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ABSTRACT 

 The conjugate gradient method CGM is an effective iterative method which is widely 

used for solving large-scale unconstrained optimization problems due to its low memory 

requirement. The efficiency of the CGM depends majorly on the step-size. Line search technique 

has been used in various literatures to obtain the step-size. A very recent development is to 

obtain the step-size with a unified formula which is refereed to as step-size without line search. 

Hence, in this work, we present numerical experiments for well-known CGMs such as Fletcher-

Reeves, Bamigbola-Ali-Nwaeze, Polak-Ribiere, Dai-Yuan, Liu-Storey, Hesten-Stiefel, Conjugate-

Descent, Hager-Zhang and Gradient Search Conjugacy methods. Numerical results obtained are 

graphically illustrated using performance profiling software to compare numerical efficiency of 

five inexact line searches namely Armijo, Goldstein, Weak, Strong and Approximate Wolfe and 

two formulae for estimating the step-size without line search which are Wu formula and Ajimoti-

Bamigbola formula.   

 

1.1  INTRODUCTION 

 

 Consider the conjugate gradient method for unconstrained optimization problem  

 nxxminf ),(  (1) 

 where n  is an n-dimensional Euclidean vector space and nf :  is a real valued, 

continuously differentiable function. The CGM is an effective iterative method which is widely 

used due to its very low memory requirement and fast convergence ability for engineers and 

mathematicians who are interested in solving large-scale problems (Jinhong and Genjiao, 

2013). A CGM generates a set of quantities )(kx , k , )(kd , k  and )(kg  at iteration k , where 
)(kx  is the thk  iterate solution, k  is a positive step size obtained by a step size rule, )(kd  is the 

search direction, k  is the conjugate gradient parameter which determines the different 

conjugate gradient methods which have different numerical effects (Zhang, 2010) and )(kg  

denotes the gradient of )(xf  ))(.,.( )(kxfei   at the point )(kx . The different conjugate gradient 

methods differ in the way of selecting k . Some well-known formulae for k  are the following  
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where )(= )(1)()( kkk ggy  . 

 

 In general, the conjugate gradient method uses an iterative scheme of the form:  

 )()(1)( = k

k

kk dxx   (11) 

 where, (0)x  is the initial iterative point, the step size k  is positive which can be determined by 

various step-size rules and the directions )(kd  are generated by the rule  
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2  CGMs With and Without Line Search 

 The basic philosophy of most numerical methods is to produce a sequence of improved 

approximations to the optimum according to the following scheme: 

Step 1: Choose an initial trial point nx (0) .  

Step 2: Determine if 0=(0)g , then stop, otherwise, proceed to step 3. 

Step 3: Find a suitable direction )(kd  which points in general direction of the optimum 

such that 0<)()( kTk dg , 

Step 4: find an appropriate step size 0k  for movement along the direction )(kd . 

Step 5: obtain the new approximation 1)( kx  as )()(1)( = k

k

kk dxx  . 

Step 6: Test if 1)( kx  is the optimum.  

 The iterative procedure indicated by step 5 above is valid for both constrained and 

unconstrained optimization. In fact from step 5 the success of an optimization method is largely 

dependent on the accuracy of computing the search direction )(kd  and the step size k .  

 In performing the iterative scheme in step 5, various methods are applicable in 

determining the step-size k  one of such methods is the line search technique. On the other 

hand, a fixed formula can also be used to obtain the step-size k  in step 5 above which is simply 

referred to as step-size without line search (Jie and Jiapu, 2001). 

2.1  Line Search 

  This is an important step in the conjugate gradient method algorithm when solving 

unconstrained optimization problems. In every line search, the choice of technique for 

determining k  affects both the convergence and the speed of convergence of the algorithm. The 

two types of line search procedures basically in use are Exact Line Search and Inexact Line 

Search.  

2.1.1  Exact Line Search 

 The aim of every line search is to determine 0k  along the search direction )(kd  with 

the objective of ensuring a non-deteriorating rate of convergence. Then to achieve this, we first 

set *=k
, such that,  

 )(= )()(

0

* kk dxfargmin   
 (13) 

 i.e., k  is the value of 0k  which minimizes the function f  along )(kd . Thus, *  in (19) can 

be obtained by solving the differential equation,  

 0=)( )()( kk dxf
d

d




  (14) 

  

 The technique employed in (14) yields an exact value *  and is referred to as an exact 

line search. However, commonly, the exact line search is cost expensive, especially when an 

iterate is far from the solution of the problem (Sun and Yuan, 2006). 
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2.1.2  Inexact Line Search 

 It is important to note that exact line search is expensive to carryout, as result of the 

limitation of the exact line search there is a need for line search which can identify a step-size 

that produces substantial reduction in the value of objective function at minimal cost. In a case of 

nonlinear unconstrained optimization problems, inexact line search technique is cost efficient 

and more precise to work with. The frame work of inexact line search is as follows:   

    • Generate a criterion that ensures the step-size   is neither too long nor too short.  

