Browsing by Author "FARUK, N"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Expert System and Decision Support System for Electrocardiogram Interpretation and Diagnosis: Review, Challenges and Research Directions.(MDPI Publishers, Basel Switzerland, 2022) Adewole, K.S.; Mojeed, H.A.; Ogunmodede, James Ayodele; Gabralla, L.A.; FARUK, N; ABDULKARIM, A; et alAbstract: Electrocardiography (ECG) is one of the most widely used recordings in clinical medicine. ECG deals with the recording of electrical activity that is generated by the heart through the surface of the body. The electrical activity generated by the heart is measured using electrodes that are attached to the body surface. The use of ECG in the diagnosis and management of cardiovascular disease (CVD) has been in existence for over a decade, and research in this domain has recently attracted large attention. Along this line, an expert system (ES) and decision support system (DSS) have been developed for ECG interpretation and diagnosis. However, despite the availability of a lot of literature, access to recent and more comprehensive review papers on this subject is still a challenge. This paper presents a comprehensive review of the application of ES and DSS for ECG interpretation and diagnosis. Researchers have proposed a number of features and methods for ES and DSS development that can be used to monitor a patient’s health condition through ECG recordings. In this paper, a taxonomy of the features and methods for ECG interpretation and diagnosis were presented. The significance of the features and methods, as well as their limitations, were analyzed. This review further presents interesting theoretical concepts in this domain, as well as identifies challenges and open research issues on ES and DSS development for ECG interpretation and diagnosis that require substantial research effort. In conclusion, this paper identifies important future research areas with the purpose of advancing the development of ES and DSS for ECG interpretation and diagnosis.Item A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram(SPRINGER, 2022-07-07) MUSA, N; GITAL, A.Y.; ALJOJO, N; CHIROMA, H; ADEWOLE, K.S.; FARUK, N; OGUNMODEDE, James Ayodele; OLOYEDE, A.A.; OLAWOYIN, L.A.The success of deep learning over the traditional machine learning techniques in handling artiicial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artiicial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in diferent domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm.