
FUOYE Journal of Engineering and Technology, Volume 3, Issue 1, March 2018 ISSN: 2579-0625 (Online), 2579-0617 (Paper)

FUOYEJET © 2018 133
engineering.fuoye.edu.ng/journal

Comparative Analysis of Selected Heterogeneous Classifiers for Software
Defects Prediction Using Filter-Based Feature Selection Methods

Abimbola G. Akintola, *Abdullateef O. Balogun, Fatimah B. Lafenwa-Balogun and Hameed A. Mojeed

Department of Computer Science, University of Ilorin, Ilorin, Nigeria

{akintola.ag|balogun.ao1|raji.fb|mojeed.ha} @unilorin.edu.ng

Abstract— Classification techniques is a popular approach to predict software defects and it involves categorizing modules, which is

represented by a set of metrics or code attributes into fault prone (FP) and non-fault prone (NFP) by means of a classification model.
Nevertheless, there is existence of low quality, unreliable, redundant and noisy data which negatively affect the process of observing
knowledge and useful pattern. Therefore, researchers need to retrieve relevant data from huge records using feature selection methods.
Feature selection is the process of identifying the most relevant attributes and removing the redundant and irrelevant attributes. In this
study, the researchers investigated the effect of filter feature selection on classification techniques in software defects prediction. Ten
publicly available datasets of NASA and Metric Data Program software repository were used. The topmost discriminatory attributes of the
dataset were evaluated using Principal Component Analysis (PCA), CFS and FilterSubsetEval. The datasets were classified by the selected
classifiers which were carefully selected based on heterogeneity. Naïve Bayes was selected from Bayes category Classifier, KNN was
selected from Instance Based Learner category, J48 Decision Tree from Trees Function classifier and Multilayer perceptron was selected
from the neural network classifiers. The experimental results revealed that the application of feature selection to datasets before
classification in software defects prediction is better and should be encouraged and Multilayer perceptron with FilterSubsetEval had the best
accuracy. It can be concluded that feature selection methods are capable of improving the performance of learning algorithms in software
defects prediction.

Keywords— Data Mining, Machine Learning, Software Defects.

—————————— ——————————

1. INTRODUCTION

efect in software module occurs when incorrect
programming logic or code are used which further
produces wrong output and lead to poor quality

software product. Defects in software module may cause
software to be rejected by a user or terminate the
contracted agreement with the company (Fenton &
Pfleeger, 1996; Koru & Liu, 2005). High development,
maintenance cost and customer dissatisfaction are the
end result of a defective software. Faults in software
systems continue to be a major problem. Fault is a flaw
that results in failure (Ishani, Vivek & Anju, 2014).
Further, Software fault prediction facilitates software
engineers to pay attention to development activities on
defect less code which enhance the software quality and
minimize the cost and time to develop software system
in today’s era. There are many prediction models which
are used to filter the software defects (Khoshgoftaar,
Bullard & Gao, 2009; Lessman, Baeseus, Mues & Pietsch,
2008; Shivaji, Whitehead, Akella & Kim, 2009; Okutan &
Yildiz, 2012).

Software defect prediction as a classification problem; it
can be viewed as a supervised binary classification
problem. Software modules are represented with
software metrics, and are labelled as either defective or
non-defective. To train defect predictors, data tables of
historical examples are formed where one column has a
boolean value for ”defects detected” (i.e. dependent
variable) and the other columns describe software
characteristics in terms of software metrics (i.e.
independent variables).

Feature selection is a process that selects a subset of
original features. It is also known as attribute selection or
reduction. It is one of the most important techniques
used in data pre-processing in data mining (Ameen,
Balogun, Usman & Fashoto, 2016). Mining on a reduced

*Corresponding Author

set of attributes offers benefits as it reduces the number
of attributes appearing in the extracted patterns. The
goal of feature selection is to discover the smallest subset
of features that best identifies categories from data
according to important criteria (Balogun, Mabayoje,
Salihu & Arinze, 2015). Feature selection in
unsupervised learning is mostly difficult due to the
absence of class labels but in supervised learning, feature
selection attempts to maximize accuracy. It is easier to
perform feature selection for supervised learning since
they make use of class labels (Miao, Liu, & Zhang, 2012;
Khoshgoftaar, Gao, Napolitano & Wald, 2013). It is
essential to predict the defect of software metrics in
order to plan a better maintenance strategy. Researchers
have developed many classification models for software
defect prediction (Lessman et al, 2008; Peng,
Khoshgoftaar et al., 2013; Miao et al., 2012; Hall,
Beecham, Bowes, Gray & Counsell, 2012).

