COEFFICIENT BOUNDS FOR CERTAIN BAZILEVIČ MAPS

MASHOOD SIDIQ and KUNLE OLADEJI BABALOLA

Abstract. Following Babalola [3], we obtain the best possible upper bound for the coefficients of functions in the class $B_n^{\lambda}(\gamma)$, using a technique due to Nehari and Netanyahu [9] and an application of certain integral iteration of Carathéodory-type functions. The sharp bound on the Fekete-Szego functional in $B_n^{\lambda}(\gamma)$ is also obtained.

MSC 2010. 30C45.

Key words. Coefficient bound, Bazilevič maps, Carathéodory maps, analytic and univalent function.

1. INTRODUCTION

Let A denote the class of functions of the form

(1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the unit disk $E = \{z : |z| < 1\}$.

In a recent paper, Babalola [4] provided a new approach to the study of the well-known Bazilevič functions, given as

$$f(z) = \left\{ \frac{\alpha}{1+\beta^2} \int_0^z [p(t) - i\beta] t^{-\left(1 + \frac{i\alpha\beta}{1+\beta^2}\right)} g(t)^{\left(\frac{\alpha}{1+\beta^2}\right)} dt \right\}^{\frac{1+i\beta}{\alpha}},$$

where the parameter β is no longer assumed to be zero, as in many previous works (see e.g. [1, 3, 8, 10, 13, 14]). The new method involved a modification of the class of Carathéodory functions. The modified class is denoted here by P_{ξ} and consists of analytic functions

$$h(z) = \xi + p_1 z + \dots$$

on E, with positive real part, where Re $\xi = 1$.

The class P_{ξ} is of Carathéodory-type. We see that $h \in P_{\xi}$ if and only if $h(0) = \xi$ and Re h(z) > 0. The well-known class P of Carathéodory maps coincides with P_{ξ} for $\xi = 1$ and it is easy to see that $p \in P$ if and only if $h(z) = p(z) + \xi - 1 \in P_{\xi}$. The function given by $H_0(z) = (\xi + (2 - \xi)z)/(1 - z) = \xi + 2z + 2z^2 + \ldots$ plays a central role in the study of the class P_{ξ} , especially regarding extremal problems.

The authors thank the referee for his helpful comments and suggestions.

Using the new definition, Babalola inspired new investigations of the class of Bazilevič functions [4, 5]. In particular, using the Sălăgean derivative operator, D^n , $n = 0, 1, 2, \ldots$, defined by $D^n f(z) = D(D^{n-1} f(z)) = z(D^{n-1} f(z))'$, with $D^0 f(z) = f(z)$ (see [12]), he gave the following definition.

DEFINITION 1.1. (see [5]) Let $\eta > 0$, $\lambda = \eta + i\mu$ and $\xi = \lambda/\eta$ be some constants. A function $f \in A$ belongs to the class $B_n(\lambda)$ if and only if

$$\frac{D^n f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}} \in P_{\xi}, \quad z \in E.$$

We note that we obtain the class of Bazilevič functions in the case $\lambda = \alpha/(1+i\beta)$, $\alpha > 0$.

Now, denote by $P_{\xi}(\gamma)$ the subclass of functions $h \in P_{\xi}$ with Re $h(z) > \gamma$, where $0 \le \gamma < 1$ and $z \in E$.

DEFINITION 1.2. With all parameters defined above, a function $f \in A$ belongs to the class $B_n^{\lambda}(\gamma)$ if and only if

$$\frac{D^n f(z)^{\lambda}}{n\lambda^{n-1} z^{\lambda}} \in P_{\xi}(\gamma), \quad z \in E.$$

If $\xi = 1$ (that is $\lambda = \eta$) in Definition 1.2, we get the class $T_n^{\eta}(\gamma)$ introduced in [10] (see also [2]).

Following Babalola [2], we define an integral iteration of $h \in P_{\xi}(\gamma)$ as follows.

DEFINITION 1.3. Let $h \in P_{\xi}(\gamma)$. The *n*th complex-parameter integral iteration of h(z), $z \in E$, is defined by

$$h_n(z) = \frac{\lambda}{z^{\lambda}} \int_0^z t^{\lambda - 1} h_{n-1}(t) dt, \quad n = 1, 2, \dots,$$

with $h_0(z) = h(z) = \xi + (1 - \gamma)p_1z + \dots$

In series form, the above iteration gives $h_n(z) = \xi + (1 - \gamma) \sum_{k=1}^{\infty} p_{n,k} z^k$, where $p_{n,k} = (1 - \gamma) \lambda^n p_k / (\lambda + k)^n$ is such that

$$|p_{n,k}| \le \frac{2(1-\gamma)|\lambda|^n}{|(\lambda+k)|^n}, \quad k=1,2,....$$

The function $H_n(z)$, defined by

$$H_n(\gamma, z) = \frac{\lambda}{z^{\lambda}} \int_0^z t^{\lambda - 1} H_{n-1}(\gamma, t) dt, \quad n = 1, 2, \dots,$$

where $H_0(\gamma, z) = \gamma + (1 - \gamma)(1 + z)/(1 - z) + \xi - 1 = [\xi + (2(1 - \gamma) - \xi)z]/(1 - z)$, also plays a central role for extremal problems with respect to the iteration $h_n(z)$.

In the present paper, we follow the work of Babalola [3], using a technique due to Nehari and Netanyahu [9] and an application of the integral iteration $h_n(z)$, to obtain the best possible bounds for the coefficients of the functions

in the class $B_n^{\lambda}(\gamma)$ and their Fekete-Szego functional. The two coefficient problems dealt with in this paper are well-known in the theory of geometric functions (see [7, 11]). In the next section, we state (and prove, where necessary) the relevant lemmas which we then apply, in Section 3, to prove our results.

2. PRELIMINARY LEMMAS

In [4], Babalola noted that most of the inequalities for P remain unperturbed by the new normalization. The proofs of the first two lemmas are similar to those of given by Nehari and Netanyahu for [9, Lemmas I and II].

LEMMA 2.1. If $p(z) = \xi + b_1 z + b_2 z^2 + \dots$ and $q(z) = \xi + c_1 z + c_2 z^2 + \dots$ belongs to P_{ξ} , then $r(z) = \xi + \frac{1}{2} \sum_{k=1}^{\infty} b_k c_k z^k$ also belongs to P_{ξ} .

LEMMA 2.2. Let $h(z) = \xi + \sum_{k=1}^{\infty} d_k z^k$ and $\xi + G(z) = \xi + \sum_{k=1}^{\infty} b_k' z^k$ be functions in P_{ξ} . Set

$$\beta_m = \frac{1}{2^m} \left[\xi + \frac{1}{2} \sum_{\epsilon=1}^m \left(\begin{array}{c} m \\ \epsilon \end{array} \right) d_{\epsilon} \right], \quad \beta_0 = \xi.$$

If B_{ν} is defined by

$$\sum_{m=1}^{\infty} (-1)^{m+1} \beta_{m-1} G^m(z) = \sum_{\nu=1}^{\infty} B_{\nu} z^{\nu},$$

then $|B_{\nu}| \leq 2, \ \nu = 1, 2, \dots$

COROLLARY 2.3. Let $h_n(z)$ be the nth integral iteration of $h_0(z) = \xi + \sum_{k=0}^{\infty} p_k z^k$ with $\operatorname{Re} h_n(z) > \gamma$ and let $\xi + G(z) = \xi + \sum_{k=0}^{\infty} b_k' z^k$ be a function in P_{ξ} . Define β_m as in the previous lemma and ϕ_m as

(2)
$$\phi_m = \frac{(1-\gamma)\lambda^n}{(\lambda+m)^n}\beta_m, \quad \phi_0 = (1-\gamma)\xi.$$

If A_{ν} is defined by

(3)
$$\sum_{m=1}^{\infty} (-1)^{m+1} \phi_{m-1} G^m(z) = \sum_{\nu=1}^{\infty} A_{\nu} z^{\nu},$$

then

(4)
$$|A_{\nu}| \leq \frac{2(1-\gamma)|\lambda|^n}{|\lambda+\nu|^n}, \quad \nu=1,2,\dots$$

Proof. The proof follows as in [3], in view of (2).

