
ILORIN JOURNAL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL. 2, NO. 1, 2017

1

USING T-WAY INTERACTION TECHNIQUES FOR
THE REDUCTION IN THE NUMBER OF TEST

CASES

Ajiboye, Adeleke Raheem1, Mejabi, Omenogo Veronica2 & Salihu,
Shakirat Aderonke3

1,3Department of Computer Science, Faculty of Communication &
Information Sciences, University of Ilorin, Ilorin, Nigeria.

2Department of Information & Comm. Science, Faculty of Communication
& Information Sciences, University of Ilorin, Ilorin, Nigeria.

 1 ajibraheem@live.com 2ovmejabi@gmail.com 3 shaksoft@yahoo.com

ABSTRACT

A test case is a set of input data designed to discover a particular type of error or defect

in the software system. In order to develop software that perform as expected, extensive

testing should be carried out to ensure reliability. Ideally, software testers would want to

test every possible permutation of the software, but in practice, due to the complexity of

the software, exhaustive testing is usually not feasible. This paper presents the use of t-

way interaction techniques with a view to reducing the number of test cases in the

process of software testing. The software on which the approach is implemented consists

of parameters that have the same number of values and their interaction is based on

pairwise combination. The technique minimizes the number of test cases as it tests all

pairs of variables. The resulting outputs show a significant reduction in the number of

test cases from 8 to 6; this is a 25 % reduction. Thus, the overall time required to test the

software is optimized. Also, the final reduced test cases are found to be free of

redundancy and the technique used shows a high degree of parameter interaction.

Keywords: Test cases, Test plan, Test suite, Software testing, T-way pairwise

interaction.

mailto:ajibraheem@live.com
mailto:ovmejabi@gmail.com
mailto:shaksoft@yahoo.com

 Ajiboye, et., al., Using T-Way Interaction Techniques for the…….

2

1. INTRODUCTION

Testing is one the several ways that can be used to measure and verify
product quality. Software is a set of instructions used to acquire set of
inputs and to manipulate these acquired inputs for the production of the
desired output in terms of functions and performance as determined by
the user (Agarwal et al., 2010). In recent times, everyone uses software in
one way or another for convenience and better output. We use software in
our homes, for business transactions, at the hospitals, and in a number of
several consumer products such as cars, mobile phones water dispensers
and washing machines. This is why it is said that, it is quite hard to
imagine life without software (Zamli & Alkazemi, 2015). However,
sometimes software may not work as expected as a result of errors or
defects. Such errors for instance, may cause the software to fail
unexpectedly. The cost of such sudden failure may be too much to bear
and may possibly results to death. Proper testing of software is a
promising way to avoid risk, especially risk that is related to human life.

Testing is a process rather than a single activity as it involves series of
activities. In the process of testing software, the software to be tested is
executed with a finite set of test cases, and the behaviour of the system for
these test cases is evaluated. The purpose of such evaluation is to
determine if the performance of the system meets the expectations. One of
the benefits of ensuring testing testing of software is to give confidence to
the developer team and the users against sudden failure. Although,
testing do take place at each stage of software development, further test
by independent testers at the end of the software development is crucial to
achieving reliable software. The act of software testing helps to measure
the quality of software especially as regards to the number of defects
found, the tests run, and the system covered by the tests.

In software development, several tasks are performed at different stages
and testing is vital to each stage. One of the most important things that
should be considered in software testing is the design and creation of

ILORIN JOURNAL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL. 2, NO. 1, 2017

3

effective test cases (Myers, 2004). But due to several parameters that one
may need to test in a system, it becomes very important to reduce the
number of test cases. In the course of doing this reduction, efforts are
made to ensure redundancies are eliminated without sacrificing the
reliability of the software being tested.

A test case is a description of conditions and expected results that are
taken together in order to fully test a requirement (Fournier, 2009). Ideally,
testers would prefer to have all aspects of the software to be covered
during testing, but in most cases, especially when the software is complex,
exhaustive testing though desirable, but is simply not feasible.

In view of the complexity of software to be tested, a meta-heuristic search
technique for testing is a realistic approach, this is because, testing every
part of the software is practically impossible (Afzal et al., 2008). The only
obvious strategy is to achieve enough tests that can be a representative of
the whole test.

