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ABSTRACT: The paper examined the rainfall distribution 

of Enugu state in Nigeria. Box-Jenkins methodology was 

used to build ARIMA model to analyze data and forecast 

for the period of 15 years, from January, 2002 to 

December, 2016 and to predict for the future. We observed 

that the average annual rainfall of Enugu state ranges from 

124mm to 179mm. The irregularity in annual rainfall of 

Enugu State one and half decades ago is a bit large, 

indicating that climate stability is high in the state. 

Different time series models were diagnostically checked, 

and tested for Enugu state and at last an SARIMA (0, 0, 0) 

(1, 0, 1)12 model is chosen as the proposed best model. The 

proposed model was used to forecast two years’ monthly 

rainfall value for the state. The results indicated that 

relatively there is a tendency of increasing in trend of 

future rainfall values in the state.  
KEYWORDS: Modelling; Box and Jenkins; ARIMA; 

Rainfall; SARIMA; Forecasting; Enugu State.  

 

1. INTRODUCTION  
 

Enugu State is one of the states in the southeastern 

part of Nigeria. It was created from the old Anambra 

state in 1991. It shares borders with Abia and Imo 

states, Ebonyi State, Benue state, Kogi state, and 

Anambra state to the south, east, northeast and west 

respectively. 

The name “Enugu” (which was coined from Enu 

Ugwu) is synonymous to “the top of the hill” 

denoting the city’s hilly topography ([***]). The 

most important cities in the state are Enugu (the state 

capital), Agbani, Awgu, Oji-River, Udi (site of the 

famous eastern coal mines) and Nsukka (home to the 

first university in Eastern Nigeria). The state has 17 

administrative groupings, called Local Government 

Areas. A greater percentage of the population in the 

state is engaged in agriculture ([Lie71]), with a small 

proportion also engaged in white collar jobs. 

Enugu is in the tropical rain forest zone with a 

derived savannah, with humidity highest between 

March and November ([Igw15]). Enugu state, 

being in the southern part of Nigeria, has the 

rainy season and dry season as the only weather 

conditions that occur yearly.  
The topography of a region is an important 

component relating to variation in the climatic 

condition in various parts of a country. The climatic 

conditions of semi-arid zones exhibit extreme 

fluctuation both yearly and seasonally. Semi arid 

regions receive very small, irregular, and unreliable 

rainfall, while tropical regions essential receive 

rainfall all year round. Readers are referred to 

([Ade10, Tak12]) for greater details. 

In Nigeria, many regions experience rainfall 

throughout the year, but some regions experience 

seasonal and low rainfall thus necessitating irrigation 

([AE09]). The pattern of rainfall usually exhibit 

spatial and temporal variability, which has effects on 

agricultural production, transportation, water supply, 

environment and urban planning ([AE09]). It has 

been noted that one may not be able to completely 

avoid damages due to extremes of rainfall but a 

forewarning could be of great use ([Nic80, 

MYM12]). Various approaches have been deployed 

to predict rainfall patterns ([Yev72, DK78, Tsa98, 

Cha91]). In practice, assessing the variability of 

rainfall is useful in decision making, management of 

risk and optimum usage of water resources of 

countries. In this study however, we used the 

univariate Box-Jenkins methodology to build 

ARIMA model in order to assess the rainfall pattern 

in Enugu State based on the data collected from 

Nigerian Meteorological Agency. 

 

2. METHODOLOGY  
 

An ARIMA model is an algebraic statement showing 

how a time-series variable is related to its own past 

values ([Pan83]). Box and Jenkins proposed a 

practical three-stage procedure for finding a good 

model time series model namely: identification, 
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parameter estimation and diagnostic checking 

([Pan83]). This is what is known as the Box-Jenkins 

methodology. 

The Box- Jenkins ARIMA (p, d, q) model include the 

autoregressive process (AR), the integrated process 

(I), and the moving average process (MA).   

