22.98976953

526225.935307325

720282 574549655

23.5230335

YTT41

628493 126463876

T18118. 80777251

122.76950388

528493.426333629

T18448.807829748

23.0647614

YTT42

H27884. 34485114

T20371 BDB72944

22 9684469

527884.34360357

720371.80879708

23.481299

YTT43

523273.527400817

721154.481610349

23. 12072684

523274.527204784

721164.484704536

23.78354

YTT44

524356.490404865

722181.8865676353

23.23512038

524356.488142223

22381.886658528

24.0128619

YTT45

525882.380108576

722017.811261183

23.17561393

525882.380020785

[722017.811315488

23.8941837

Initial Checking of Data and Test on Variance Ratio

Before deformation analysis can be carried out, it is important to perform initial
checking on the input data and test on the a-posterior variance factors of both
epochs [19; 20; 21], [22].This is to ensure that common points, same approximate
coordinates and same point's names were used in the two campaigns. The a
postertori variance factors of both epochs were then tested for their compatibility.
The null and alternative hypotheses used are as proposed by [27].

" ) 2 2 2
H,: 0}, = 0%, and H,: 0%, > 6%, or a?, > 62,

(2.2.0)
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With o},and o2,  being the a-posteriori variance factors for the first and second
campaigns respectively
2
The test statistic is T= ?{T ~ "F(a,df,.df) (Gt

With j and i representing the larger and smaller variance factors, F is the Fisher's
distribution, a is the chosen significance level (typically a = 0.05) and df; and df,
are the degrees of freedom for i and j observation campaigns respectively. The
above test is accepted if T < F(a,df;,df;) at a significance level a. The failure of
the above test may be caused by incompatible weighting between the two

campaign observations or incorrect weighting scheme and any further analysis is
stopped at such stage.

Trend Analysis

After the test on the variance ratio, the test is accepted, the displacement vector
(coordinates differences) and its cofactor matrix is then computed as follows;

d=2%;- %, (2.3.1)
Q = Qa +Qa (2.3.2)

d is the displacement vector, Q4 is the cofactor matrix of d , Z;and %, are the
estimated coordinates of all the common points in the first and second observation

epochs respectively (with same datum definition), Q5 and Qg are the cofactor
matrix of the estimated coordinates 2, and 2, .

Least Absolute Sum (LAS)

A robust method known as Least Absolute Sum (LAS) was proposed by [1]. In the
LAS method, some points in a reference network cannot be accepted as stable. In
other words not every point has equal importance. Hence in the beginning, the
weight matrix (W) is accepted as W = I. This indicates that all points in the
network have the same importance. Therefore, the solution is similar to the

Helmert transformation, if only some points are given unit weight and the others
a zero weight, that is, W = diag (/,0) [2].

d**! = [1 - H(HTW® )1 HTW®]gk = stagoa (2.4.1)

Where I = identity matrix, k = number of iterations,

: : > d = displacement vector, S =
S-transformations matrix, and W = weight matrix

Then displacement values (d) are calculated as:

d, = S,d (2.4.2)
Q41 = SQ,ST (2.4.3)
S=[—-HMH"WH)VYHTW (2.4.4)
d, = S,d, (2.4.5)

Qaz = S;Q4S7 (2.4.6)
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where d,and Qg, are the displacement vector and its cofgctor matrix respectively
based on the new datum or computational base, H , the inner constraints matrix
constructed depending on the union of the datum defects n tlfe two epochs and on
the number of common points, and W is the weight matrix with diagonal value of
one for datum points and zero elsewhere. Matrix S is symmetric only for the
minimum trace solutions (i.e., all points in the ngtwork were defined as
datum).The group of selected datum points is then tested for its stability by using
Single Point displacement test. The LAS method is used when there is no previous
information about the movement of points within the network.

