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Abstract 

The study examines Soret and Dufour effects on steady convective heat and mass transfer of 

magnetohydrodynamic (MHD) pressure-driven flow in a Darcy-forchheimer porous medium 

with inclined uniform magnetic field and thermal radiation. The governing partial differential 

equations of the model are reduced to a system of coupled non-linear ordinary differential 

equations by applying a Lie group of transformations. The resulting coupled differential equations 

are solved using weighted residual method (WRM). The results obtained are presented 

graphically to illustrate the influence of various fluid parameters on the dimensionless velocity, 

pressure drop, temperature and concentration. Finally, the effects of Skin friction, Nusselt and 

Sherwood numbers results are presented and discussed accordingly. 
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1. Introduction 

The study of the effects of Soret and Dufour on heat and mass transfer flow of an inclined 

magnetic field stimulated by the instantaneous actions of buoyancy forces consequential from 

mass and thermal diffusion with radiation in a non-Darcy permeable medium is significant from 

a practical as well as theoretical points of view due to their broad applications in planetary 

atmosphere research and others. In recent years, noticeably contribution has been made on the 

MHD flows as a result of its usefulness in devices such as hall accelerator, power engineering, 

MHD power generator and underground spreading of chemical wastes where the combined 

diffusion-thermo and thermal-diffusion effects are observed. 

Due to its numerous applications, Umavathi, et al. (2010) considered heat transfer in a MHD 

Poiseuille-couette flow through an inclined channel using an analytical approach. Radiation and 

melting effects on flow over a vertical sheet in non-Darcy permeable media and non-Newtonian 

for opposing and supporting eternal fluid flows were verified by Ali et al. (2010). The result 

showed that the fluid momentum and heat raised with a rise in the non-Darcy parameter but in 

the case of aiding flow both the temperature and velocity distributions decreased with an 

increased in the values of non-Darcy parameter. In Abel and Monayya (2013), heat transfer flow 

of thermal slip or hydrodynamic past a linear stretching surface was examined. The above cited 

authors considered only heat transfer in the context of the fluid flow. 
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The symmetry transformation of heat and mass transfer are well known because its allows 

the transformation of the modelled partial differential equations into an ordinary differential 

equations. Follow from (Mansour et al. 2009; Sivasankaran et al. 2006), analysis of heat and mass 

transfer over an inclined plate invesitgated by applying Lie group method. The exact solution to 

the problem was obtained for the translational symmetry and it was reported that the velocity 

increased while heat and species fluid reduces with variational increased in the values of solutant 

and thermal Grashof parameters. In Dada and Salawu (2017); Mutlag et al. (2012), group 

transformation of radiative non-Newtonian flow fluid of heat transfer over a vertical moving 

surface with slip condition was analysed. Also, Reddy (2012) carried out analysis on temperature 

and species transfer of dissipative fluid flow along an inclined surface in the presence of heat 

generation by means of Lie group. 

There is an improved interest in the study of MHD flow of heat and mass transfer past non-

Darcy permeable medium as a result of its effect on the performance of systems and on boundary 

layer flow control using electrically conducting fluids. This kind of fluid flow is applicable in 

several engineering processes which includes nuclear reactors, geothermal energy extractions and 

many more. MHD heat and species transfer through a non-Darcy near drenched permeable 

medium was examined in (Seddeek et al. 2010; Vyas and Srivastava 2012; Salawu and Fatunmbi 

2017; Kareem et al. 2018). It was found that a variational rise in the values of Prandtl number 

reduced the heat of the fluid while an increase in the porosity and Hartmann number decreased 

the velocity profiles because the magnetic force and the pores of the medium retarded the flow 

while Fenuga et al. 2018; Srinivasacharya and Reddy (2015) reported on the radiative and 

chemical reaction effects on heat and mass transfer in power-law flow through stretching surface 

in a permeable medium. In Kareem and Salawu (2017); Senapati et al. (2013), the effect of MHD 

on a chemical reaction Kuvshinski flow over a permeable medium in the existence of thermal 

radiation with constant heat and mass flux across moving plate was reported. 

