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Abstract— Classification techniques is a popular approach to predict software defects and it involves categorizing modules, which is 

represented by a set of metrics or code attributes into fault prone (FP) and non-fault prone (NFP) by means of a classification model. 
Nevertheless, there is existence of low quality, unreliable, redundant and noisy data which negatively affect the process of observing 
knowledge and useful pattern. Therefore, researchers need to retrieve relevant data from huge records using feature selection methods. 
Feature selection is the process of identifying the most relevant attributes and removing the redundant and irrelevant attributes. In this 
study, the researchers investigated the effect of filter feature selection on classification techniques in software defects prediction. Ten 
publicly available datasets of NASA and Metric Data Program software repository were used. The topmost discriminatory attributes of the 
dataset were evaluated using Principal Component Analysis (PCA), CFS and FilterSubsetEval. The datasets were classified by the selected 
classifiers which were carefully selected based on heterogeneity. Naïve Bayes was selected from Bayes category Classifier, KNN was 
selected from Instance Based Learner category, J48 Decision Tree from Trees Function classifier and Multilayer perceptron was selected 
from the neural network classifiers. The experimental results revealed that the application of feature selection to datasets before 
classification in software defects prediction is better and should be encouraged and Multilayer perceptron with FilterSubsetEval had the best 
accuracy. It can be concluded that feature selection methods are capable of improving the performance of learning algorithms in software 
defects prediction. 
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1. INTRODUCTION 

efect in software module occurs when incorrect 
programming logic or code are used which further 
produces wrong output and lead to poor quality 

software product. Defects in software module may cause 
software to be rejected by a user or terminate the 
contracted agreement with the company (Fenton & 
Pfleeger, 1996; Koru & Liu, 2005). High development, 
maintenance cost and customer dissatisfaction are the 
end result of a defective software. Faults in software 
systems continue to be a major problem. Fault is a flaw 
that results in failure (Ishani, Vivek  & Anju, 2014). 
Further, Software fault prediction facilitates software 
engineers to pay attention to development activities on 
defect less code which enhance the software quality and 
minimize the cost and time to develop software system 
in today’s era. There are many prediction models which 
are used to filter the software defects (Khoshgoftaar, 
Bullard & Gao, 2009; Lessman, Baeseus, Mues & Pietsch, 
2008; Shivaji, Whitehead, Akella & Kim, 2009; Okutan & 
Yildiz, 2012). 
 
Software defect prediction as a classification problem; it 
can be viewed as a supervised binary classification 
problem. Software modules are represented with 
software metrics, and are labelled as either defective or 
non-defective. To train defect predictors, data tables of 
historical examples are formed where one column has a 
boolean value for ”defects detected” (i.e. dependent 
variable) and the other columns describe software 
characteristics in terms of software metrics (i.e. 
independent variables).                      
 
Feature selection is a process that selects a subset of 
original features. It is also known as attribute selection or 
reduction. It is one of the most important techniques 
used in data pre-processing in data mining (Ameen, 
Balogun, Usman & Fashoto, 2016). Mining on a reduced 
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set of attributes offers benefits as it reduces the number 
of attributes appearing in the extracted patterns. The 
goal of feature selection is to discover the smallest subset 
of features that best identifies categories from data 
according to important criteria (Balogun, Mabayoje, 
Salihu & Arinze, 2015). Feature selection in 
unsupervised learning is mostly difficult due to the 
absence of class labels but in supervised learning, feature 
selection attempts to maximize accuracy. It is easier to 
perform feature selection for supervised learning since 
they make use of class labels (Miao, Liu, & Zhang, 2012; 
Khoshgoftaar, Gao, Napolitano & Wald, 2013). It is 
essential to predict the defect of software metrics in 
order to plan a better maintenance strategy. Researchers 
have developed many classification models for software 
defect prediction (Lessman et al, 2008; Peng, 
Khoshgoftaar et al., 2013; Miao et al., 2012; Hall, 
Beecham, Bowes, Gray & Counsell, 2012).             
 
This study aims at performing a comparative analysis on 
heterogeneous classifiers used for software defects 
prediction based on filter feature selection. In line with 
the set aim of this study, the scope of this research is to 
cover the experimental investigation of software defect 
prediction as a classification problem. The study will 
investigate the use of four classifier algorithms based on 
their nature and categories for software defects 
prediction. 