Formation of matrix H for the final S-transformation

H is a configuration matrix for the datum defect, called inner constraint matrix,
Basically, the matrix H depends on the type of network: 1D, 2D or 3D. For 1D, 2D
and 3D networks, H is having maximum dimensions of (1m by 1), (2m by 4) and
(3m by 7) respectively, where m is the number of stations. Equation (2.4.7) shows
the components of the matrix H for a 1D network.

HY = 1311 ... s oD (2.4.7)

For 2D surveying networks, the first two rows of the matrix H represent the
translations in the x and y directions (2x and ty), the third row defines the
rotation about the z axis (rz) and the last row is the scale of the network.
Equation (3.2.4.1) shows the components of the matrix H for a 2D network.

1 0 1 0 - 0 1
H' =0 1 0 1 . 1 0
y‘i -X] Y2 —x3 - —yh —x5
x3 Yi X2 Yz - x5 Y (2.4.8)

Where xi and yj, z{ are the coordinates of point p; which are reduced to the
centroid or centre of gravity of the network, i.e.,

xp = x, — (ZEan) (2.4.9)

yp =y, — Em) (2.4.10)

With x;, y;, the.approximate coordinates of point P and m is the number of
common points in the network. [16; 23; 28].The first two rows of the inner
constraint matrix (H") take care of the translations in the x and y directions, while
the third row defines the rotation about the vertical (2) axis and the la'st row

defines the scale of the network. For a Trilateration network the | T
, t
omitted [25; 26; 27]. ast row of H” is

In the first transformation (k =

(W®) =) for all the common poi e e i M taken, g identity

nts, this indicates that all the points in the
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network have the same importance. The weight matrix for Least Absolute
(LAS)

Sum

1

w® = diag [; (2.4.11)
I J(dxl(“N- dy:(*))zl

The iterative procedure continues until the absolute differences between the
successive transformed displacements of all the common points, i.e.

|+ qoo | (2.4.12)

are smaller than a tolerance value & ( say 0.00Im). It is possible that during
the iterations some dxi, dyi, dzi may approach zero causing numerical

instability because WK becomes very large .There are two ways to solve this
problem, either by:

Setting a lower bound value e.g 0.0001m. If d;® is smaller than the lower bound
value, its weight is set to zero, or replacing equation (2.4.11) as:

w® = diag - (2.4.13)
J(dxltku 54 (dyitk) 4 5)(2))(2)

Where dicks is the § component of the vector dk after kth iteration. In this study the
Least Absolute Sum minimizes the sum of the lengths of the displacements i.e.

>Jdxi)? + (dyi)? —— minimum (2.4.14)

In the final iteration, the cofactor matrix of the displacement vector is computed
as

Q4" = sWQ (s (2.4.15)

For 1D networks, there are some differences for the calculation of d’ and Q..
First, the displacements d are arranged in increasing order. The median is
assigned unit weight 1 and zero weight is assigned to the other displacements d.
If the total number of d is an even number, the two middle (median)
displacements d are assigned unit weight 1 and zero weight is assigned to the
other displacements d, Then, the new vector of displacements d’ and its cofactor
matrix Q4" ared’' = min}¥ |d; —tz| = Q4 = SQ4ST where tz| is the mean
value of the middle displacements and d’ is the displacement of point i.

S=[I-HHT"WH)-UHTWw (2.4.16)

The stability information of each common point j is then determined through a
single point test as below [25]; [27].

. (‘l(&ﬂ))r Q “"")‘-1 d,(k+1)
T = (2 ) F(a.2.dp L
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Where :
d;, Q4 = displacement vector and its cofactor matrix respectively for each
common point j or pooled variance factor.

o,g - [I‘Il(ﬂz!l !;,dfz(ﬂzoz)l’ common or pool variance facmr (2.4. 18)

(6%,).(02;) = aposteriori variance factors of first and second epochs respectively
df,.df, = degrees of freedom of first and second epochs
df = df,+df,, sum of degrees of freedom of first and second epochs significance
level (usually chosen as 0.05)

If the above test passes (i.e.,T; < F(a,2,df)) then the P°i"': is assumed to be
stable at a significance level a. Otherwise, if the test fails (i.e., T, = F(a,2,df))
then the point is assumed to be deformed (moved).