Lemma 2.4 ([3]). Let $J(z) = \sum_{k=0}^{\infty} c_k z^k$ be a power series. Then the m^{th} integer product of J(z) is

$$J^{m}(z) = \left(\sum_{k=0}^{\infty} c_{k} z^{k}\right)^{m} = \sum_{k=0}^{\infty} c_{k}^{(m)} z^{k},$$

where $c_k^{(1)} = c_k$ and

$$c_k^{(m)} = \sum_{j=0}^k c_j c_{k-j}^{(m-1)}, \quad m \ge 2.$$

LEMMA 2.5 ([3, p. 145]). Let m = 1, 2, ..., n = 0, 1, 2, ... and ρ_l , l = 1, 2, ..., take values in the set $M = \{0, 1, 2, ..., m\}$ such that $\rho_1 + \rho_2 + ... + \rho_m = m$. If $\alpha > 0$ is a real number, then we have the inequality

$$\prod_{l=1}^m \frac{\alpha^{\rho_l}}{(\alpha+l)^{\rho_l}} \le \frac{\alpha}{\alpha+m-1}.$$

LEMMA 2.6 ([5]). Let $h = \xi + p_1 z + p_2 z^2 + \ldots \in P_{\xi}$. Then, for any real number τ , we have the sharp inequality

$$\left| p_2 - \tau \frac{p_1^2}{2} \right| \le 2 \max \{1, |1 - \tau|\}.$$

Before we state and prove our main result, we compute the leading coefficients A_{ν} , in the expression (3), as follows: From (3) we have

(5)
$$\sum_{m=1}^{\infty} (-1)^{m+1} \phi_{m-1} G^m(z) = \phi_0 G(z) - \phi_1 G^2(z) + \dots = \sum_{\nu=1}^{\infty} A_{\nu} z^{\nu},$$

with $G(z) = \sum_{\nu=1}^{\infty} b'_{\nu} z^{\nu}$, and, applying Lemma 2.4, we have

(6)
$$G^{m}(z) = \left(\sum_{\nu=1}^{\infty} b'_{\nu} z^{\nu}\right)^{m} = \sum_{\nu=m}^{\infty} G_{\nu}^{(m)} z^{\nu}, \quad m = 1, 2, \dots$$

 $G_{\nu}^{(m)}$ has the general form

(7)
$$G_{\nu}^{(m)} = \sum_{\rho \in J_{\nu,m}} G_{\nu,\rho} \prod_{l=1}^{m} (b_l')^{\rho_l}, \text{ where } G_{\nu,\rho} = \frac{m!}{\rho_1! \rho_2! \dots \rho_l!},$$

for some multi-index $\rho = (\rho_1, \rho_2, \dots, \rho_m)$ and the set $J_{\nu,m} = \{\rho | \sum_{l=1}^m \rho_l = m, \sum_{l=1}^m l\rho_l = \nu\}$. Using (6) and (7) in (5), we obtain

$$\sum_{m=1}^{\infty} (-1)^{m+1} \phi_{m-1} G^m(z) = \sum_{\nu=1}^{\infty} \left(\sum_{m=1}^{\nu} (-1)^{m+1} \phi_{m-1} G_{\nu}^{(m)} \right) z^{\nu},$$