2. FEATURE SELECTION 

There are three methods used for feature selection – 
Filter method, Wrapper method and Embedded method. 
These methods are explained below. 
 (1) Filter method: This method makes use of statistical 
information in order to assign scores to the features It 
produces a ranking of the feature (attribute) from most 
important to the least important.  
(2) Wrapper method: This is basically represented as a 
search problem which considers the selection of a set of 
features. 

D 
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 (3) Embedded method: This method selects the features 
that best improve the model accuracy while the model is 
being created (Aruna, Dilsha, Radhika, & Swathi, 2016).  
 
2.1 Principal Component Analysis (PCA) 

The aim of PCA is to reduce the dimensionality of 
dataset that contains a large number of correlated 
attributes by transforming the original attributes space 
to a new space in which attributes are uncorrelated. The 
algorithm then ranks the variation between the original 
dataset and the new one. Transformed attributes with 
most variations are saved and discard the rest of 
attributes.  
 

2.2 Correlation Based Feature Selection (CFS) 

CFS is a simple filter algorithm that ranks feature subsets 
and discovers the merit of feature or subset of features 
according to a correlation based heuristic evaluation 
function. The purpose of CFS is to find subsets that 
contain features that are highly correlated with the class 
and uncorrelated with each other. The rest of features 
should be ignored. Redundant features should be 
excluded as they will be highly correlated with one or 
more of the remaining features. The acceptance of a 
feature will depend on the extent to which it predicts 
classes in areas of the instance space not already 
predicted by other features.  
 
2.3 Filter Subset Evaluation 

Class for running an arbitrary subset Evaluator on Data 
that has been passed through an arbitrary filter (note: 
filters that alter the order or number of attributes are not 
allowed) like the evaluator, the structure of the filter is 
based exclusively on the training data. 

3. CLASSIFICATION TECHNIQUE 

Classification Technique is one of the data mining 
techniques that are used to analyze a given dataset. 
Classification is a two-step process, during first step the 
model is created by applying class algorithm on training 
data set then in second step the extracted model is tested 
against a predefined test dataset to measure the model 
trained performance and accuracy. Classification 
technique is used to find out, in which group each data 
instance is related within a given data set. It is used for 
classifying data into different classes according to some 
constraints. Several major kinds of classification 
algorithms include Multilayer Perceptron, K-Nearest 
Neighbour, Naive Bayes, Support Vector Machine, 
Decision Tree etc. 
 

3.1 Naïve Bayes 

The Naive Bayes algorithm is a simple probabilistic 
classifier that calculates a set of probabilities by counting 
the frequency and combinations of values in a given 
dataset. It is also a statistical method for classification. 
The algorithm uses Bayes theorem and assumes all 
attributes to be independent given the value of the class 
variable (Tina & Sherekar, 2013). Naïve Bayes is 
particularly suited when the dimensionality of the 
inputs is high and it uses the maximum likelihood for its 
parameter estimation. 

 

  
Fig. 1:   Naive Bayes Pseudocode  
(Source: Tina & Sherekar, 2013) 

3.2 Multilayer Perceptron 

Multi-layer Perceptron Networks (MLP) are feed-
forward artificial neural networks which is a famous 
model for machine learning (Ahmad & Nashat, 2012). 
MLP was developed to replicate learning and 
generalization abilities of humans with an attempt to 
model the functions of biological neural networks and 
they have many potential applications in the areas of 
Artificial Intelligence (AI) and Pattern Recognition (PR). 

 
Fig. 2: Multilayer Perceptron Pseudocode  

(Source: Ahmad  & Nashat, 2012) 

 

3.3 k- Nearest Neighbour 

k-Nearest Neighbour (kNN) is an instance based learning 
method for classifying objects based on the closest 
training examples in the feature space. It is a type of lazy 
learning where the function is only approximated locally 
and all computations are deferred until classification. An 
object is classified by a majority vote of its neighbors, 
with the object being assigned to the class most common 
amongst its k nearest neighbors (Ameen, Balogun, 
Usman & Fashoto, 2016).  
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Fig. 3: k-Nearest Neighbour Pseudocode  

(Source: Ameen, Balogun, Usman & Fashoto, 2016) 

 

3.4  J48 Decision Tree 

A Decision Tree Classifier consists of a decision tree 
generated on the basis of instances. Decision tree 
learning uses a decision tree (as a predictive model) to 
go from observations about an item (represented in the 
branches) to conclusions about the item's target value 
(represented in the leaves). The root and the internal 
nodes are associated with attributes; leaf nodes are 
associated with classes. To determine the class for a new 
instance using a decision tree, beginning with the root, 
successive internal nodes are visited until a leaf node is 
reached. At the root node and at each internal node, a 
test is applied. The outcome of the test determines the 
branch traversed, and the next node visited. The class for 
the instance is the class of the final leaf node (Beniwal & 
Arora, 2012). 
 