Results and Data Analysis

Network Design

A triangulation network consisting of 45 YTT series second order con.trol points
within the study area resulting in a total of 63 triangles,189 observations and 90
unknown parameters with 99 degrees of freedom.
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Figure 3.0: Network of Selected Control Points Across the Study Area
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Adjustment Results

The results of the study are presented in the following sections. The network

adjustment summaries for 2D (X, Y) and 1D (Height) are shown in Tables 3.1a
and 3.2a respectively.

Table 3.1a: 2D (x, y) Network Adjustment Summary

Parameter

______First Epoch

Second Epoch

No of Station 45 45

No of Observation (n) 189 189

No of Parameters (m) 90 90

Degree of Freedom (df=n-m) 99 99
Convergence Limit 0.00001 0.00001

A-posteriori Variance (o) 7.82989325645394¢-08 7.96836000130844e-08
Trace of the Covariance Matrix 5.183975843652210e-06 5.27565084002794e-06
of the Adjusted parameter

Trace of the Adjusted 7.04690393080854¢-06 7.1715240011775%-06
Observation Matrix :

Table 3.1b: 1D (Height) Network Adjustment Summary

. Parameter

_ First Epoch __Second Epoch

No of Station 45 3 45

No of Observation (n) 107 107

No of Parameters (m) 45 45

Degree of Freedom (df=n-m) 62 62

A-posteriori Variance (o) 0.0394472461577893 0.052339412620338
Trace of the Covariance Matrix 1.040613555969225 4.018695177022139

of the Adjusted parameter

Trace of the Adjusted 1.77512607710052 6.85527356791522
Observation Matrix i W

Deformation Analysis Result

After the network adjustment, the obtained results, especially the adjusted
coordinates and the cofactor matrices were used for the computation of the
displacement vector and the cofactor matrix of the displacement vector. The trend
analysis and deformation detection were carried out using the LLAS method. At the
degrees of freedom of the epoch, the Fisher's critical value obtained at 0.05 (95%)
significant level is 1.39. The result of the variance ratio test of the two epochs
shows the test statistic (T) value is 1.020884677924254.

The displacement vector (d), cofactor matrix of the displacement vector (Qq), the
inner constraint matrix (H), weight matrix (W), S-transformation matrix (5) and
other parameters of the LAS were all computed. The results of the displacement
vector (d) after adjustment of the network, the first iteration displacement vector
d, and the second iteration displacement vector d, after transformation by Least
Absolute Sum method the final single point displacement (d,) are as shown in
Table 3.2 , Table 3.3, and Table 3.4.
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Table 3.2: Displacement Vector of the 1D Network and Stable/Unstable Point Displacements