which implies that

$$\sum_{\nu=1}^{\infty} \left[\sum_{m=1}^{\nu} (-1)^{m+1} \phi_{m-1} G_{\nu}^{(m)} \right] z^{\nu} = \sum_{\nu=1}^{\infty} A_{\nu} z^{\nu},$$

with

$$A_{\nu} = \sum_{m=1}^{\nu} (-1)^{m+1} \phi_{m-1} G_{\nu}^{(m)}.$$

By Corollary 2.3, the coefficients A_{ν} satisfy inequality (4), if $\xi + G(z) = \xi + b'_1 z + b'_2 z^2 + \ldots$ is a function in the class P_{ξ} , and, by Lemma 2.1, we may set $b'_l = \frac{1}{2} b_l c_l$, where $\xi + b_1 z + b_2 z^2 + \ldots$ is in P_{ξ} and $H(z) = \xi + c_1 z + c_2 z^2 + \ldots$ is an arbitrary function in P_{ξ} . Then, taking into account also (7), we have

(8)
$$|A_{\nu}| = \left| \sum_{m=1}^{\nu} (-1)^{m+1} \frac{\phi_{m-1}}{2^m} \left(\sum_{j=1}^{\nu} G_j \prod_{l=1}^m b_l^{\rho_l} c_l^{\rho_l} \right) \right| \le \frac{2(1-\gamma)|\lambda|^n}{|\lambda + \nu|^n}.$$

Using (2) in (8), yields

$$|A_{\nu}| = \left| \sum_{m=1}^{\nu} \frac{(-1)^{m+1} (1-\gamma) \lambda^n}{2^m (\lambda+m-1)^n \lambda} \beta_{m-1} \left(\sum_{j=1}^{\nu} G_j \prod_{l=1}^m b_l^{\rho_l} c_l^{\rho_l} \right) \right| \le \frac{2(1-\gamma) |\lambda|^{n-1}}{|\lambda+\nu|^n}.$$

Using Lemma 2.5, we get, for $\nu = 1, 2, ...,$

(9)
$$\sum_{m=1}^{\nu} (-1)^{m+1} \frac{\beta_{m-1}}{2^{m} |\lambda|} \left(\sum_{j=1}^{\nu} G_{j} \prod_{l=1}^{m} \frac{(1-\gamma)^{\rho_{l}} \eta^{\rho_{l}+1} |\lambda|^{n\rho_{l}-\rho_{l}-1}}{|\lambda+l|^{n\rho_{l}}} b_{l}^{\rho_{l}} c_{l}^{\rho_{l}} \right) \\ \leq \sum_{m=1}^{\nu} \frac{(-1)^{m+1} (1-\gamma) |\lambda|^{n}}{|\lambda+m-1|^{n} |\lambda|} \frac{\beta_{m-1}}{2^{m}} \left(\sum_{j=1}^{\nu} G_{j} \prod_{l=1}^{m} b_{l}^{\rho_{l}} c_{l}^{\rho_{l}} \right).$$

Using (8) in (9), we get

(10)
$$\left| \sum_{m=1}^{\nu} \frac{(-1)^{m+1} \beta_{m-1}}{2^m \lambda} \left(\sum_{j=1}^{\nu} G_j \prod_{l=1}^{m} \frac{(1-\gamma)^{\rho_l} \eta^{\rho_l+1} \lambda^{n\rho_l-\rho_l-1}}{(\lambda+l)^{n\rho_l}} b_l^{\rho_l} c_l^{\rho_l} \right) \right| \\ \leq \frac{2(1-\gamma)|\lambda|^{n-1}}{|\xi||\lambda+\nu|^n},$$

which implies that

(11)
$$\left| \sum_{m=1}^{\nu} \frac{(-1)^{m+1} (1-\gamma)^m \eta^{m+1} \lambda^{mn-m-2} \beta_{m-1}}{2^m} \Phi_{\nu} \right| \leq \frac{2(1-\gamma) |\lambda|^{n-1}}{|\xi| |\lambda + \nu|^n},$$

where

$$\Phi_{\nu} = \sum_{j=1}^{\nu} G_j \prod_{l=1}^{m} \frac{b_l^{\rho_l} c_l^{\rho_l}}{(\lambda + l)^{n\rho_l}}.$$