An Autoregressive (AR(p)) Process Model is defined 

as 

 

tptpttt wxxxX    2211
               (1) 

 

The model in lag operators takes the following form: 
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The autoregressive operator )(B is defined to be 
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The values of which make the process stationary 

are such that the roots of 0)( B  lie outside the unit 

ball in the complex plane [Cha91]. 

A Moving Average (MA(q)) Process Model is 

defined as  

 

qtqtttt wwwwX    ...2211
             (4) 

 

In order to preserve its unique representation, usually 

the requirement is imposed that all roots of  
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i  | > 1. 

 

Autoregressive Moving Average (ARMA(p,q)) 

model can be given as:  

 

qtqtttptpttt wwwwxxxX    ...... 22112211

                                                                        (6) 
 

This can be simplified by a backward shift operator B 

to obtain 

 

tt wBxB )()(                                                (7)

 

Most time series in their raw form are non stationary. 

If the time series exhibits a trend, then this can be 

elimated through differencing. The sample 

autocorrelation function (ACF) and the sample partial 

autocorrelation function (PACF) are some of the 

common tools used to analyze univariate time series 

data. 

The letter “I” in the acronym ARIMA corresponds to 

the number of times (d) the original series has been 

differenced; if a series has been differenced d times, 

it must subsequently be integrated d times to return it 

to its original overall level ([Pan83]). 

Once the process has been transformed into 

stationarity (that is, it should have a constant mean, 

variance and correlation through time), we can 

proceed with the analysis. The Box-Jenkins ARIMA 

method is appropriate only for a time series that is 

stationary ([Pan83]).    

A process (xt) is said to be an ARIMA (p, 1, q) if it 

can be written as: 
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The Seasonal ARIMA (SARIMA) is used when the 

time series exhibits a seasonal variation, so as to 

properly capture the dynamics of the process. The 

modification made to the ARIMA model to account 

for seasonal behaviour. Due to the fact that several 

natural phenomena exhibit seasonal variations, it is 

necessary to incorporate autoregressive and moving 

average polynomials that include seasonal lags into 

the basic ARIMA model. In general, the seasonal and 

the non-seasonal operators could be combined in a 

multiplicative manner to produce a multiplicative 

seasonal autoregressive moving average model, 

denoted by ARMA (p, q) × (P, Q) s. A seasonal 

autoregressive notation (P) and a seasonal moving 

average notation (Q) will form the multiplicative 

Seasonal Autoregressive Integrated Moving Average 

model, denoted by ARIMA (p, d, q)*(P, D, Q) s, of 

([BJ76]) and is given by: 

t

s

Qqt

ss

Pp wBBxBBBB )1)(1()1)(1)(1)(1(  

                                                                              (10) 

 

where 
tw   is the Gaussian white noise process with 

zero mean and constant variance. 

The first and the second parts of each compartment in 

equation (10) is the non-seasonal and seasonal aspect 

of AR(p), differencing (d=1) and MA(q), respectively 

at period s.  The seasonal part of the model consists 

of terms that are very similar to the non-seasonal 

components of the model, but they involve backshifts 

of the seasonal period. 
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The Unit Root test can be used to test for stationarity. 

The null hypothesis asserts that the series has a unit 

root (that is, it is non-stationary). The alternative 

hypothesis is that the series do not have a unit root 

(that is, it is stationary). To detect whether a given 

series has a unit root, it can be assumed that the 

relationship between the current value (in time t) and 

last value (in time t-1) in the series is ([End95]): 

 

ttt wxx  1                                                       (11) 

 

where 
tx  is an observation value at time t, 

tw  is 

assumed to be a normally distributed with mean zero 

and constant variance. This model is a first order 

autoregressive process. The time series 
tx  converges, 

as t →∞, to a stationary time series if 1 . If 

1 , the series 
tx  is not stationary and the 

variance of 
tx  is time dependent ([DKN06, Tak12]). 

In other words, the series has a unit root. 