The heat flux can be created by both temperature and composition gradients. The created 

heat flux is referred to as Dufour while the created mass fluxes represent the Soret. These 

influences are considerable when density variations takes place in the flow system. The combine 

effects of Soret and Dufour are important in-between weighted molecular gases in fluid flow 

environment normally come across in engineering and chemical processes. As a result, Bazid et 

al. 2012; Bishwa and Animesh 2015) investigated the effects of heat Source, chemical reaction, 

Dufour and Soret by applying forchheimer model on heat and mass transfer flow entrenched in a 

permeable medium. It was observed that temperature and concentration was enhanced with a rise 

in Dufour and Soret parameter values. However, magnetic field, pressure gradient and the effect 

of radiation was neglected in the studied. Moreover, Srinivasacharya et al. (2015) studied the 

effects of Soret and Dufour on a vertical wavy surface with variable properties in a permeable 

medium. 

 Keeping the above studies in view, most of the researchers neglected the combined 

influences of Darcy-forchheimer porous medium, thermal-diffusion, diffusion-thermo and 

radiation on MHD flow. However, it is known that fluid physical properties can change 

significantly with thermal-diffusion and diffusion-thermo. Therefore, the present study examines 

the combined effects of Darcy-forchheimer permeable medium, inclined magnetic field, pressure 

drop, thermal radiation, Dufour and Soret on a steady convective heat and mass transfer of MHD 

flow. 

2. Formulation of the problem 

The convective heat and mass transfer of two dimensional magnetohydrodynamic pressure-

driven fluid past a porous plate in Darcy-forchheimer permeable medium with radiation under 
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the influence of uniform inclined magnetic field and pressure gradient. The fluid motion is 

maintained by both gravity and pressure gradient, and the flow is considered to be in the direction 

of X  with Y -axis normal to it. Uniform magnetic field strength 
0

B  is introduced at angle   

lying in the range 0 < <
2


  in the fluid flow direction because of the interaction of the two 

fields, namely, velocity and magnetic fields, an electric field vector denoted E is induced at right 

angles to both V and B. This electric field is given by E V B   while the density of the current 

induced in the conducting fluid denoted J is given by J E  and simultaneously occurring with 

the induced current is the Lorentz force F given by F J B  . This force occurs because, as an 

electric generator, the conducting fluid cuts the lines of the magnetic field. The vector F is the 

vector cross product of both J and B and is a vector perpendicular to the plane of both J and B. 

This induced force is parallel to V but in opposite direction. 

The Navier-Stokes equation is defined as: 

 2[( )]V V V f p V
B

        (1) 

where ρ is the fluid density, 2
0

f B U
B

 is body force per unit mass of the fluid which define 

the magnetic force, μ is the fluid viscosity and p is the pressure acting on the fluid. 

The geometry and equations governing the steady radiative heat and mass transfer of two-

dimensional magnetohydrodynamics pressure-driven fluid flow in Darcy-forchheimer porous 

medium with inclined magnetic field are given below:  

  

Fig. 1. The geometry of the model  

Continuity equation 

 = 0
U V

X Y

 


 
  (2) 

Momentum equation in U-component 
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   

2 21 12 2 2=
0 2 2 * *

,

U U P U U b
U V B Usin U U

X Y X X Y K K

g T T g C C
T C


  

 

 

     
        
      

  
 

  (3) 

Momentum equation in V-component 

 
2 21

= ,
2 2

V V P V V
U V

X Y Y X Y




     
    
      

  (4) 

Energy equation 

 

 

2 2 1
=

2 2

2 2
0 ,

2 2

q qT T k T T X YU V
X Y C C X YX Yp p

QDK C CT T T
C C CX Ys p p

 



                             

  
   

   

  (5) 

Concentration equation 

  
2 2 2 2

= ,
2 2 2 2

DKC C C C T TTU V D C C
X Y TX Y X Ym


        
        

           

  (6) 

The corresponding initial and boundary conditions are follows: 

 
= 0, = , = 0, = ( ) , = ( )     = 0

= 0, = , =     

U V v P T T T T AX C C C C BX at Y
w w w

U T T C C as Y

   
   


 