In order to address this challenge, the use of sampling testing techniques
such as boundary value analysis, equivalence partitioning, decision tables
and random testing have yielded some acceptable results (Reid, 1997).
Although, in terms of the likelihood of detecting the most errors in
software, the use of random selection to generate test cases have narrow
chance of achieving an optimal, or close to optimal subset. This is because
the segment that is tested may not be a good representative of the whole
partition.

The use of t-way interaction techniques used in this study gives much
better variable interaction and minimizes the test cases. A number of t-
way strategies exist and these strategies adopt either algebraic or
computational approaches. The objective of this study is to demonstrate
the use of t-way testing strategy with a view to minimizing the number of
test cases that is required for the testing of software that has uniform
values. Attempt to minimize test cases usually translate to a reduction in
the overall cost of software testing.

 Ajiboye, et., al., Using T-Way Interaction Techniques for the…….

4

The rest of the paper is structured as follows. In the next section, some of
the related works reported in the literature is reviewed. This is followed
by a brief discussion on the rationales for minimizing test cases, followed
by a section that discusses software testing plans. Next to this section is
the methodology used for the minimization of the test cases and in Section
6, the result generated is discussed, while the study is concluded in
Section 7.

2. RELATED WORK

A number of test cases reduction strategies have been reported in the
literature, some of them are reviewed here. Since it is generally known
that exhaustive testing of software is impossible, most especially the
complex ones. Researchers have therefore, focused on the possible ways to
have the number of test cases minimized. In order to generate a test suite
for software testing, study in (Bryce & Colbourn, 2007), combines a
greedy algorithm with heuristic search. The study reported that, the suites
generated dispense one test at a time and has a good coverage of
variables.

In an attempt to minimize the number of test sets, the study in (Klaib et
al., 2010) proposed a tree generation strategy for pairwise combinatorial
software testing. The technique uses a cost calculation approach iteratively
and all the leaf nodes were considered. The proposed approach was
reported to have been used to generate the test suite until all the
combinations were covered. A significant reduction in the number of test
cases was also reported.

Also, in order to reduce the size of test suites generated for testing
purposes, the study described in (Chen et al., 2010), applied particle
swarm optimization technique which is a kind of meta-heuristic search
technique to pairwise testing. The study further proposed two different
algorithms for efficient generation of test cases.

ILORIN JOURNAL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL. 2, NO. 1, 2017

5

Furthermore, the study reported in (Yan & Zhang, 2006), proposed along
with other techniques, a backtracking algorithm and search heuristics.
Both techniques were found useful in the generation of test suites for

combinatorial testing. The study reported that the proposed method was
suitable and efficient in the reduction of the size of test cases.

Also, a related study by Blue et al. (2013) uses minimization technique to
achieve a better test design. The study as reported in (Blue et al., 2013),
specifically focuses on using the interaction-based test-suite minimization
approach as a way of standardizing combinatorial test design.

A number of sampling methods for the minimization of test cases have
also been reported in the literature. Typical examples of the techniques in
this category include: equivalence partitioning, boundary value analysis
and random testing. Reid (Reid, 1997), compares some of these methods
and found boundary value analysis to be the most effective among the
techniques that were investigated.

The study reported in (Tracey et al., 1998), relies on the use of sampling
methods for the construction of an automated framework for test data
generation. Equivalent Partitioning (EP) technique is an example of
sampling method. EP technique reduces the number of test sets since the
values in an equivalence partition are handled similarly. Testing only one
part is assumed to have catered for the entire partition. One of the
challenges with the use of sampling technique is the possibility of not
achieving the optimum results. This is because the sample data used for
testing may not be a good representative of the domain test data.

3. RATIONALES FOR MINIMIZING TEST CASES

A test case can be defined as a set of conditions or variables under which a
tester will determine whether a system under test satisfies requirements or
works as expected (STF, 2016). Due to a combinatorial explosion in

 Ajiboye, et., al., Using T-Way Interaction Techniques for the…….

