Browsing by Author "Versfeld, D. J. J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Detection of Bryde’s Whale Short Pulse calls using Time Domain Features with Hidden Markov Models(the South African Institute of Electrical Engineers (SAIEE)., 2021-03) Babalola, O. P.; Usman, A. M.; Ogundile, O. O.; Versfeld, D. J. J.Passive acoustic monitoring (PAM) is generally used to extract acoustic signals produced by cetaceans. However, the large data volume from the PAM process is better analyzed using an automated technique such as the hidden Markov models (HMM). In this paper, the HMM is used as a detection and classification technique due to its robustness and low time complexity. Nonetheless, certain parameters, such as the choice of features to be extracted from the signal, the frame duration, and the number of states affect the performance of the model. The results show that HMM exhibits best performances as the number of states increases with short frame duration. However, increasing the number of states creates more computational complexity in the model. The inshore Bryde’s whales produce short pulse calls with distinct signal features, which are observable in the time-domain. Hence, a time-domain feature vector is utilized to reduce the complexity of the HMM. Simulation results also show that average power as a time-domain feature vector provides the best performance compared to other feature vectors for detecting the short pulse call of inshore Bryde’s whales based on the HMM technique. More so, the extracted features such as the average power, mean, and zero-crossing rate, are combined to form a single 3-dimensional vector (PaMZ). The PaMZ-HMM shows improved performance and reduced complexity over existing feature extraction techniques such as Mel-scale frequency cepstral coefficients (MFCC) and linear predictive coding (LPC). Thus, making the PaMZ-HMM suitable for real-time detection.Item Dynamic mode decomposition: A feature extraction technique based hidden Markov model for detection of Mysticetes’ vocalisations(Elsevier, 2021-04-28) Ogundile, O. O.; Usman, A. M.; Babalola, O. P.; Versfeld, D. J. J.The detection and classification of Mysticetes’ vocalisations have evoked the attention of researchers over the years because of their relevance to the marine ecosystem. These vocalisations are gathered employing different passive acoustic monitoring techniques. The vocalisation datasets are accumulated over a period; thus, they are large and cannot be easily analysed manually. Consequently, efficient machine learning (ML) tools such as the hidden Markov models (HMMs) are used extensively to automatically detect and classify these huge vocalisation datasets. As with most ML tools, the detection efficiency of the HMMs depend on the adopted feature extraction technique. Feature extraction techniques such as the Mel-scale frequency cepstral coefficient (MFCC), linear predictive coefficient (LPC), and empirical mode decomposition (EMD) have been adopted with the HMMs to detect different Mysticetes’ vocalisations. This article introduces the method of dynamic mode decomposition (DMD) as a feature extraction technique that can be adopted with the HMMs for the detection of Mysticetes’ vocalisations. The DMD has emerged as a robust tool for analysing the dynamics of non-stationary and non-linear signals. It is a completely data-driven tool that decomposes a signal over a certain period of time into relevant modes. Here, these spatial-temporal modes are reconstructed mathematically to form reliable feature vectors of the decomposed vocalisation signals. The performance of the proposed DMD-HMM detection technique is demonstrated using the acoustic datasets of two different Mysticetes’ vocalisations: Humpback whale songs and Inshore Bryde’s whale short pulse calls. In both species, the proposed DMD-HMM exhibits superior sensitivity and false discovery rate performances as compared to the MFCC-HMM, LPC-HMM, and EMD-HMM detection methods. Likewise, this proposed DMD-HMM detection method can be extended to other Mysticetes’ that produce characteristics sounds.