Single Point

Displacement Displacement Voctor on i
Vector New Computationnl Base

Displacement

Aflter S- Transformation

Control ;
B = Sid = Sud
Point

/N N dZ(im) y 4
1| YTT1 .0.01992 | -0.62106 .0.54265 0.811994 | Stahle
2 | YTT2 .0.07401 | -0.59154 .0.51313 0.988851 | Stable
3| YTT3 .0.29582 | -0.45274 .0.37433 0.592596 | Stable
4 | YTTa .0.13988 | -0.41891 -0.3405 0.648932 | Stable
5| YTT5 0.009162 | -0.40332 -0.32491 0.600531 | Stable
6 | YTT6 .0.14814 | -0.35374 .0.27533 0.409578 | Stable
7| YTT7 -0.10665 | -0.29257 -0.21416 0.261906 | Stable
8 | YTTS 0.129087 | -0.28865 -0.21024 0.306232 | Stable
9 | YTTO 0.001505 | -0.25564 .0.17723 0.191986 | Stable
10 | YTT10 -0.01573 | -0.24738 -0.16897 0.189104 | Stable
11 [ YTT11 0.083069 .0.2214 .0.14299 0.147021 | Stable
12 | YTT12 0.253064 | -0.21416 -0.13575 0.13268 | Stable
13 | YTT13 -0.02088 | -0.18804 -0.10963 0.070051 | Stable
14 | YTT14 0.162908 | -0.18152 .0.10311 0.068049 | Stable
15 | YTT15 0.186194 | -0.16077 -0.08236 0.044635 | Stable
16 | YTT16 0.288568 | -0.15556 -0.07715 0.040944 | Stable
17 | YTT17 0.310682 | -0.12838 -0.04997 0.021027 | Stable
18 | YTT18 0.211302 | -0.12742 .0.04901 0.021141 | Stable
19 | YTT19 .0.08054 | -0.12323 -0.04482 0.017767 | Stable
20 | YTT20 -0.24624 -0.106 -0.02759 0.012284 | Stable
21 | YTT21 -0.34524 | -0.10018 -0.02177 0.013732 | Stable
| 22 | YTT22 -0.05327 | -0.09834 -0.01993 0.003962 | Stable
23 | YTT23 .0.1139 | -0.07841 0 0 | Stable
24 | YTT24 -0.18507 | -0.02444 0.053976 0.079391 | Stable
25 | YTT25 0.029093 | 0.021583 0.099994 0.108622 | Stable
26 | YTT26 0.00732 | 0.055404 0.133815 0.308231 | Stable
27 | YTT27 -0.04805 | 0.071178 0.149588 0.449503 | Stable
28 | YTT28 0.436104 | 0.078691 0.157101 0.183723 | Stable
29 | YTT29 0.485314 | 0.103798 0.182208 0.321928 | Stable
30 | YTT30 0.516555 | 0.14556 0.223971 0.528426 | Stable
31 | YTT31 0.347626 | 0.152772 0.231183 0.514461 | Stable
32 | YTT32 0.260276 | 0.181064 0.259474 0.756523 | Stable
33 | YTT33 -0.18114 | 0.197744 0.276154 1.883885 | Moved
34 | YTT34 .0.31141 | 0.203178 0.281589 2.125777 | Moved
35 | YTT35 {0.51366 | 0.240122 0.318533 2.76796 | Moved
36 | YIT36 -0.48404 | 0.250707 0.329118 2.839587 | Moved
37 | YTT37 0.178681 | 0.3928601 0.407011 2.594411 | Moved
a8 | YTT48 0.358211 | 0.348322 0.426733 2418916 | Moved
39 | Y1139 0.455826 | 0.37781 0.456221 2.445482 | Moved
40 | YTT40 0.533274 | 0.405347 0.483757 2 887476 | Moved
41 YTT41 0.305247 0.409051 0. 487462 3.288789 Moved
42 | yTT42 0.51285 | 042577 0.504181 3.974917 | Moved
43 | YTT43 0.662813 | 0.55531 0.63372 4.707015 | Moved
44 | YTT44 0.777741 | 0.611166 0.689577 5.687355 | Moved
45 | YTT45 0.71867 | 0.670238 0.748648 6.843486 | Moved
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Table 3.3: The Displacement Vector Pattern of the Epoch Data Using LAS