  (7) 

where U , V , P , C , and T  are the velocity component in the X  direction, velocity 

component in the Y  direction, pressure, concentration of species in the fluid and temperature of 

the fluid respectively. A  and B  are constants defined as 
1

= =A B
l

, l  is the characteristic 

length, 
0

B  is the magnetic field strength,   is the angle of inclination of the magnet, v
w

 is the 

permeability of the porous surface respectively. The physical quantities  , b , 
*K ,  ,  , D, 

k , 
0

Q  and   are the fluid kinematics viscosity, Forchheimer parameter, permeability of the 

porous medium, density, electric conductivity of the fluid, mass diffusion coefficient, thermal 

conductivity, rate of specific internal heat generation or absorption and reaction rate coefficient 

respectively. C
p

, T
m

, K
T

, C
s

, g  are the specific heat at constant pressure, mean fluid 

temperature, thermal diffusion ratio, concentration susceptibility and gravitational acceleration 

respectively, while 
T
  and 

C
  are the thermal and concentration expansion coefficients 

respectively. q
X

 and q
Y

 are the radiative heat flux in the X  and Y  direction respectively. 

Using Rosseland diffusion approximation for radiation as in Reda (2013).  
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4 44 4

0 0=     = ,
3 3

T T
q and q

X YX Y

 

 

 
 

 
  (8) 

where 
0

  and   are the Stefan-Boltzmann and the mean absorption coefficient respectively. 

Assume the temperature difference within the flow are sufficiently small such that 
4T  expressed 

as a linear function of temperature, using Taylor series to expand 
4T  about the free stream T


 

and neglecting higher order terms, gives the approximation  

 4 3 44 3 ,T T T T 
 

  (9) 

Using equation (8) and (9) leads to  

 

3 32 216 16
0 0=   and  = ,

2 23 3

T Tq qT TX Y

X YX Y

 

 

    
  

  (10) 

Introducing the following non-dimensional quantities  

 
2

= , = , = , = , = , = , = ,
2

T T C CX Y Ul Vl Pl
x y u v p

l l T T C C
w w

 
  

 
 

  


  (11) 

Substituting (10) and (11) into equation (2)-(7), to obtain  

 = 0,
u v

x y

 


 
  (12) 

 
2 2

2 2 2= ,
2 2

u u p u u
u v H sin u D u F u G G

a a s r cx y x x y
  

     
         
      

  (13) 

 
2 2

= ,
2 2

v v p v v
u v

x y y x y

     
    
      

  (14) 

 
2 2 2 21 4

= 1 ,
2 2 2 23

u v R D Q
ux y P x y x yr

     


                               

  (15) 

 
2 2 2 21

= ,
2 2 2 2

u v S
rx y S x y x yc

     


        
       
           

  (16) 

The corresponding initial and boundary conditions are follows:  

 
= 0, = , = 0, = , =     = 0

= 0, = 0, = 0    ,

u v f p x x at y
w

u as y

 

 




  (17) 
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where =
0

H lB
a




 is the Hartmann, =

C
p

P
r k



 is the Prandtl, =S
c D


 is the Schmidt, 

 3

=
2

l g T T
T w

G
r








 is the thermal Grashof, 
 3

=
2

l g C C
C w

G
c








 is the solutal Grashof, 

2
=

l 



 is the concentration parameter, 

2
0=

l Q
Q

C
p


 is the heat source, 

( )
=

( )

DKT C C
wD

u C C T T
s p w









 

is the Dufour, 
( )

=
( )

DK T T
T wS

r T C C
m w









 is the Soret, =
v l
wf

w 
  is the wall mass transfer 

coefficient, 

34
0=
T

R
k





  is the Radiation parameter, =
*

lb
F

s
K

 is the Forchheimer inertia term, 

2
=

*

l
D

a
K

 is the Darcy parameter 

Using the stream function =u
y




, =v

x





 on equations (12) to (17), continuity equation is 

automatically. Also, introducing simplified form of Lie-group transformation on the equations, 

this is equivalent to determining the invariant solutions of these equations under a continuous 

one-parameter group Bhattacharyya et al. (2011). One of the methods is to search for a 

transformation group from an elementary set of one-parameter scaling group of transformations, 

given as   such that  

 

* * * * *3 51 2 4: = , = , = , = , = ,

* * *6 7 8= , = , =

x xe y ye e u ue v ve

p pe e e

   
 

  
   


  (18) 

where 
1
 , 

2
 , 

3
 , 

4
 , 

5
 , 

6
 , 

7
 , and 

8
 , are transformation parameters of the group to 

be determined later and   is a small parameters. Equation (18) may be considered as a point-

transformation which transforms coordinate ( , , , , , , )x y u v    to the coordinate 

* * * * * * *( , , , , , , )x y u v   . 