6

software testing, it is necessary to carefully minimize test cases to a
manageable size that can still give optimum results. For instance,
considering software of 15 parameters, 14 of these parameters have 2
values each and the 15th parameter has 65 values; this may be a set of
different colours. This would give a combinatorial explosion that can take
several years to test: 214 x 65 = 16,384 x 65 = 1,064,960 combinations.

Since it is practically impossible to test large combinations like this
exhaustively, then a minimized test set is inevitable. Some reasons why
software may not work as expected include the environmental conditions
like the presence of radiation, magnetism, electronic fields or pollution
(Morgan et al.). Further clarifications made in (Morgan et al., 2010) shows
that these factors are capable of changing the way hardware and firmware
operate. Such sudden change can lead to system failure. In order to avoid
system failure, therefore, we should critically look for errors and faults in
a system with a view to rectifying them.

One of the implications of software that is not working correctly is the
possible potential of causing harm to people. It can make a company to
record high loss and can lead to pollution of the environment (Morgan et
al., 2010). For instance, incorrect billing can lead to huge losses to a
company, while the release of radiation or poisonous chemicals to the
environment can cause serious disaster.

The procedure involved in making high-quality products is very tasking.
Although, certain costs may be obvious, like sales, marketing, and
employee salaries; other costs, especially indirect ones such as employee
training, testing, fixing errors, retesting, and reporting on information,
may be less obvious and are often neglected by organizations; and of
these, testing appears to be the most bemoaned (Delesie, 2012).

There are several procedures that must be followed in the course of
designing test cases. Even after selecting the set of test cases necessary to
cover the identified risks, there are still other things that should also be
considered necessary. Test cases may need to be changed, adapted, or

ILORIN JOURNAL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL. 2, NO. 1, 2017

7

added and in addition, careful attention must be given to ensure that test
data can be reused (Rosink, 2012). In this phase, effort is expended in
setting up the test data for test cases.

The writing of test cases should encompass the description of the main
functionality that needs to be tested and the readiness to assure that the
test can be conducted. What make up the test cases basically includes the
set of input values, execution preconditions, expected results, and
execution post conditions, developed for a particular objective or test
condition; for instance, to exercise a particular program path or to verify
compliance with a specific requirement (Homès, 2012).

Test planning that focuses on creation and design of test cases is perhaps
the most pivotal aspect of software testing (Zamli & Alkazemi, 2015). The
reason for this is that, a test design that is poorly planned is capable of
making the bug detection in the system difficult. Test-case design is so
important because it is not possible to test all; and it follows that, a test of
any program must be necessarily incomplete (Myers, 2004).

4. SOFTWARE TESTING PLANS

Planning involves what is going to be tested, and how this will be
achieved. A test plan is a document consisting of different test cases
designed for different testing objects and different testing attributes
(Agarwal et al., 2010). It is where a map is drawn; how activities will be
done; and who will do them. Test planning is also where the test
completion criteria is defined. Completion criteria are how we know when
testing is finished. The Plan describes the strategy for integration, puts the
test in logical and sequential order per the strategy chosen, top-down or
bottom-up. It is a matrix of test and test cases listed in order of its
execution. The test to be carried out should be planned long before testing
begins. In most cases, test plan begins shortly after the requirements
model is completed.

 Ajiboye, et., al., Using T-Way Interaction Techniques for the…….

8

The conceptual test cases are expected to be defined when the product
features and requirements
are specified. They should be included in the plan, and the time for testing
and debugging each feature should be added to the project estimates
(Huizinga & Kolawa, 2007). Also, part of a good plan is to begin detailed
test cases as soon as the design model is concluded. A test plan basically
states the items to be tested, at what level they will be tested, the sequence
they are to be tested, and how the test strategy will be applied to the
testing of each item and the test environment. Table 1, illustrates the
matrix of test and test cases within the test adapted from Agarwal et al.
(2010).

Test coverage measures in some specific way the amount of testing
performed by a set of tests.
It is an important task that must be adequately planned in the course of
testing. Test coverage is all about having enough tests to sufficiently
demonstrate that the system meets specifications as perceived by the
stakeholders (Fournier, 2009). It provides a quantitative assessment of the
extent and quality of testing. In other words, it answers the question ‘how
much testing have you done?’ in such a way that it is not open to
interpretation. Test coverage can be measured based on a number of
different structural elements in a system or component. Coverage can be
measured at component-testing level, integration-testing level or at
system- or acceptance-testing levels.