1 )TT) 2.77E-06_P.G9E-05 [1 20E.06 |3 17E-05 4.25E-08 }3.88E.05 [.8S0E-05 .000164_1.794432
O 3.14E-06_}0.00011 P 26E-05 [.17E-06 [1.64E-05 |1.46E-05_|1.718E-5 . 186669 |1 069351
3 NTT3 -297E-06_D.000105 2 08E-05 |2 24F-05_}2 79E-06 [1.62E-05 [1.177E-05 456962 ).080737
4 [\TT4 LASE-05 1000031 [L11E-05 P.O00RKS }.O6E-06 D.0D0RTO B T9E.04 D.00T146 }1.246152
5 NTTH 5.70E-06 D.000124 || 44F-05 |7.86E-05 [ 20E-06 | 8.58E-05 .61 E.05 .024044 Ji110811
6 NTT6 5.83E-06 M I10E-05 P28E.05 00001 [LLATE-05 }0.00011 \I 570E-05 ).111269 [7.190499
7 NTT7 -6.33E-06_}1.000162 }1.93E-06 DOSE-05 |1.94E.05 2 46E05 1 053 E.05 16821 1).31783
8 NTTS 2.35E-06_D.000133 P 19E-05 |6 77E-05 | 48E-05 |}7.48E-05 [1.625 E-05 ).103594 }1.158588
9 NTT9 G.OSE-0T H.72E.05 P 54E-05 [8.51E-05 I.8B3E-05 }9.22E.05 .39 E.05 157431 |1 870269
10 NTT10 -1.08E-07 P62E.06 B 17E.05 }000011 P 46E-05 F0.00011 [1.127 E-05 ).203329 [7 62088
1_NTT11 9.34E.06 S BOE-05 |1 08E-05 |8 36E-05 [3.37E-05 |9.07E-05 b.675 F-05 D 565388 [1.660503
12 NTT12 -5.55E:07 BOSE-05 [ 97E-05 |4.13E.05 [3 26E-05 |4.8B1E-05 [5.835 E.05 D.521227 [1.323015
13 NTT13 14SE-06 _[1 26E-05 [112E-05 [5.07E-05 }1.09E-D6 }1.35E-05 |5 970 E-08 D.010728 }) 872408
14 NTT14 9.13E-06 _}0.00053 [ 0GE-05 D 000906 P 35E-05 0.000899 | 993 E-05 300271_|1 536646
15 \TT15 2.09E-06_ }6.81E-05 2.92E.05 |6.40E.05 P 21E-05 }7.11E-05 [7.4455 E-05 .236805 P 868241
16_NTT16 2.56E-06 |1 83E-05 [3.71E-05 |5.43E.05 2 99E-05 |[6.15E-05 § 838 E-05 D.452714 2130441
17_NTT17 -4 44E.06_P.00011 _[5.19E-05 |2.71E.05 4.48E-05 |3 43F-05 §5.642 E-05 1).986544 ) 649148
18 NTT18 -1.53E.05 14 11E-6 |1 62E-05 |5.38E.06 [3.90E-05 |1 25E.05 P 337 E.05 [).760024_}).086324
18 NTTia -L17E.05 B.57E-05 B13E-05 10.00012 P 42B-05 }0.00013 1.3223 E-04 ) 267002 5.061258
20 NTT20 -1L61E-05 D.00012 B67E-05 |0.00013 P 95E-05 10.00014 |1 43E-04 ). 466251 [1 066337
21_hTT21 -1.58E-05_D.000264 |4.55E-05 |0.00012 B B4E-05 L0.00013 |1.3555 E-04 ).821701 B 233006
22 NTT22 -1.38E.05 [5.46E-05 }i.70E-05 |3 20E-05 [3 98E-05 |3.91E-05 b5.607 E-05 ).809365_|) 851019
23 NTT23 -1.05E-05 [7.04E-05 5.56E-05 |6.19E-05 [5.84E-05 |6.91E.05 b.047 E-05 [1.865367 P 618017