Substituting the transformation (18) into the equations and applying invariant conditions 

Pramanik (2013) to obtain the similarity transformations. 

In order for the equations to stay unchanged under the transformations , the subsequent relations 

exist between the parameters, that is   

 , 0
3 4 7 8 1 2 5 6

                (19) 

Therefore, the set of transformations   transforms to one parameter scaling group of 

transformations as 
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 1 1 1 1 1* * , * , * , * , * , * , *x xe y y e u ue v v p p e e
    

               (20) 

Applying invariant conditions on equation (20) to obtain the similarity varables as follows 

        = , = , = ,.. = , =y xf p p x x
d

            (21) 

Substituting the similarity variables (21) into the transformed equations to obtain the following 

system of non-linear differential equations:  

    ' ' '2 2 2 '1 = 0f ff F f H sin D f G G
s a a r c

  
 
         (22) 

 ' ' '= ,p f ff
d


    (23) 

 
4 ' ' ' '1 = 0
3

R D P P f P f P Q
u r r r r

    
   
     

 
  (24) 

 ' ' ' ' = 0S S S f S f S
r c c c c

    
 
      (25) 

The corresponding initial and boundary conditions take the form:  

 

'= , = 0, = 0, = 1, = 1    = 0

' = 0, = 0, = 0    

f f f p at
w d

f as

  

   

  (26) 

Integrating equation (23) with the initial and boundary conditions with =1f
w

, the pressure drop 

=G p
d

  becomes  

 
1 1' 2=
2 2

G f f    (27) 

3. Method of solution 

The idea of weighted residual method is to look for an approximate result, in the polynomial 

form to the differential equation given as  

    =   in  the  domain  , ,  =   on  D v y f R A v R
 

     (28) 

where  D v  represents a differential operator relating non-linear or linear spatial derivatives of 

the dependent variables v , f  is the function of a known position,  A v


 denotes the 

approximate number of boundary conditions with R  been the domain and R  the boundary. By 

assuming an approximation to the solution  v y , an expression of the form  

    , , , ...
1 2 3

v y w y a a a a
n

   (29) 
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which depends on a number of parameters , , ...
1 2 3

a a a a
n

 and is such that for arbitrary value 'a s
i

 

the boundary conditions are satisfied and the residual in the differential equation become  

       , = ,E y a L w y a f y
i i

   (30) 

The aim is to minimize the residual  ,E y a  to zero in some average sense over the domain. That 

is  

  , = 0    = 1,2,3,...E y a W dy i nY i   (31) 

where the number of weight functions W
i

 is exactly the same with the number of unknown 

constants a
i

 in w . Here, the weighted functions are chosen to be Dirac delta functions. That is, 

   =W y y y
i i

  , such that the error is zero at the chosen nodes y
i

. That is, integration of 

equation (11) with    =W y y y
i i

   results in  , = 0E y a
i

. 

Weighted residual method (WRM) is applied to equations (22) to (27), by assuming the 

following trial polynomial functions with unknown coefficients to be determined.  

 ( ) = , ( ) = ,  ( ) = ,

= 0 = 0 = 0

n n n
i i if a b c

i i i
i i i

            (32) 

Imposing the boundary conditions (26) on the trial functions and substituting the functions into 

equations (22), (24) and (25), the residual is obtained and minimized to zero at some set of 

collocation points within the domain in order to obtain the unknown coefficients using Maple 

2016 software. 

Substituting the constant values into the trial functions to obtain the tangential velocity, 

temperature and concentration equations respectively.  