Table 1: Test Plan Format

ILORIN JOURNAL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL. 2, NO. 1, 2017

9

5. MATERIAL AND METHODS

T-way pairwise interaction technique is used in this study for the
reduction in the number of test cases. There are a number of methods that
can be used under t-way combinatorial techniques. The number of values
is one of the determinants of the approach that is most suitable. Since the
software under test represented in Figure 1, has uniform values, t- way
pairwise interaction appears to be a suitable technique. The number of
interactions, t, is taken as 2. Figure 1, is an excerpts from a software
system and the users are expected to choose a value from each parameter
to place an order. The single interface under test has 3 parameters each
with 2 values. That is, X = x1, x2 ; Y = y1, y2 ; Z = z1, z2. The values: x1, x2;
y1, y2 and z1, z2 are referred to as base values and assigned to the
parameters as Tablet = {Ibuprofen (x1), Diclofenac (x2)};
Cream = {Neurogesic (y1), Volini (y2)};
Injection = {Penthazocin (z1), Tramadol (z2)}.

A test suite is constructed with these parameters as represented in Table 2.

The mathematical notation of the technique used conforms to the

expression in (1):

 CA (N,t,VP) (1)

where CA is the Covering Array, N is the size of test suite, t is the number
of interactions. In this instance, t = 2.
V is the number of values.
p is the number of parameters.

Therefore, using covering array and taking the interaction, t = 2, the
number of test cases that can be generated for exhaustive testing is VP.

Since the number of values for each parameter is 2, the exhaustive testing
for the interface represented in Figure 1, becomes 23, which equals 8 test
cases. The exhaustive combination is illustrated in Table 2.

 Ajiboye, et., al., Using T-Way Interaction Techniques for the…….

10

It should be noted that the possible techniques that can be used under t-
way interaction is not limited to uniform strength interaction used in this
study. Other known interaction strategies are: cumulative strength,
variable strength and input-output based relation. In the course of
choosing any of these techniques, the parameters and the distribution of
values is usually taken into consideration. The tables 2, 3, 4 and 5 are the
general template for an interface of 3 parameters, each with a pair of
uniform values. Apart from using x, y, and z, any other characters can also
be used to denote the values; digits can also be used instead as far as it
brings about clarity.

Figure 1. Interface showing parameters of uniform values

ILORIN JOURNAL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL. 2, NO. 1, 2017

11

 Table 2. Exhaustive 2-way combination

Considering the parameters in Figure 1: XYZ and the values of each

parameter X = {x1, x2}; Y = {y1,y2} and Z = {z1,z2}, the equivalent test set

for exhaustive testing using pairwise combinatorial is as follows:

 1: { Ibuprofen, Neurogesic, Penthazocin}
 2: { Ibuprofen, Neurogesic, Tramadol}
 3: { Ibuprofen, Volini, Penthazocin}
 4: { Ibuprofen, Volini, Tramadol}
 5: { Diclofenac, Neurogesic, Penthazocin}
 6: { Diclofenac, Neurogesic, Tramadol}
 7: { Diclofenac, Volini, Penthazocin}
 8: { Diclofenac, Volini, Tramadol}

For any interface that has three parameters, for instance, the XYZ as
illustrated in Figure 1, the possible permutations are: XY, XZ and YZ. Each
of these combinations forms the set of test cases. What is unique about 2-
way, otherwise known as pairwise testing technique is that, the pairwise
technique minimizes the number of test cases by testing all pairs of
variables. Thus, in the present study, the combination of each pair of
variables gives the values shown in Tables 3, 4 and 5.

Base Values

Input

X Y Z

x 1 y 1 z 1

x 2 y 2 z 2

Exhaustive

Combinations

x 1 y 1 z 1

x 1 y 1 z 2

x 1 y 2 z 1

x 1 y 2 z 2

x 2 y 1 z 1

x 2 y 1 z 2

x 2 y 2 z 1

x 2 y 2 z 2

 Ajiboye, et., al., Using T-Way Interaction Techniques for the…….