 
Fig. 4: J48 Decision Tree Pseudocode  

(Source: Beniwal &  Arora, 2012) 

4. RELATED LITERATURE 

Although there are many defect predictors in the 
literature, there are not so many extensive benchmarking 
studies. Comparing the accuracy of the defect predictors 
is very important since most of the time the results of 
one method is not consistent across different datasets 
(Lessmann, Baesens, Mues, & Pietsch, 2008).  
 
Okutan and Yildiz (2012), proposed a novel method 
using Bayesian networks to explore the relationships 
among software metrics and defect proneness.  In 
addition to the metrics used in Promise data repository, 
two more metrics, i.e. NOD for the number of 
developers and LOCQ for the source code quality has 
been proposed.  The usefulness of the marginal defect 
proneness probability of the whole software system, the 
set of most effective metrics, and the influential 
relationships among metrics and defectiveness has been 
derived.   
          
Vipul, Manohar and Sureshchandar (2016), provided a 
framework which is expected to be more user-friendly, 
effective and acceptable for predicting the defects in 
multiple phases across software enhancement projects. A 
series of empirical experiments were carried out based 
on input and output measures extracted from 50 'real 
world' project subsystems. In order to increase the 
adoption and make the prediction framework easily 
accessible to project managers, a graphical user interface 
(GUI) based tool was designed and implemented that 
allowed input data to be fed easily.           

Preetika and Sameer, (2017) showed that the impact of 
the classification technique is minimum using NASA 
datasets. Further, they applied this to two new datasets 
i.e. the cleaned version of the NASA dataset and 
PROMISE dataset, which contains open source software 
developed in a variety of settings. The results in these 
new datasets showed a clear, statistically distinct 
separation of groups of techniques, i.e., the choice of 
classification technique has an impact on the 
performance of defect prediction models. 
 
The main objective of this study is to evaluate the effect 
of filter feature selection techniques on the performance 
of heterogeneous classifiers in software defect 
prediction. 

5. METHODOLOGY 

5.1  Description of Dataset 

The datasets used in this study are Ten public-domain 
software defect datasets provided by the National 
Aeronautics Space Administration (NASA) Facility 
Metrics Data Program (MDP) repository.  
 

5.2  Experimental Architecture 

Based on the experimental architecture (Figure 5), each 

of the dataset was analyzed based on 10 fold cross 

validation; where the datasets were divided into 10 

subsets with 9 subsets used for training the classifier and 

the remainder one subset for testing the model 

generated by the classifier. Before the training of the 
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classifiers, the datasets were pre-processed by applying 

selected filter feature selection technique (PCA, CFS, 

FilterSubsetEval) as depicted in Figure 5. Thereafter, the 

pre-processed datasets were passed into each classifiers 

based on 10-fold cross validation and the generated 

models were tested accordingly. The results from the 

experiments were examined to determine the effect of 

filter feature selection technique on classifiers in 

software defect prediction. WEKA data mining tool was 

used as the environment for the experiment. The 

datasets were classified by the selected classifiers which 

were carefully selected based on their characteristics; this 

study also used popular classifier performance 

evaluation metrics such as: Accuracy, Precision, Recall 

and F-measure in its analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Experimental Architecture 

 

6. RESULTS AND DISCUSSION 

From Tables 1, 2, 3 and 4 above, it can be observed that 

the results of Naïve Bayes, k-Nearest Neighbor (kNN), 

Multilayer Perceptron (MLP) and Decision Tree (J48) 

with the preprocessed data, that is, the dataset that have 

been reduced using each of the selected filter feature 

selection methods (PCA, CFS and FilterSubsetEval, gave 

a better result compared to when the datasets were not 

pre-processed.   
 