The Unit Root test subsequently tests the following 

one-sided hypothesis: 

H0:   = 1 (has a unit root) 

H1:   < 1 (has root outside the unit circle) 

If 
1tx  is subtracted from both sides of equation (11), 

and introduce the difference operator, then we obtain 

the first order difference equation: 

 

ttt wxx  1)1(                                      (12) 

 

If   is assumed to be 1, the effect of unit root can be 

eliminated from the actual series that has non 

stationarity via the first differencing. In addition to 

the assumption that {
tw } is a Gaussian white noise 

process, it is further assumed not to be autocorrelated. 

If there is autocorrelation, the true magnitude of the 

test would be higher than the nominal size used 

([Tak12]).  

The Augmented Dickey-Fuller (ADF) and 

Kwiatkowski Phillips Schmidt Shin (KPSS) are 

among the important tests used to ascertain 

stationarity of time series data and were used in this 

study. 

For the Augmented Dickey-Fuller test, the various 

cases of the test equation as are follows: 

In a case where the time series does not have a trend 

component and potentially slow-turning around zero, 

the following test equation is to be used ([Tak12]): 

 

tptpttt wxxxx    111
        (13) 

 

In a case where the time series is flat and potentially 

slow-turning around a non-zero value, the following 

test equation is to be used ([Tak12]): 

 

tptpttot wxxxx    111
   (14) 

 

In a case where the time series has a trend in it (either 

up or down) and is potentially slow-turning around a 

trend line you would draw through the data, the 

following test equation is appropriate ([Tak12]): 

 

tptptttot wxxxx    111
     (15) 

 

Where: 
tx  is the first differenced value of series 

(
tx ) and 

tw  is the error term, 

1tx  is the first lagged value of the series (
tx ) 

jtx   is the jth lagged first differenced of values, 

while 
pto  ,,,,, 21

 are parameters to be 

estimated. 
According to ([GN86]), the problem of determining 

the optimal number of lags of the response variable 

arises, though several ways of choosing p have been 

proposed, but the following two simple rules of 

thumb are suggested: the frequency of the data or 

through an appropriate information criterion. So, the 

number of lags that minimizes the value of the 

Akaike information criterion (AIC) would be chosen 

([GN86]).   

The Dickey-Fuller test-statistic is associated with 

the ordinary least squares estimate of . The Dickey-

Fuller-test estimates π =  +1 obtained from an 

ordinary regression and checks for = 0 by 

computing the test statistic ([Tak12]). 

It is noted that the purpose of the identification stage 

in the Box-Jenkins methodology is to determine the 

differencing required for achieving stationarity and 

the order of both the seasonal and the non-seasonal 

AR and MA operators for the residual series 

([GN86]). The Autocorrelation Function (ACF) and 

the Partial Autocorrelation Function (PACF) are the 

two most useful tools in any attempt at univariate 

time series model identification ([GN86]). 

The sample ACF (rk) measures the amount of linear 

dependence between observations in a time series that 

are separated by a lag k ([Tak12]). To use the ACF in 

model identification, estimate rk from the data and 

then plot rk series against lag k up to a maximum lag 

of about five times the seasonality interval and this 

should be less than to one fourth of the series under 

study ([HML77]). To identify the number of non-

seasonal and seasonal AR and MA parameters, the 

sample ACF is examined with what should be 

expected from the theoretical ACF ([HML77, 

Tak12]): 
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Table 1: Behaviour of the ACF and PACF for ARMA 

Models 

 AR(p) MA(q) ARMA(p,q) 

ACF Tails off Cuts off 

after lag q 

Tails off 

PACF Cuts off 

after lag p 

Tails off Tails off 

 

The partial autocorrelation function (PACF), can also 

be used for determining the possible order of the 

seasonal and non-seasonal AR and MA terms that 

should be incorporated in the model via the ACF and 

PACF. When the process is a pure ARIMA (p, d, q) 

model, rk cuts off and is not significantly different 

from zero after lag p+sp ([Tak12]). If rk damps out at 

lags that are multiples of s, this suggests the 

incorporation of a seasonal MA component into the 

model ([Tak12]). The failure of the partial 

autocorrelation function to truncate at other lags may 

imply that a non-seasonal MA term is required 

([HML77]). The partial autocorrelations (   ) at lag k 

are estimated through successive autoregressive 

estimation. The first step is to model the  t series by 

finite autoregressive models of order k ([Tak12]).  