12

The number of occurrences in each pair of combination is determined. The

focus is to ensure that no variable is uncovered, while those that appear

more than once are removed to avoid redundancy as illustrated in Tables

3 and 4. The leftover, that is, those that appear only once form the final

test suite shown in the final result section (see Table 6). Although, there

are several software testing tools that can be used to generate test suite,

however, this procedure is implemented using Matlab codes. The

implementation involves ensuring that all the redundancies in the test

cases are eliminated. For instance, in Table 3, row XY is splitted into 4, the

same pattern is followed in Tables 4 and 5, where rows XZ and YZ are

splitted into 4 as shown. Looking at all the tables as one, the similar test

cases are cancelled out to give the unique test cases represented in Table 6.

 Table 3. The combination of parameters X and Y

Base Values

 Input

X Y Z

x 1 y 1 z 1

x 2 y 2 z 2

 XY

x 1 y 1 z 1

x 1 y 2 z1

x 2 y 1 z 2

x 2 y 2 z 2

ILORIN JOURNAL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL. 2, NO. 1, 2017

13

Table 4. The combination of parameters X and Z

 Table 5. The combination of parameters Y and Z

6. RESULTS AND DISCUSSION

This section discusses the test suite generated from the pairwise
interaction of parameters under test. From the initial exhaustive testing,
the study further reduces the number of test cases. The final unique test
cases that is free of redundants. The result shows some significant
reduction in the number of test cases from an initial test cases of size 8 as
earlier shown in Table 2, to 6 test cases as represented in Table 6. This is
equivalent to a 25% minimization of the number of test cases.

Base Values

 Input

X Y Z

x 1 y 1 z 1

x 2 y 2 z 2

 XZ

x 1 y 1 z 1

x 1 y 1 z 2

x 2 y 2 z 1

x 2 y 2 z 2

Base Values

 Input

X Y Z

x 1 y 1 z 1

x 2 y 2 z 2

 YZ

x 1 y 1 z 1

x 2 y 1 z 2

x 1 y 2 z 1

x 2 y 2 z 2

 Ajiboye, et., al., Using T-Way Interaction Techniques for the…….

14

Those test cases that occurred twice, which could have resulted to
duplications have been removed from the permutation shown in Tables 4
and 5. Only the unique test cases are left and harnessed together to form
Table 6. The selection of the parameter values shown earlier in Figure 1,
can then be made based on these final test cases without ignoring or
making repetition in the test design.

The selection of test cases in the software excerpts represented in Figure 1,
gives the exhaustive combinations of 3 parameters, each with 2 uniform
values. The interaction of the parameters based on the possible
permutations and subsequent elimination of redundancies results to
unique test sets. The initial test suite is then minimized to the following
test cases as listed in numbers 1 - 6:

 1: { Ibuprofen, Neurogesic, Penthazocin}
 2: { Ibuprofen, Neurogesic, Tramadol}
 3: { Ibuprofen, Volini, Penthazocin}
 4: { Diclofenac, Neurogesic, Penthazocin}
 5: { Diclofenac, Neurogesic, Tramadol}
 6: { Diclofenac, Volini, Tramadol}

Table 6. The final minimized test cases generated

Base Values

 Input

X Y Z

x 1 y 1 z 1

x 2 y 2 z 2

Pairwise
Combinatorial

x 1 y 1 z 1

x 1 y 1 z 2

x 1 y 2 z 1

x 2 y 1 z 1

x 2 y 1 z 2

x 2 y 2 z 2

ILORIN JOURNAL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL. 2, NO. 1, 2017

15

7. CONCLUSION

This paper has shown how the t-way pairwise interaction techniques can
be used to optimize test cases. There are so many approaches of
minimizing the number of test cases, but the choice of a particular
technique depends on a number of factors, such as the parameters and
number of values involved. This study focuses on reducing the number of
input data required to carry out testing of a section of software (unit
testing). This is achieved in this study without sacrificing the level of
accuracy of the software under test. Unit testing involves testing of
individual components to ensure that they operate correctly. When a test
is carried out on software, such effort can only show that one or more
defects exist. Testing is not capable of showing that the software under
test is error free. The essence of software testing is, therefore, to greatly
reduce risk or sudden failure of the software.