3. MAIN RESULT

THEOREM 3.1. Let $\eta > 0$, μ be a real number, $\lambda = \eta + i\mu$, $\xi = \lambda/\eta$ and $0 \le \gamma < 1$. If $f \in B_n^{\lambda}(\gamma)$, then

$$|a_k| \le \frac{2(1-\gamma)|\lambda|^{n-1}}{|\xi||\lambda+k-1|^n}, \ k=2,3,\dots$$

The inequalities are sharp. The equalities are obtained for f(z) satisfying

$$\frac{D^n f(z)^{\lambda}}{n \lambda^{n-1} z^{\lambda}} = \frac{\xi + [2(1-\gamma) - \xi] z^{k-1}}{1 - z^{k-1}}, \ k = 2, 3, \dots$$

Proof. Let $f \in B_n^{\lambda}(\gamma)$. Then there exists an analytic function $h \in P_{\xi}(\gamma)$ such that

$$\frac{D^n f(z)^{\lambda}}{n \lambda^{n-1} z^{\lambda}} = h(z) = \gamma + (1 - \gamma)p(z) + \xi - 1,$$

for some $p(z) = 1 + p_1 z + p_2 z^2 + \ldots \in P$. Hence

$$\frac{f(z)}{z} = \left(1 + (1 - \gamma)\eta \lambda^{n-1} \sum_{k=1}^{\infty} \frac{p_k z^k}{(\lambda + k)^n}\right)^{\frac{1}{\lambda}}.$$

Expanding binomially and employing Lemma 2.4, we have

(12)
$$f(z) = z + \sum_{k=2}^{\infty} \tilde{B}_1 C_{k-1}^{(1)} z^2 + \sum_{k=2}^{\infty} \tilde{B}_2 C_{k-1}^{(2)} z^3 + \dots + \sum_{k=2}^{\infty} \tilde{B}_m C_{k-1}^{(m)} z^k + \dots,$$

where

$$\tilde{B}_{m} = \frac{(1-\gamma)^{m} \eta^{m} \lambda^{m(n-2)} \prod_{j=0}^{m-1} (1-j\lambda)}{m!}$$

and $C_k^{(m)}$, m = 1, 2, ...; k = m, m + 1, ... is defined by

(13)
$$\sum_{k=1}^{\infty} C_k^{(m)} z^k = \left(\sum_{k=1}^{\infty} q_k z^k\right)^m,$$

where $q_k = \frac{p_k}{(\lambda + k)^n}$ and $C_k^{(m)}$ has a similar description as $G_{\nu}^{(m)}$ in (7)

$$C_k^{(m)} = \sum_{i=1}^k C_{k,\rho} \prod_{l=1}^m q_l^{\rho_l}.$$

Comparing the coefficients in (1) and (12), we have

(14)
$$a_k = \sum_{m=1}^{k-1} \frac{(1-\gamma)^m \eta^m \lambda^{m(n-2)} \prod_{j=0}^{m-1} (1-j\lambda)}{m!} \left(\sum_{j=1}^{k-1} C_j \prod_{l=1}^m q_l^{\rho_l} \right).$$