4 NTT24 -3.03E-06_D.000137 B 24E-05 [000011 [7.52E.05 +0.00012 [1 4161 E-04 B.120756 |7.668884
25 NTT25 1.31E.05 [591E-05 {4 91E-05 |1 38E-06 4 20E-05 +2.09E.05 J1.691 E-05 .899676 ).243445
26 NTT26 -872E.06 P 74E.05 B54E-05 }0.0001 [7.82E-05 -0.00011 |1.3486 E-04 3.326455 §5.232521
27 NTT27 2.15E-05  10.00021 D.000121 }9.17E-05 ) 000114 -9.89E-05 [1 509 B-04 7.224628 b.070011
28 NTT28 1.46E-06h.000112 b.63E-05 [1.86E-05 [.92E 05 1.16E-05 |5.0526 E-05 1.190501_D 07579
29 NTT29 -4.55E-06 [).000126 J5.08E-05 |846E-08 5.36E-05 }7.24E.-06 |5 408 E-05 420155 D.028761
20 NTT30 -2.97E-05 J)000272 |5.85E-05 }6.64E-05 5.14E-05 }7.36E-05 |5 67714 E.05 386828 P 965948
31 HTT31 -2.36E-05 1000111 [5.09E-05 |4 55E.05 M 38E.06_}526E-05 |p.661 E-05 1975635 11507281
32 NTT32 -277E-05_)) 000331 B 21E-05 |6 92E.05 4 48E-05 |7.63E-05 |8.853 E-05 11.042566_[3.237843
33 \TT33 1.75E-05  [0.00018 }.00D116 P.000711 .000108 1.000704 1%97 E-04 $.784533 P 442919
34 NTT34 3R5E-06 D 000319 R AYE-05 [624E-05 B 17E-05 |6 96E-05 [10.732 E-05 1.947721 P 469739
35 NTT35 .258E-06_p.U00591 [7.40E-05 }0.0001G ¥ 68E.05 [0.00017 [1.833 E.04 2 844835 |1 500624
36 NTT36 179E-05 | OOOGST 1000109 19 24E-06 1) 000102 +9.96E-03 h 4256 E-04 39048 }1.741311
37 1737 1 48E.05_[0.00113 D.000103 }5.31E-05 B.58E-05 |6.02E-05 11.314 E-05 015102 [1 936708
38 NTT3s 4256060001156 [7.96E-06 b0.0001  [7 24E-05 }0.00011 [7.240 E-05 b 885911 |5.487339
9 NTT39 & RTE-06_.001186 8 72E.06 |2 48E-05 B.00E-05_}3.20E-05 B.56519 E.05 4.402552 |).566615
40 NTT40 437E-05_D.002614_[7.6TE-06 }2.66E-06 5 95E.06 }3.38E-05 [1.728 E-05 2. 663538 }).634454
11 _NTT4) 0.00013__}0.00189 _|3.99E-06 }7.27E-05 }1.12E-05 }7.99E-05 B.068 E-05 .068964_[3.45412
42 NTT42 000026100043 D.000201_}0.00036 D.000194 10.00037 }.1778 E-05 . 121703 [1.28967
43 YTT43 00002 |0.00133 }19.28E-05 [1.78E-05_}1.00E-04 [1.0GE-05
44 NTTa4 0.00226__ D 016168 1000214 PAIE-06 }0.00215 P.25E-06 P
45 _NTT45 -8.7RE-05_|0.00067 W.ORE-05 }3.18E-05 [3.37E-05 }3.80E-05
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Table 3.4: The Stable and Unstable Point Detection