    • Pick a good initial step-size to kick start the algorithm.  

    • Construct a sequence of updates that satisfy the criterion formulated in (i) after every 

few steps.  

 

 There are various rules for accepting a step-size, some of which are:   

    • Goldstein (Goldstein, 1965).  

    • Armijo (Armijo, 1966).  

    • Wolfe (Wolfe, 1969), (Wolfe, 1971).  

    • Powel (Powell, 1976).  

    • Luenberger (Luenberger, 1984).  

    • Fletcher (Fletcher, 1987).  

    • Boggs and Schnabel (Boggs and Schnabel, 1987).  

    • Gill et al. (Gill et al., 1982).  

    • Hager and Zhang (Hager and Zhang, 2005), and so on.  

 

Choice of 5 inexact Line Search 

 

1. Armijo Line Search Criterion 

   This is the simplest among the inexact line search procedures and was introduced by  

(Armijo, 1966). The Armijo rule works in such a way that it first guarantees that the selected 

step-length k  is not too large, and then that it is not too small. 

Consider the function  

 )(=)( )()( k

k

k

k dxf    (15) 

 

A step-length k  satisfies the Armijo’s rule if 

 

 kk  (0)(0))(   (16) 

  

  kk (0)(0))(   (17) 

 

The first condition ensures that k  is not too large while the second one makes it not to 

be too small. 

The constants   and   must be chosen such that 10   and 1  

 

2. Goldstein Line Search Criteria 

  

 The Goldstein line search, first introduced by A. A. Goldstein (Goldstein, 1965) accepts 
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a step-length 0>0k  if it satisfies the conditions:  
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3. Wolfe Line Search Criteria 

   This was first published by Philip Wolfe (Wolfe, 1969). He proposed that step-length 

k  is considered optimal under the Wolfe line search if it satisfies the two Wolfe Conditions   

    •  
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 and )(=)( )()( k

k

k

k dxf    from where 10 21   . The first inequality ensures 

that the function reduced sufficiently, and the second prevents the steps from being too small. 

However, in 1971, he notified in (Wolfe, 1971) that there are cases where a step-size may 

satisfy the general Wolfe condition without necessarily minimizing the function )( k . As such, 

a more strict two sided test is placed on the gradient of  . This forces k  to lie at last in the 

neighborhood of a local minimizer of  . This test is called the strong Wolfe conditions. 

 

4. Strong Wolfe Conditions 
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5. Approximate Wolfe Line Search Criteria 

   The Approximate Wolfe line search was introduced by Haggar and Zhang, (Hager and 

Zhang, 2005). This line search accepts any step-length 0>k  if and only if it satisfies the the 

conditions:  

 (0))((0)1)(2   k  (23) 

 where )(=)( )()( k

k

k

k dxf    and 1<<
2

1
<<0   

 

2.2  CGM Without Line Search 

 When the step-size 0  is obtained by a unified formula rather than line search 

process, then it is referred to as step-size without line search. Shun and Zhang (Jie and Jiapu, 
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2001) developed a CGM where the step-size in their method is computed by a formula rather 

than a line search technique. The formula is given by:  
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0, ,   is a Lipschitz constant of f  and  
)(kQ  is a 

sequence of positive definite matrices satisfying for positive constant minV  and maxV  that  

 
nT

maxk

TT

min dddVdQdddV  ,)(  (25) 

 They used the unique formula for k  in (25) to prove the global convergence for five kinds of 

conjugate gradient methods. Chen and Sun (Xiongda and Jie, 2002) proved that the same 

formula for k  ensured global convergence for a two-parameter family of conjugate gradient 

methods. But the formula for the step-size k  above involve a positive matrix  
)(kQ . For large-

scale optimization problems, this may cost additional memory space and execution time during 

the computations. Later, Qing-jun Wu (Wu, 2011) derived a formula for the step-size k  that is 

matrix free and uses both available function and gradient information. He updated the formula in 

equation (24)  above based on the quasi-Newton methods in (Zhang et al., 

1999) and (Zhang and Xu, 2001), the formula for k  is presented as  
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K

  

and 0  if K= .  