Now, comparing (14) and the term in absolute value in (11) with $\nu = k - 1$ and noting that C_j in (14) and G_j in (11) have similar descriptions as C_j mentioned earlier, we conclude that the inequalities in (4) hold if we are able to find two members $h(z) = \xi + d_1 z + d_2 z^2 + \dots$ and $H(z) = \xi + c_1 z + c_2 z^2 + \dots$ of P_{ξ} which give rise to the constants β_m (as required by Lemma 2.2) and c_l . For $H \in P_{\xi}$, a natural choice is the function $H(z) = \frac{\xi + (2 - \xi)z}{1 - z} = \xi + 2z + 2z^2 + \dots$,

which turns out to be suitable. Thus, we have $c_l = 2, l = 1, 2, ...$ Then (11) yields

$$(15) \quad \left| \sum_{m=1}^{k-1} (-1)^{m+1} (1-\gamma)^m \eta^{m+1} \lambda^{mn-m-2} \beta_{m-1} \Phi_{k-1} \right| \le \frac{2(1-\gamma)|\lambda|^{n-1}}{|\xi| |(\lambda+k-1)|^n}.$$

Also, comparing (14) and the terms in the absolute value in (15), we have

$$(-1)^{m+1} \frac{\beta_{m-1}}{\lambda} = \frac{\prod_{j=0}^{m-1} (1 - j\lambda)}{m! \eta \lambda^{m-1}},$$

that is

(16)
$$\beta_{m-1} = \frac{\prod_{j=1}^{m-1} (j\lambda - 1)}{m! \eta \lambda^{m-2}}, \quad \beta_0 = \xi.$$

Now, we define

(17)
$$\frac{1}{2^{m-1}} \left[\xi + \frac{1}{2} \sum_{\epsilon=1}^{m-1} {m-1 \choose \epsilon} d_{\epsilon} \right] = \frac{\prod_{j=1}^{m-1} (j\lambda - 1)}{m! \, \eta \, \lambda^{m-2}},$$

for some d_{ϵ} , $\epsilon = 1, 2, ..., m-1$, and we need to find $h(z)_k$ corresponding to each a_k , k = 2, 3, 4, ..., such that the coefficients d_{ϵ} of each $h(z)_k$ satisfy (17). In view of (15), we consider the following cases for m = 1, 2, ..., k-1, k = 2, 3, 4, ...

- (i) For k = 2, m = 1, using (16), we have $\beta_0 = \xi$ and, by (17), we have $d_{\epsilon} = 0$, for all ϵ . Hence we obtain $h(z)_2 = \xi$.
- (ii) For k = 3, m = 1, 2, using (17), we have $d_1 = -2/\eta$. Hence, we obtain

$$h(z)_3 = \xi - \frac{-1}{\eta} + \frac{1}{\eta} \left(\frac{1-z}{1+z} \right) = \xi - \frac{-2}{\eta} z + \dots$$

(iii) For k = 4, m = 1, 2, 3, using (17), we have

$$\frac{1}{4} \left[\xi + \frac{1}{2} (2d_1 + d_2) \right] = \frac{(\lambda - 1)(2\lambda - 1)}{6 \eta \lambda}$$

and, taking $d_1 = 0$, we obtain $\frac{d_2}{2} = \frac{\lambda^2 - 6\lambda + 2}{3n\lambda}$, where

$$|d_2| = \frac{2}{3} \left| \frac{\lambda^2 - 6\lambda + 2}{\eta \lambda} \right| \le 2.$$

We define

$$h(z)_4 = \frac{2(\lambda - 1)(2\lambda - 1)}{3\eta\lambda} - \left(\frac{\lambda^2 - 6\lambda + 2}{3\eta\lambda}\right) \left(\frac{1 - z^2}{1 + z^2}\right),$$

where

$$|\lambda^2 + 2| \le (3\eta + 6)|\lambda|.$$

Then

$$h(z)_4 = \xi + \frac{2(\lambda^2 - 6\lambda + 2)}{3n\lambda}z^2 + \dots$$

(iv) For k = 5, we have m = 1, 2, 3, 4. So, using (17), we get

$$\frac{1}{8} \left[\xi + \frac{1}{2} (3d_1 + 3d_2 + d_3) \right] = \frac{(\lambda - 1)(2\lambda - 1)(3\lambda - 1)}{24 \, \eta \, \lambda^2},$$