1| YTT1 4.25E-08 -3.88E-05 0.000164 0.794432 | Stable Stable
2| YTT2 1.54E.05 4.46E.05 0.186669 1.069351 Stable Stable
3| YTT3 -2.79E-5 1.52E-05 0.456962 0.080737 | Stable Stable
41 YTT4 3.96E-06 0.000879 0.007146 4.246162 | Stable Moved
5| YTT5 7.20E-06 -8.58E-05 0.024044 4.110841 | Stable Maved
6| YTTé6 1.57E-05 -0.00011 0.111269 7.19099 | Stable Moved
7| YTT7 -1.94E-5 2.36E-056 0.16821 0.31783 | Stable Stable
B| YTTs 1.48E-05 -7.48E-05 0.103594 3.158588 | Stable Moved
9| YTT9 1.83E-05 -9.22E-05 0.157434 4.870269 | Stable Moved
10| YTT10 2 46E-05 -0.00011 0.293329 7.62088 | Stable Moved
11| YTT11 3.37E-056 -9.07E-05 0.565388 4 660503 | Stable Moved
12| YTT12 3.26E-05 -4.84E.05 0.521227 1.323015 | Stable Stable
13| YTT13 4.09E-08 4.35E-05 0.010728 0.872408 | Stable Stable
14| YTT14 2.35E.05 0.000899 0.300271 4.536646 | Stable Moved
15| YTT15 2.21E-05 -7.11E-05 0.236805 2 868241 | Stable Moved
16| YTT16 2.99E-05 -6.16E-05 0.452714 2.130441 | Stable Moved
17| YTT17 4.48E-05 -3.43E-05 0.986544 0.649148 | Stable Stable
18| YTT18 3.90E-05 -1.25E-05 0.760024 0.086324 | Stable Stable
19| YTT19 2.42E-05 -0.00013 (.297002 9061258 | Stable Moved
20| YTT=20 2.95E-05 -0.00014 0.466251 1.068337 | Stable Moved
21| YTT21 3.84E-05 -0.00013 0.821701 9.233006 | Stable Moved
22| YTT22 3.98E.05 -3.91E-05 0.809365 0.851019 | Stable Stable
23| YTT23 5.84E-05 -6.91E-05 1.865367 26818017 | Moved Moved
24| YTT24 7.52E-05 -0.00012 3.129756 7.665884 | Moved Moved
25| YTT25 4.20E-05 -2.09E-05 0.899876 0.243445 | Stable Stable
26| YTT26 7.82E-05 -0.00011 3.326455 6.232521 | Moved Moved
27| YTT27 0.000114 -9 89E.05 7.224628 5070011 | Moved Moved
28| YTT28 4.92E-05 1.15E-05 1.190501 0.07579 | Stable Stable
26| YTT29 5.36E-05 -7.24E-06 1.420155 0.028761 | Moved Stable
30| YTT30 5.14E-05 -7.36E.05 1.386828 2.965948 | Stable Moved
31| YTT31 4.38E-05 -5.26F-05 0.975635 1.507281 | Stable Moved
32| YTT32 4.49E-05 -7.63E-05 1.042566 3.237843 | Stable Moved
33| YTT33 0.00010 0.000704 6.784533 2.442919 | Moved Moved
34| YTT34 B.17E-05 -6.96E-05 3.947721 2.469739 | Moved Moved
35| YTT3s5 6.68E-05 -0.00017 2 8448356 1.500624 | Moved Moved
36| YTT3as 0.000102 -9.96E-056 6.39048 4.741311 | Moved Moved
37! YTT37 9.58E-05 -6.02E-05 5015102 1.936708 | Moved Moved
38| YTT3S8 7.24E-05 -0.00011 2 885911 6.487339 Moved Moved
39| YTT39 9.00E-05 -3.20E-06 4 402652 0.566615 | Moved Stable
40| YTT40 6.95E-05 -3.38E-05 2.663538 0.634454 | Moved Stable
41| YTT41 -1.12E-5 -7.99E-05 0.0689G4 3.45412 | Stable Moved
42| YTT42 0.000194 -0.00037 2.121703 7.28967 | Moved Moved
43| YTT43 -1.00E-4 1.06E-05 5.378697 0.062547 | Moved Stable
44| YTT44 -0.00215 2.25E-06 2. 257432 0.002949 | Moved Stable
45| YTT45 3.37E-05 -3.90E-05 0.621957 0.823719 | Stable Stable