 Recently, (Ajimoti and Bamigbola, 2016) derived a new formula to obtain the step-size 

k  without any line search processes which does not contain any matrix computation and uses 

only gradient information to obtain the step-size. The formula is presented below:  

 )(0,,
)(

=
)()(1)(

)()(







 




 kTkk
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k
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dg
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2.3  ALGORITHM : CGM Algorithm 

   

    • Select the initial point, nx R(0) , 0  (a small number called tolerance) and set 

0=),(== (0)(0)(0) kxfgd  .  

    • Terminate process if |||| (0)g , otherwise, go to Step 3. 

 

    • Compute step length k  by: 

 

    • Using fixed formula in (26). 

 

    • Using fixed formula in (27). 
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    • Using 5 inexact line search in subsection 2.1.2 . 

 

    • Set )()(1)( = k

k

kk dxx  ; if  |||| 1)(kg , then stop, otherwise, go to the next Step. 

 

    • Compute the search direction )(1)(1)( = k

k

kk dgd   . Where k  is given by 

equation 10)(2 .  

    • Set 1= kk , and go to step 3.  

 

 

3  COMPUTATIONAL CONSIDERATION 

 The computational experiments carried out in this research incorporated with fixed 

formulae in (26) , (27)  and 5  choices of inexact line search in subsection 2.1.2  into the CGM 

Algorithm 2.3. Our aim is to perform an experiment that aid in measuring the effectiveness of 

various step-size rules for obtaining the step size k  either by fixed formulae or line search 

procedures. The formulae for finding step size without line search were compared with five other 

conventional inexact line searches rules by using nine kinds of conjugate gradient methods to 

solve thirty unconstrained optimization test functions obtained from the CUTE collection made 

available by Andrei (2008) and Jamil and Yang (2013) with standard starting points and each test 

function is given with two different dimensions 5,000=(n  and 10,000)=n . Hence a total 

number of 3780 computations for the seven step-size solvers against nine types of CGMs were 

considered. The Algorithm 2.3 was implemented via Matlab 8.0  version and run on a PC HP 

EliteBook 6930p with 2.00GB RAM memory, 2.20GHZ processor and 3.4 windows experience 

index operating system. In figures 141 , we adopt the performance profiles introduced by 

Dolan and More (2002) to evaluate and compare the performance of different kinds of CGM 

against various rules of obtaining the step-size k , to test the efficiency of these methods using 

optimization software based on the CPU time and the number of iteration where ABR represents 

Ajimoti-Bamigbola rule for step-size without line search, WR represents Wu rule for step-size 

without line search, ARR represents Armijo line search rule, SWR represents strong Wolfe line 

search rule, WWR represents weak Wolfe line search rule, GR represents Goldstein line search 

rule and AWR represents approximate Wolfe line search rule.  

 A table containing the test functions and their sources is presented in Table 1 and their 

numerical results are graphically illustrated in figures 141 . 

  

Table  1: A list of test problems 

   

S/N   PROBLEM   

SOURCE  

1  Extended Rosenbrock Function   

(Andrei, 2008) 

2  Linear Function - rank 1   

(Andrei, 2008) 

3  Quadratic Diagonal Perturbed Function   

(Andrei, 2008) 
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4  Perturbed Quadratic Function   

(Andrei, 2008) 

5  Quadratic QF1 Function   

(Andrei, 2008) 

6  ARGLINB(m=20) Function   

(Andrei, 2008) 

7  Almost Perturbed Quadratic Function   

(Andrei, 2008) 

8  Extended White & Holst Function   

(Andrei, 2008) 

9  Raydan 1 Function   

(Andrei, 2008) 

10  Raydan 2 Function   

(Andrei, 2008) 

11  Extended Three Exponential Terms Function   

(Andrei, 2008) 

12  Generalized Rosenbrock Function   

(Andrei, 2008) 

13  Generalized White & Holst Function   

(Andrei, 2008) 

14  Extended Block Diadonal BD1 Function   

(Andrei, 2008) 

15  HimmelBG Function   

(Andrei, 2008) 

16  Power Function   

(Andrei, 2008) 

17  Extended Dixon and Price   

(Andrei, 2008) 

18  Extended Booth Function   

(Andrei, 2008) 

19  Extended Boh2 Function   

(Andrei, 2008) 

20  Diagonal 3 Function  (Jamil and 

Yang, 2013) 

21  Hager Function   (Jamil and 

Yang, 2013) 

22  Extended Penalty Function   

(Andrei, 2008) 

23  Extended Cliff & Roth Function   

(Andrei, 2008) 

24  Extended Quadratic Penalty QP1 Function   

(Andrei, 2008) 