 

  2 3 4= 1.000000 1.717824 2.295306 1.799414

5 6 7 80.988332 0.382705 0.096954 0.011625

9 10 11 120.001435 0.000836 0.000133 0.0000084

f    

   

   

   

   

  

  (33) 

 

  2 3= 1.000000 0.516839 0.124909 0.288289

4 5 6 70.252109 0.165458 0.084259 0.032662

8 9 10 11 120.009402 0.001941 0.000271 0.000023 0.000008

    

   

    

   

   

   

  (34) 

 

  2 3= 1.000000 1.163307 0.595275 0.013985

4 5 6 70.261476 0.274318 0.180803 0.087308

8 9 10 11 120.031275 0.008067 0.001411 0.000149 0.000007

    

   

    

   

   

   

  (35) 

Differentiate equation (33) to obtain  
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 ' 2 3 4= 3.435649 6.885905 7.197642 4.941652

5 6 7 82.296239 0.678626 0.092963 0.012832

9 10 110.008255 0.001464 0.00010

f     

   

 

   

   

 

  (36) 

Also substituting for f  and 
'f  in (27) with the corresponding constant values to obtain the 

pressure drop as  

 

 



2 3= 0.500000 3.435649 6.885905 7.197642

4 5 6 74.941652 2.296239 0.678626 0.092963

8 9 10 110.012832 0.008255 0.001464 0.000097

1 21.0000 1.727824562
2

3 4 52.295302 1.799411 0.988330 0.382707

G    

   

   



   

    

   

   

 

  



6

7 80.096946 0.011620

2
9 10 11 120.001426 0.000826 0.000133 0.000008

 

  

  

  

  (37) 

The process of WRM is repeated for different values of the fluid parameters. 

The physical quantity of practical interest are the local skin friction C
f

, the Nusselt nuber 

N
u

 and the local sherwood number Sh  defined as:  

 = ,   = , =
2 ( ) ( )

q x q x
w w mC Nu Sh

f k T T D C Cu w ww



  
 

  (38) 

where k  is the thermal conductivity of the fluid, 
w
 , q

w
 and q

m
 are respectively given by  

 = ,   = ,   = ,

= 0 = 0 = 0

u T T
q k q D

w w my y yy y y

 
       

       
       

  (39) 

Therefore, the local skin friction coefficient, local Nusselt number and local Sherwood number 

are  

 

1 1 1

' ' '2 2 2= (0),   = (0), = (0),C Re f NuRe ShRe
f x x x

 
 


     (40) 

where =
u x

wRe
x 

 is the local Reynolds number. 

The following computational results in the table are obtained and compared with Runge-kutta 

method.  
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    Weighted Residual method   th4  order R-K 

PP    values       Nu    Sh        Nu    Sh  

sF    0.02   3.54343   0.52936   1.16808   3.54036   0.52937   1.16780 

  1.0   3.43565   0.51684   1.16331   3.43595   0.51675   1.16288 

  2.8   3.28520   0.49801   1.15644   3.28264   0.49775   1.15577 

    
030    3.43565   0.51684   1.16331   3.43595   0.51675   1.16288 

  
040    3.03472   0.46523   1.14643   3.03210   0.46515   1.14591 

  
060    2.50106   0.39557   1.12452   2.49694   0.39421   1.12587 

rS    0.1   3.39251   0.48664   1.24440   3.39292   0.48657   1.24390 

  1.0   3.43565   0.51684   1.16331   3.43595   0.51675   1.16288 

  1.5   3.46443   0.53698   1.10451   3.46467   0.53688   1.10415 

uD    0.035   3.39350   0.68792   1.06136   3.39402   0.68770   1.06107 

  0.5   3.43565   0.51684   1.16331   3.43595   0.51675   1.16288 

  1.0   3.48804   0.27639   1.30592   3.48846   0.27658   1.30525 

Table 1. Comparison of  , Nu  and Sh  for various values of F
s

,  , S
r

, D
u

 and R  

4. Results and discussion 

The numerical analysis has been investigated for the velocity, temperature, concentration and 

pressure fields also skin friction coefficient, Nusselt and Sherwood numbers respectively at the 

plate have been examined for different values of the parameters. All graphs are corresponded to 

default values unless stated on appropriate graph. 