where, taking $d_1 = d_2 = 0$, we obtain

$$\frac{d_3}{2} = \frac{6\lambda^3 - 11\lambda^2 + 6\lambda - 1}{3\eta\lambda^2},$$

with

$$|d_3| = \frac{2}{3} \left| \frac{3\lambda^3 - 11\lambda^2 + -6\lambda - 1}{\eta \lambda^2} \right| \le 2,$$

and we define

$$h(z)_5 = \frac{6\lambda^3 - 11\lambda^2 + 6\lambda - 1}{3\eta \lambda^2} - \left(\frac{3\lambda^3 - 11\lambda^2 + 6\lambda - 1}{3\eta \lambda^2}\right) \left(\frac{1 - z^3}{1 + z^3}\right),$$

where

$$|3\lambda^3 - 11\lambda^2 - 1| \le (3\eta|\lambda| - 6)|\lambda|.$$

Hence

$$h(z)_5 = \xi + \frac{2(3\lambda^3 - 11\lambda^2 + 6\lambda - 1)}{3\eta\lambda^2}z^3 + \dots$$

(v) For $k \geq 6$, we have m = 1, 2, 3, ..., k - 1, and we set $d_1 = \frac{-2\xi}{(m-1)}$, $d_2 = d_4 = \cdots = d_\tau = \sigma$, where τ equals m - 1, if m - 1 is even, and m - 2, otherwise. Also, $d_3 = d_5 = \cdots = d_\omega = 0$, where ω equals m - 1, if m - 1 is odd, and m - 2, otherwise. Thus, we have

$$\frac{\sigma_m}{2} = \frac{2^{m-1}\xi \prod_{j=1}^{m-1} \left(\frac{j\lambda-1}{j\lambda}\right)}{m\left(\binom{m-1}{2} + \binom{m-1}{4} + \dots + \binom{m-1}{\tau}\right)},$$

for all $\epsilon = 1, 2, ..., m-1$ such that $|d_{\epsilon}| \leq 2$. Thus, setting m = k-1, we find that $h(z)_k, k \geq 6$, is given by

$$h(z)_k = \xi - \frac{2\xi}{k-2}z + \frac{\sigma_{k-1}}{2}z^2 + \frac{\sigma_{k-1}}{2}z^4 + \dots$$

That $h(z)_k$ belongs to P_{ξ} follows from the fact that P_{ξ} is, like P, a convex family. The proof is complete.

Theorem 3.2. Let $\eta > 0$, μ be a real number, $\lambda = \eta + i\mu$, $\xi = \lambda/\eta$ and $0 \le \gamma < 1$. If $f \in B_n^{\lambda}(\gamma)$, then

$$\left|a_3 - \rho a_2^2\right| \le \frac{2(1-\gamma)|\lambda|^{n-1}}{|\xi||\lambda + 2|^n} \max\{1, |1-M|\},$$

where

$$M = \frac{(2\rho + \lambda - 1)(1 - \gamma)(\lambda + 2)^2 \eta \lambda^{n-2}}{(\lambda + 1)^{2n}}.$$

The inequalities are sharp. For each ρ , equalities are obtained by the same extremal function defined in Theorem 3.1.

Proof. Careful computations for (6) yield

$$a_2 = \frac{(1-\gamma)\eta\lambda^{n-2}p_1}{(\lambda+1)^n}$$

$$a_3 = \frac{(1-\gamma)\eta\lambda^{n-2}p_2}{(\lambda+2)^n} + \frac{(1-\lambda)(1-\gamma)^2\eta^2\lambda^{2n-4}p_1^2}{2(\lambda+1)^{2n}}.$$

Hence,

$$\left| a_3 - \rho a_2^2 \right| = \frac{(1-\gamma)\eta \lambda^{n-2}}{(\lambda+2)^n} \left| p_2 - \frac{(2\rho+\lambda-1)(1-\gamma)(\lambda+2)^n \eta \lambda^{n-2}}{(\lambda+1)^{2n}} \frac{p_1^2}{2} \right|.$$

By choosing

$$\tau = \frac{(2\rho + \lambda - 1)(1 - \gamma)(\lambda + 2)^n \eta \lambda^{n-2}}{(\lambda + 1)^{2n}}$$

and using Lemma 2.6, the result then follows:

For $\lambda = \alpha/(1+i\beta)$, we have the following corollaries for generalized Bazilevič maps (with g(z) = z), whose family is denoted here by $B_n^{\alpha,\beta}(\gamma)$.