The selected model’s parameters were estimated 

using the method of maximum likelihood. In the 

method of maximum likelihood, the likelihood 

function is maximized to obtain the parameter 

estimates. The likelihood function or joint density is 

the probability of obtaining the data, given its 

probability distribution. 

One of the commonly used criteria for model 

comparison in time series analysis is the Akaike 

Information Criterion (AIC). The idea is to balance 

the risks of under fitting and over fitting. Akaike 

([Aka78]) introduced the AIC in situations where 

there are competing models to select from, such that 

the model with the lowest AIC is chosen as the best 

model. It is defined as ([SS10]): 

 

klikehoodAIC 2log2                              (16) 

 

where k is the number of seasonal and non-seasonal 

autoregressive and moving average parameters to be 

estimated in the model ([Wei90]).  

The optimal order of the model is determined by the 

value of k, which is a function of p and q, so that the 

value of k yielding the lowest AIC specifies the best 

model. Parsimony is a guiding principle in arriving at 

the best model ([Pan83]).  

In testing the adequacy of the fitted model, the 

residuals could be extracted and examined whether 

they are independent random shocks consistent with a 

Gaussian white noise process ([Pan83]). At the 

diagnostic-checking stage, the residuals are used to 

test hypotheses about the independence of the random 

shocks ([Pan83]). 

The basic analytical tool at the diagnostic-checking 

stage is the residual ACF ([Pan83]). A residual ACF 

is basically the same as any other estimated ACF, the 

only difference being that the residuals (
tw ) from the 

estimated model are used instead of the observations 

in a realization (
tx ) to calculate the autocorrelation 

coefficients ([Pan83]). The residuals 
tw  are given as:  
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where 
1


t

tt xx  is the one-step-ahead prediction of 

(  ) based on the fitted model and 
1t

t  is the 

estimated one-step-ahead error variance ([Tak12]). If 

visual inspections of the residuals reveal that they are 

randomly distributed over time, then there is an 

indication that the proposed model is adequate 

([Tak12, Pan83]). 

Several statistical tests exist for diagnostic checking 

of randomness ([Tak12]). The Ljung-Box Q statistic, 

turning point and runs tests can be used for the 

diagnostic checking of residuals for independence 

([Tak12]). 

The Ljung-Box Q or Q(r) statistic can be used to 

check independence of residual instead of visual 

inspection of the sample autocorrelations ([Pan83]). 

A test of hypothesis can be conducted for the 

adequacy of the model using the chi-squared statistic 

([Pan83]).  

Another useful test is the portmanteau lack of fit test 

([Tak12]). This test statistic is the modified Q - 

statistic originally proposed by ([BJ76]). Under the 

null hypothesis of model adequacy, the Q-statistic 

approximately follows the chi-squared distribution 

([BJ76]). If a model is specified correctly, residuals 

should be uncorrelated and Q(r) should be small (p- 

value should be large) ([BJ76]). 

The ultimate application of the Box-Jenkins 

methodology is to forecast future values of a time 

series ([Pan83]). 
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4. RESULTS AND DISCUSSION 

 
Table 2: Data on monthly rainfall (in mm) of Enugu 

State from (January 2002 to December 2016) 

Year JAN FEB MAR … DEC 

2002 0 6.1 25.8 ---- 0 

2003 18.4 15.7 30.0 ---- 0 

2004 32.4 0 32.3 ---- 0 

2005 0 28.0 72.5 ---- 0 

2006 0 46.5 10.4 ---- 0 

2007 0 0 2.9 ---- 0 

2008 0 6.4 4.8 ---- 33.1 

2009 0 26.9 20.8 ---- 0 

2010 43.9 4.6 78.9 ---- 0 

2011 0 9.4 70.0 ---- 0 

2012 1.2 0 56.7 ---- 30.2 

2013 50.1 0 11.1 ---- 0 

2014 1.0 0 2.2 ---- 0 

2015 0 47.3 118.4 ---- 0 

2016 39.0 35.7 13.0 ---- 0 

  

The plot of the data displays a pronounced seasonal 

pattern in the series and as such truly describes the 

Rainfall data. 