Table 1: Experimental result of Naïve Bayes on the  
                 datasets 

  CFS FILTER PCA 

Metrics Full 

Data 

sets 

Reduced 

Datasets 

Reduced 

Datasets 

Reduced 

Datasets 

Accuracy 82.51% 87.61% 87.60% 86.95% 

Precision 0.8768 0.8787 0.8787 0.8659 

Recall 0.8252 0.8761 0.876 0.8659 

F-Measure 0.8357 0.8727 0.8727 0.8647 

 
 
 
 
 
 

Table 2: Experimental result of KNN on the datasets 
  CFS FILTER PCA 

Metrics Full 

Data 

sets 

Reduced 

Datasets 

Reduced 

Datasets 

Reduced 

Datasets 

Accuracy 87.32% 87.27% 87.40% 86.79% 

Precision 0.8686 0.8692 0.8697 0.8617 

Recall 0.8733 0.8729 0.8742 0.8678 

F-Measure 0.8703 0.8706 0.8715 0.8643 

 
Table 3: Experimental result of Multilayer Perceptron on  

               the datasets 

  CFS FILTER PCA 

Metrics Full 

Datasets 

Reduced 

Datasets 

Reduced 

Datasets 

Reduced 

Datasets 

Accuracy 88.96% 89.90% 89.94% 89.13% 

Precision 0.8758 0.8776 0.8763 0.8754 

Recall 0.8896 0.8991 0.8995 0.8913 

F-Measure 0.8777 0.8809 0.8815 0.878 

      
Table 4: Experimental result of Decision Tree on the  

                 datasets 
  CFS FILTER PCA 

Metrics Full 

Datasets 

Reduced 

Datasets 

Reduced 

Datasets 

Reduced 

Datasets 

Accuracy 88.42% 89.28% 89.33% 89.58% 

Precision 0.8703 0.8697 0.8703 0.8779 

Recall 0.8841 0.8929 0.8934 0.8959 

F-Measure 0.8751 0.8737 0.8741 0.8759 

 

Naïve Bayes classifier for full dataset had the average 

accuracy of 82.51% while for the preprocessed datasets; 

Naïve Bayes with CFS had 87.61%, Naïve Bayes with 

FilterSubEval had 87.60% and Naïve Bayes with PCA 

had 86.95% respectively. KNN classifier had the average 

accuracy of 87.32% for full dataset and for the 

preprocessed datasets: KNN with CFS had 87.28%, Filter 

had 87.40% and PCA had 86.79% . When the dataset 

were preprocessed with MLP classifier had the average 

accuracy of 88.96%, MLP with CFS had 89.90%, MLP 

with FilterSubsetEval  had 89.94% while  MLP had PCA 

had 89.13226%, J48 classifier full dataset had 88.4178% of 

average accuracy,J48 with CFS had 89.28%, J48 with 

filter subset eval  had 89.33% and J48 with PCA had 

89.58% respectively. From the results, MLP classifier 

with FilterSubsetEval has the highest average accuracy 

of 89.94%, this also showed that feature selection is a 

good technique to be applied on datasets in software 

defects prediction. 

7. CONCLUSION AND FUTURE WORK 

This study looked into the effect of filter feature selection 

on classifiers in software defect prediction. Filter feature 

selection algorithm such Principal Component Analysis 

(PCA), Filter Subset Evaluation (FSE) and Correlation 

Feature Selection Subset Evaluation (CFS) on Classifiers 

such as Naïve Bayes (NB), Decision Tree(J48), MLP and 

K-Nearest Neighbour were applied on ten NASA 

datasets (KC1, KC2, KC3, MC1, MC2, MW1, PC1, PC2, 
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PC3, PC4). The datasets were classified by the selected 

classifiers which were carefully selected based on their 

characteristics. Naïve Bayes was selected from Bayes 

category Classifier, KNN was selected from Instance 

Based Learner category, J48 Decision Tree from Trees 

Function classifier and Multilayer perceptron was 

selected from the neural network classifiers. From the 

results, it can be seen that the application of feature 

selection to datasets before classification in software 

defects prediction is better and should be encouraged 

and Multilayer perceptron with FilterSubsetEval had the 

best accuracy. It can be concluded that feature selection 

methods are capable of improving the performance of 

learning algorithms in software defects prediction by 

removing the irrelevant or redundant attributes from the 

data before the classification process. The researchers 

intend to extend this work by considering Multi Criteria 

Decision Making Method to evaluate the performance 

metric in order to get the best model or classifier for 

software defects prediction. 
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