COROLLARY 3.3. Let $f \in B_n^{\alpha,\beta}(\gamma)$. Then

$$|a_k| \le \frac{2(1-\gamma)\alpha^n}{\sqrt{(1+\beta^2)(\alpha^2+\beta^2)[\alpha^2+2\alpha(k-1)+(1+\beta^2)(k-1)^2]^n}}, \ k=2,3,\dots$$

The inequalities are sharp.

COROLLARY 3.4. Let $f \in B_n^{\alpha,\beta}(\gamma)$. Then

$$|a_3 - \rho a_2^2| \le \frac{2(1-\gamma)\alpha^n\sqrt{(1+\beta^2)^n}}{\sqrt{(\alpha^2+\beta^2)[(\alpha+2)^2+4\beta^2]^n}}\max\{1,|1-T|\},$$

where

$$T = \frac{(1 - \gamma)(\alpha + 2 + i\beta)^2 \alpha^{n-1} [2\rho + \alpha - 1 + i\beta(2\rho - 1)]}{(1 + \beta^2)(1 + i\beta)^{n+1}}.$$

The inequalities are sharp.

Finally, we remark that, with appropriate choices of the defining parameters, our results agree with the existing results.

REFERENCES

- [1] Abdulhalim, S., On a class of analytic functions involving the Salagean differential operator, Tamkang J. Math., 23 (1992), 51–58.
- [2] BABALOLA, K. O. and OPOOLA, T. O., Iterated integral transforms of Carathéodory functions and their applications to analytic and univalent functions, Tamkang J. Math., 37 (2006), 355–366.
- [3] BABALOLA, K. O., Bounds on the coefficients of certain analytic and univalent functions, Mathematica, **50** (**73**) (2008), 139–148.

- [4] BABALOLA, K. O., New insights into Bazilevič maps, An. Univ. Oradea Fasc. Mat., 23 (2016), 5–10.
- [5] BABALOLA, K. O., New generalizations of Bazilevič maps, Journal of Classical Analysis, 8 (2016), 163–170.
- [6] BAZILEVIČ, I. E., On a case of integrability in quadratures of the Loewner-Kufarev equation (in Russian), Mat. Sb., 37 (1955), 471–476.
- [7] Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
- [8] MILLER, S. S., The Hardy class of a Bazilevič function and its derivative, Proc. Amer. Math. Soc., **30** (1971), 125–132.
- [9] NEHARI, Z. and NETANYAHU, E., On the coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc., 8 (1957), 15–23.
- [10] OPOOLA, T. O., On a new subclass of univalent functions, Mathematica, 36 (59) (1994), 195–200.
- [11] POMMERENKE, CH., Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975.
- [12] SĂLĂGEAN, G. S. Subclasses of univalent functions, Lecture Notes in Mathematics, Vol. 1013, Springer, 1983, 362–372.
- [13] SINGH, R., On Bazilevič functions, Proc. Amer. Math. Soc., 38 (1973), 261–271.
- [14] THOMAS, D. K., On Bazilevič functions, Trans. Amer. Math. Soc., 132 (1968), 353–361.

Received June 11, 2017 Accepted September 5, 2017 University of Ilorin
Department of Mathematics
Ilorin, Nigeria
E-mail: mashoodsidiq@yahoo.com

 $E{-}mail:$ kobabalola@gmail.com $E{-}mail:$ babalola.ko@unilorin.edu.ng