 
Figure 1:  Time plot for Enugu monthly rainfall 

 

 
(a) 

 
(b) 

Figure 2: Plot of autocorrelation and partial 

autocorrelation function 

 

The data were subjected to a unit root test to confirm 

stationarity or otherwise. The following stationarity 

tests were applied on the series:   

The KPSS test 

H0:  The series is stationary 

H1: The series is not stationary 

The ADF test 

H0 : The series is not stationary 

H1 : The series is stationary 

 
Table 3:  Test for Stationarity 

Summary of Test statistics 

Test 

type  

Test 

statistics  

Lag 

order  P-value  

KPSS  0.0296 3 0.1 

ADF  -14.339 5 0.01 

 

If the probability value (p-value) is greater than the 

pre-specified level of significance, the null hypothesis 

cannot be rejected and simple differencing is needed 

to render the series stationary. Since the p-value 

=0.01<0.05, the null hypothesis is rejected.  It is 

concluded that the series is stationary under ADF. For 

the KPSS test, since the p-value=0.1, the null 

hypothesis cannot be rejected at the 0.05 level of 

significance and it is concluded that the series is 

stationary. 

Having established stationarity of the time series 

data, the next step is the identification of the ARIMA 

model via the ACF and PACF plots. Tentative 

models were chosen based on the plots and the model 

with the smallest Akaike Information Criteria (AIC) 

and the Corrected Akaike Information Criteria 

(AICc) would be selected as the best fit. 
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Table 4:  Overfitting for the Enugu rainfall data 

ARIMA model AICc 

ARIMA(1,0,0) 2186.15 

ARIMA(0,0,1) 2195.72 

ARIMA(2,0,0) 2182.22 

ARIMA(0,0,2) 2187.31 

ARIMA(1,0,1) 2183.72 

ARIMA(2,0,1) 2134.81 

ARIMA(1,0,2) 2185.49 

ARIMA(0,0,0)(1,0,0)[12] 2095.61 

ARIMA(0,0,0)(0,0,1)[12] 2177.92 

ARIMA(0,0,0)(2,0,0)[12] 2069.99 

ARIMA(0,0,0)(0,0,2)[12] 2157.12 

ARIMA(0,0,0)(1,0,1)[12] 2016.45 * 

ARIMA(0,0,0)(2,0,1)[12] 2017.71 

ARIMA(0,0,0)(1,0,2)[12] 2017.1 

ARIMA(1,0,0)(1,0,0)[12] 2095.09 

ARIMA(2,0,0)(1,0,0)[12] 2097.16 

ARIMA(1,0,0)(2,0,0)[12] 2070.55 

ARIMA(1,0,0)(0,0,1)[12] 2140.63 

ARIMA(2,0,0)(0,0,1)[12] 2142.59 

ARIMA(1,0,0)(0,0,2)[12] 2133.35 

ARIMA(0,0,1)(1,0,0)[12] 2095.07 

ARIMA(0,0,2)(1,0,0)[12] 2097.17 

ARIMA(0,0,1)(2,0,0)[12] 2070.26 

ARIMA(0,0,1)(0,0,1)[12] 2147.97 

ARIMA(0,0,2)(0,0,1)[12] 2143.58 

ARIMA(0,0,1)(0,0,2)[12] 2137.58 

 

The identified model is SARIMA  (0,0,0)(1,0,1)12  

which has the least AIC from Table 4 and the 

estimated parameters of the model are presented in 

Table 5. 