Table 1 illustrates the effect of some physical parameters on skin friction, nusselt and 

sherwood number. It is clearly seen that an increase in the values of F
s

 and   decreases the skin 

friction while a rise in S
r

 and D
u

 increases skin friction. The temperature gradient decreases as 

the values of F
s

,   and D
u

 increases except for S
r

 which decreases the temperature boundary 

layer and causes more heat to diffuse out of the system. Also, the numerical results show that the 

mass boundary layer increases as the values of D
u

 increases while F
s

,   and S
r

 decrease 

mass gradient. 

Figures 2 and 3 show the effect of the Hartmann number H
a

 on the velocity and pressure 

boundary layers thickness. Increasing H
a

 decreases the velocity and pressure distributions, 

since the magnetic field retarding flow as a result of lorentz force on the free convection fluid 

flow. 
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Fig. 2. Velocity profile for various values of Ha  

 

Fig. 3. Pressure profile for various values of Ha   

Figures 4 and 5 bring out the effect of angles of inclination of the magnetic field   on the 

velocity and pressure profiles. An increase in the angle of inclination decreases the effect of the 

buoyancy forces and consequently the driving force to the flow decreases. Hence, velocity and 

pressure boundary layers thickness reduces that in turn decreases the velocity and pressure 

profile. 
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Fig. 4. Velocity profile for various l values of   

 

Fig. 5. Pressure profile for various values of    

Figures 6, 7, 8 and 9 show the effect of the inertial parameter F
s

 or porosity parameter D
a

 

on the velocity and pressure profiles. It is observed that the velocity and pressure decreases as the 

porosity or inertial parameter increases. The reason for this behaviour is that the wall of the 

surface provides an additional resistance to the fluid flow mechanism, which causes the fluid to 

move at a retarded rate. 
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Fig. 6. Velocity profile for various values of F
s

 

 

Fig. 7. Pressure profile for various al values of F
s

  



Journal of the Serbian Society for Computational Mechanics / Vol. 12 / No. 1, 2018 

 
121 

 

Fig. 8. Velocity profile for various values of D
a

 

 

Fig. 9. Pressure profile for various values of D
a

  

Figure 10 show the influence of different values of the Prandtl number P
r

 on the temperature 

distribution. It is noticed that an increase in the ratio of momentum diffusivity to thermal 

diffusivity results in the respectively decrease temperature profile. This is because an increase in 

the P
r

 causes a decrease in the boundary layers thickness and decrease the average temperature 

within the boundary layers. Therefore, a rise in the Prandtl number increases the rate at which 

heat diffuse away from the heated surface to the environment. 

The effect of Schmidt number S
c

 on the concentration profile are represented in Figure 11. 

Schmidt number is defined as the ratio of the momentum diffusivity to the mass diffusivity. An 

increase in S
c

 causes reduction in the concentration distribution which is accompanied by 

simultaneous decrease in the concentration boundary layer. 
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Figure 12 shows the variation in the thermal boundary layer with the Dufour number D
u

. It 

is observed that the thermal boundary layers thickness increases with an increase in the Dufour 

number. While figure 13 depicts the variation in the mass transfer boundary layer with Soret 

number. It is found that the mass transfer boundary layers thickness increases with an increase in 

the Soret number. 

 

Fig. 10. Temperature profile for various values of P
r

 

 

Fig. 11. Concentration profile for various values of S
c
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Fig. 12. Temperature profile for various values of D
u

 

 

Fig. 13. Concentration profile for various values of S
r

  

5. Conclusion 

The dimensionless form of the formulated governing equations are reduced to a couple 

ordinary differential equations by using a simplify form of Lie group transformation. The 

numerical solution is obtained using weighted residual method. From the numerical results, it is 

seen that an increase in the values of Hartmann, degree of inclination of the magnetic field, 

porosity parameter, inertial parameter, prandtl or schmidt numbers is exhibited as a decrease in 

the flow velocity, pressure, temperature or concentration distribution. The velocity, pressure, 

temperature or concentration profile increases as the Soret and Dufour increases respectively. 
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