25  Extended EP1 Function   

(Andrei, 2008)]  

26  ARWHEAD Function   
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(Andrei, 2008) 

27  Extended Freudenstein & Roth Function   

(Andrei, 2008) 

28  Cube Function   

(Andrei, 2008) 

29  Extended Goldstein & Price Function   

(Andrei, 2008) 

30  Chebyquad Function   

(Andrei, 2008) 

 

   
Figure  1: Performance profile for various CGMs by ABR based on CPU time 

 
Figure  2: Performance profile for various CGMs by ABR based on number of iterations 
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Figure  3: Performance profile for various CGMs by WR based on CPU time 

    

   
Figure  4: Performance profile for various CGMs by WR based on number of iterations 
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Figure 5: Performance profile for various CGMs by ARR based on CPU time 

 

    
Figure  6: Performance profile for various CGMs by ARR based on number of iterations 
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Figure  7: Performance profile for various CGMs by SWR based on CPU time 

    

   

 
Figure  8: Performance profile for various CGMs by SWR based on number of iterations 
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Figure  9: Performance profile for various CGMs by WWR based on CPU time 

    

   
Figure  10: Performance profile for various CGMs by WWR based on number of iterations 
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Figure  11: Performance profile for various CGMs by GR based on CPU time 

    
   

Figure  12: Performance profile for various CGMs by GR based on number of iterations 
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Figure  13: Performance profile various CGMs by AWR based on CPU time 

    
   

Figure  14: Performance profile for various CGMs by AWR based on number of iterations 

   

 

3.1  Remarks on Computational Results 

  

Solverbility Index 

   For better description and understanding of the Figures above, the solvability measure 

for the CG methods are presented below based on the number of successes and failures in 

percentage recorded by each Step-Size Rules )(SSR : 
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 Table 2: Solvability index for different SSR by CG methods 

  

 SSR   Soverbility  Nonlinear CG Method   AVERAGE  

  Index   BAN   FR   PRP   HS   CD   DY   LS   HZ   GSC   SUCC./FAIL.  

ABR   Success   100   67   67   97   100   97   67   94   97  88.2  

 Failure   00   33   33   03   00   03   33   06   03  11.8  

WR   Success   87   58   50   84   87   80   52   70   82  72.2  

  Failure   13   42   50   16   13   20   48   30   18  27.8  

ARR   Success   87   47   52   90   83   75   52   85   62  70.3  

 Failure   13   53   48   10   17   25   48   15   38  29.7  

SWR  Success   83   48   47   77   67   68   45   68   40  60.3  

 Failure   17   52   53   23   33   32   55   32   60  39.4  

WWR  Success   87   84   83   87   90   87   83   87   84  85.8  

 Failure   13   16   17   13   10   13   17   13   16  14.2  

GR  Success   76   90   83   75   90   80   83   80   84  82.3  

  Failure   24   10   17   25   10   20   17   20   16  17.7  

AWR  Success   85   84   87   82   100   90   87   94   93  87.4  

 Failure   15   16   13   18   00   10   13   06   06  12.6  

AVERAGE  Success  86.4  68.4   67.1   84.7   88.1   82.6  67.1  82.9  77.4  

 Failure  13.6  31.6   32.9   15.3   11.9  17.4  32.9  17.1  22.6  

 

 

   

 From Table 2  which measures the effectiveness of each CGMs and the various SSRs 

presented in our work. It is evident that BAN and CD methods successfully solved more 

problems while PRP and FR gave a least number of success among the CGMs considered. The 

step-size rules )(SSR  for without line search techniques used in this work are ABR and WR. The 

ABR showed a superior efficient performance displaced over the WR. It is noticed that the step-

size rules with line search procedures considered in this research work. AWR achieved strong 

efficient performance compared to the other inexact line searches while ARR and SWR were 

lagging behind.  

 It is observed that despite the inefficiency of FR and PRP methods, they both are very 

efficient using GR and AWR respectively. It is also observed that almost all the CG method 

considered attained the highest level of efficiency using the Ajimoti-Bamigbola rule without line 

search to obtain the step-size and it is evident to finalize that ABR showed better efficient 

performance displaced over AWR judged by the calculated average as presented in the table 

above.  

4  Conclusion 

 In this research work, it is established that among all the step-size rules used, the ABR 

for finding the step without any line search procedure was able to obtain the step-size faster and 

guarantee solution to the CGMs through the computational results most especially with the BAN 

and CD methods. It is also established that the BAN method and Conjugate-Descent method 

exhibit better efficiency when compared to the other conjugate gradient methods mentioned in 

this paper.  
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