 
Table  5:   Estimation of parameter for SARIMA(0,0,0) 

(1,0,1)12 

Model Fit Statistics  

AIC AICc BIC 

2016.22 2016.45 2028.99 
 

Coefficients  Estimate  

STD 

Error  t-value  

Sar1  0.4867 0.0677 7.1891 

Sma1 0.3938 0.0701 5.6177 

Intercept  149.164 28.6029 5.215 

 

The model is given as: 

 

tttt yy    1212  

tttt yy    1212 3938.04867.01640.149
 

 

The parameter coefficients of the model are found to 

be statistically significant given that the t-value are 

greater than 1.96 or 2 in absolute value and are within 

the bounds of -1 and 1. 

MODEL CHECKING 

The adequacy of the model is checked using the 

residual plots and the Box L-jung test in Figure 3 and 

Table 6. 

residuals(fit)
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Figure 3:   Plot of diagnostic check for Enugu rainfall 

data 

 

In Table 6, the Box Ljung null hypothesis of 

uncorrelated residual against the alternative of 

correlated residuals. Since the p-value is greater than 

the pre-chosen 0.05 level of significance, the null 

hypothesis is not rejected. 

 
Table 6:   Summary of Test Statistics 

Test type  Chi-squared  df  P-value  

Ljung-Box  25.1373 20 0.1962 

 
The Plot of the Fitted Model Values Superimposed 

on the Original Series:  

The plot displayed in Figure 4 shows that the fitted 

values of the model fairly fits the original series. 

 
Figure 4:  Plot for fitted model values superimposed on 

the original series 
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FORECAST: The fitted model is used to forecast the 

rainfall pattern for the next two years (January 2017- 

December 2018). 

 

Forecasts from ARIMA(0,0,0)(1,0,1)[12] with non-zero mean
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Figure 5:   Plot of forcasted values using the fitted model 
 

Table 7:   Forecasted rainfall values (in mm) for the 

next two years (January 2017 to December 2018) and 

the 95% confidence interval for the forecasts 

   Point 

Forecast 

Lo 95 Hi 95 

Jan 2017 14.58 -98.72 127.87 

Feb 2017 17.22 -96.08 130.51 

Mar 2017 38.50 -74.80 151.80 

Apr 2017 147.97 34.67 261.27 

May 2017 259.10 145.80 372.40 

Jun 2017 268.20 154.91 381.50 

Jul 2017 277.55 164.25 390.84 

Aug 2017 218.58 105.28 331.88 

Sep 2017 308.83 195.53 422.12 

Oct 2017 231.39 118.09 344.68 

Nov 2017 15.94 -97.35 129.24 

Dec 2017 6.41 -106.88 119.71 

Jan 2018 14.59 -98.74 127.92 

Feb 2018 17.23 -96.10 130.56 

Mar 2018 38.51 -74.82 151.84 

Apr 2018 147.97 34.64 261.30 

May 2018 259.09 145.76 372.43 

Jun 2018 268.20 154.86 381.53 

Jul 2018 277.54 164.20 390.87 

Aug 2018 218.58 105.24 331.91 

Sep 2018 308.82 195.48 422.15 

Oct 2018 231.38 118.05 344.72 

Nov 2018 15.96 -97.38 129.29 

Dec 2018 6.43 -106.91 119.76 

 

5. CONCLUSION 

 

Based on the outcome of the result of the analysis, the 

time series model Seasonal ARIMA (0,0,0)(1,0,1)12 

for the monthly rainfall series of Enugu State was 

established as the best model having passed the 

diagnostics checking test and was used to forecast the 

monthly rainfall values for the next two years.  

Rainfall pattern of Enugu State is found to have a 

steady pattern. The results show that there is a 

tendency of relatively increasing pattern of monthly 

rainfall over the forecast period from January 2017 to 

December 2018. The 95% confidence bounds were 

presented for the for the monthly rainfall forecast for 

the next two years (2017-2018). 
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