Analysis of Results

After the presentation of results, the results were analysed as shown

session below.

in the sub
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Trend and Deformation Analysis of the Displacements Using LAS method

After the Least Square Estimation (LSE) of the data of the network, the
compatibility of the two epochs data was tested with the variance ratio and
compatibility test passed. The computed variance ratio of the campaigns is lesser
than the F-distribution critical value for the specified confidence level. The critical
value for the 0.05 (95%) significance level chosen for the Fisher's distribution (F) 18
1.390. The test statistic (T), which is the ratio of the variances (the larger divided
by the small passed. The test on the variance ratio passes at 0.05 significance level
(i.e., 1.02088467792425< 1.390) of the Fisher's critical value, thus indicating the
compatibility between the two epochs and permits further analysis to be carried
out for deformation detection and analysis. For the 1D network, the critical value
the 0.05(95%) significance level chosen for the Fisher’s distribution (F) is 1.550
and it also passes the compatibility test.

The trends of movements and deformation analysis of the monitoring network was
done using the adjusted coordinate differences and the cofactor matrices from both
campaigns respectively and by applying the LAS method. The 1D and 2D point
coordinates X, Y of each epoch and their cofactor matrices were calculated with
two separate network adjustments. The Deformation program calculated
displacement in X axis (dX) ,Y axis (dY) and (dZ).

The LAS determined the final displacement vector (dp). The data met the
convergence criteria after two iterations. The displacement values obtained from
the differences of the adjusted coordinates and their transformation by LAS
method shows that virtually all the stations have undergone movements' overtime
but this however did not result in deformation of all the point to a significant
level.

The single point displacement test failed for some points thus confirming the
existence of deformation for some of the group of selected control points. The
summary of the parameters of the deformation detection and analysis for 2D and
1D are shown in Table 3.5 The results is emphasized by the plot of single point
displacement vectors ,the stable and unstable points and the relative absolute
error ellipse of the 45 stations in the network as represented in Figures 3.1, 3.2,
and 3.3.

Table 3.5: Summary of Some Key Parameters of the Deformation Detection and Analysis (2D)
and (1D)

No of lteration 2 2

Fisher's Distribution Critical Value for 95% 1.390 1.550
|_Confidence Level (F)
|_Calculated Variance Ratio (T=rhol/rho2) 1.02088467792425 1.327053753
|_The Compatibility Test Passed (T<F) 1.02088467792425< 1.390) |  1.327053753< 1.560)
Pooled Variance Factors 7.77532847804672¢-08 0.0958933293890637
%rn of Freedom 99 62
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Figure 3.1: Displacement Vector Pattern after S-Transformation Using LAS
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Figure 3.2: Displacement Vector Magnitude of the Stations Using LAS
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Conclusions

This study has presented successfully the application of Least Absolute Sum
Technique in detecting deformation. The major focus has been on the
identification of stable and unstable points in the network.

The two epoch data were adjusted by the least square adjustment technique and

passed the compatibility test and are therefore compatible. The displacement

vector obtained from the differences of the adjusted coordinates shows that
Vi

rtually all the points have undergone movements overtime but this has not

OWever resulted in deformation within the chosen significant level of 95%
confidence limit,

Th.e single point displacement test failed for some stations thus confirming the
EXistence of deformation for some points. The determination of deformation status
of refex:ence points is very useful and can be applied for monitoring deformation
trends in Dam Sites, Exploration areas, Tunnels and engineering structures. This

showsg 'that. the Least Absolute Sum Technique (LAS) has the capacity i
€termine deformation of structures.
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Recommendations
Based on the work done in this study, the following points are hereby recommended:

(i) Using data from more than two epochs will dramatically enhance the detection
of any possible change in a deformation detection and analysis study.
(i) As a future work, other robust and non-robust methods (e.g., Fredericton

Approach, Danish Method, Total lLeast Square, Multi  parameter
Transformation, and Congruency testing methods) could be applied for the
deformation detection and analysis. Furthermore dynamic model of deformation
detection and prediction using the Kalman filtering methods for the velocity and
acceleration determination of deformable body should be examined.

(iii) The Survey body in this country (Nigeria), should wakeup to determine how
stable her platform is, in order to avert future hazards and disaster by
carrying out observations on our network of controls regularly with advanced
Differential Global Positioning System (DGPS) with reference to the
continuously Operating reference stations (CORS) networks.
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