Due to the challenges one is bound to face when the software is to be
tested exhaustively, the most feasible approach is to minimize the test sets
without sacrificing the reliability of the software. Testing unveils some
inconsistencies and bugs that may find its way into the software. In
reality, software that consists of large parameters of non-uniform values
can take some decades to test, hence, the need to have the test sets
minimized.

Although the interface under test represented earlier in Figure 1, has a
simple logical structure, it is for illustrative purpose, as it consists of 3
parameters of 2 uniform values only; however, a larger number of
parameters of uniform values follow the same procedures shown in this
paper. The results from this study show that, the number of test sets
generated for the exhaustive combinations of the parameters have been
reduced by 25%. Apart from the fact that the approach eliminates some
duplication that is capable of swelling up the number of test cases, thereby
saving testing time, the technique is found to be efficient in the
minimization of test sets.

 Ajiboye, et., al., Using T-Way Interaction Techniques for the…….

16

ACKNOWLEDGMENT

The Authors would like to thank the anonymous reviewers for their
useful comments and suggestions on this paper.

REFERENCES

Afzal, W., Torkar, R., & Feldt, R. (2008). A systematic review of search-
based testing for non-functional system properties. Information and
Software Technology.

Agarwal, B. B., Tayal, S. P., & Gupta, M. (2010). Software Engineering &
Testing: Jones and Bartlett Publishers.

Blue, D., Segall, I., Tzoref-Brill, R., & Zlotnick, A. (2013). Interaction-based
test-suite minimization. Paper presented at the International
Conference on Software Engineering.

Bryce, R. C., & Colbourn, C. J. (2007). One-test-at-a-time heuristic search for
interaction test suites. Paper presented at the 9th annual conference
on Genetic and evolutionary computation.

Chen, X., Gu, Q., Qi, J., & Chen, D. (2010). Applying particle swarm
optimization to pairwise testing. Paper presented at the 34th IEEE
Annual Computer Software and Applications Conference.

Delesie, S. (2012). How to Reduce the Cost of Software Quality: CRC Press,
Taylor & Francis Group

Fournier, G. (2009). Essential Software Testing A Use-Case Approach: CRC
Tailor & Francis Group.

Homès, B. (2012). Fundamentals of Software Testing. UK: ISTE Ltd

Huizinga, D., & Kolawa, A. (2007). AUTOMATED DEFECT
PREVENTION: Best Practices in Software Management. New Jersey:
John Wiley & Sons, Inc.

ILORIN JOURNAL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL. 2, NO. 1, 2017

17

Klaib, M. F., Muthuraman, S., Ahmad, N., & Sidek, R. (2010). Tree based
test case generation and cost calculation strategy for uniform
parametric pairwise testing. Journal of Computer Science, 6(5), 542.

Morgan, P., Samaroo, A., Thompson, G., & Willams, P. (2010).
SOFTWARE TESTING An ISTQB-ISEB Foundation Guide (B.
Hambling Ed. Second ed.): British Informatics Society Limited.

Myers, G. J. (2004). The Art of Software Testing (Second ed.): John Wiley &
Sons.

Reid, S. C. (1997). An empirical analysis of equivalence partitioning, boundary
value analysis and random testing. Paper presented at the Fourth
International Software Metrics Symposium.

Rosink, J. (2012). How to Reduce the Cost of Software Testing: CRC Press,
Taylor & Francis Group.

STF. (2016). Software Testing Fundamentals (STF). 2016, retreived from
http://softwaretestingfundamentals.com/test-case/ on Jan 22,
2017.

Tracey, N., Clark, J., Mander, K., & McDermid, J. (1998). An automated
framework for structural test-data generation. Paper presented at the
13th IEEE International Conference on Automated Software
Engineering, .

Yan, J., & Zhang, J. (2006). Backtracking algorithms and search heuristics to
generate test suites for combinatorial testing. Paper presented at the
30th Annual International Conference on Computer Software and
Applications

Zamli, K. Z., & Alkazemi, B. Y. (2015). Combinatorial T-way Testing.
Malaysia: UMP.

http://softwaretestingfundamentals.com/test-case/