This study aims at performing a comparative analysis on
heterogeneous classifiers used for software defects
prediction based on filter feature selection. In line with
the set aim of this study, the scope of this research is to
cover the experimental investigation of software defect
prediction as a classification problem. The study will
investigate the use of four classifier algorithms based on
their nature and categories for software defects
prediction.

2. FEATURE SELECTION

There are three methods used for feature selection –
Filter method, Wrapper method and Embedded method.
These methods are explained below.
 (1) Filter method: This method makes use of statistical
information in order to assign scores to the features It
produces a ranking of the feature (attribute) from most
important to the least important.
(2) Wrapper method: This is basically represented as a
search problem which considers the selection of a set of
features.

D

http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 3, Issue 1, March 2018 ISSN: 2579-0625 (Online), 2579-0617 (Paper)

FUOYEJET © 2018 134
engineering.fuoye.edu.ng/journal

 (3) Embedded method: This method selects the features
that best improve the model accuracy while the model is
being created (Aruna, Dilsha, Radhika, & Swathi, 2016).

2.1 Principal Component Analysis (PCA)

The aim of PCA is to reduce the dimensionality of
dataset that contains a large number of correlated
attributes by transforming the original attributes space
to a new space in which attributes are uncorrelated. The
algorithm then ranks the variation between the original
dataset and the new one. Transformed attributes with
most variations are saved and discard the rest of
attributes.

2.2 Correlation Based Feature Selection (CFS)

CFS is a simple filter algorithm that ranks feature subsets
and discovers the merit of feature or subset of features
according to a correlation based heuristic evaluation
function. The purpose of CFS is to find subsets that
contain features that are highly correlated with the class
and uncorrelated with each other. The rest of features
should be ignored. Redundant features should be
excluded as they will be highly correlated with one or
more of the remaining features. The acceptance of a
feature will depend on the extent to which it predicts
classes in areas of the instance space not already
predicted by other features.

2.3 Filter Subset Evaluation

Class for running an arbitrary subset Evaluator on Data
that has been passed through an arbitrary filter (note:
filters that alter the order or number of attributes are not
allowed) like the evaluator, the structure of the filter is
based exclusively on the training data.

3. CLASSIFICATION TECHNIQUE

Classification Technique is one of the data mining
techniques that are used to analyze a given dataset.
Classification is a two-step process, during first step the
model is created by applying class algorithm on training
data set then in second step the extracted model is tested
against a predefined test dataset to measure the model
trained performance and accuracy. Classification
technique is used to find out, in which group each data
instance is related within a given data set. It is used for
classifying data into different classes according to some
constraints. Several major kinds of classification
algorithms include Multilayer Perceptron, K-Nearest
Neighbour, Naive Bayes, Support Vector Machine,
Decision Tree etc.

3.1 Naïve Bayes

The Naive Bayes algorithm is a simple probabilistic
classifier that calculates a set of probabilities by counting
the frequency and combinations of values in a given
dataset. It is also a statistical method for classification.
The algorithm uses Bayes theorem and assumes all
attributes to be independent given the value of the class
variable (Tina & Sherekar, 2013). Naïve Bayes is
particularly suited when the dimensionality of the
inputs is high and it uses the maximum likelihood for its
parameter estimation.

Fig. 1: Naive Bayes Pseudocode
(Source: Tina & Sherekar, 2013)

3.2 Multilayer Perceptron

Multi-layer Perceptron Networks (MLP) are feed-
forward artificial neural networks which is a famous
model for machine learning (Ahmad & Nashat, 2012).
MLP was developed to replicate learning and
generalization abilities of humans with an attempt to
model the functions of biological neural networks and
they have many potential applications in the areas of
Artificial Intelligence (AI) and Pattern Recognition (PR).

Fig. 2: Multilayer Perceptron Pseudocode

(Source: Ahmad & Nashat, 2012)

3.3 k- Nearest Neighbour

k-Nearest Neighbour (kNN) is an instance based learning
method for classifying objects based on the closest
training examples in the feature space. It is a type of lazy
learning where the function is only approximated locally
and all computations are deferred until classification. An
object is classified by a majority vote of its neighbors,
with the object being assigned to the class most common
amongst its k nearest neighbors (Ameen, Balogun,
Usman & Fashoto, 2016).

http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 3, Issue 1, March 2018 ISSN: 2579-0625 (Online), 2579-0617 (Paper)

FUOYEJET © 2018 135
engineering.fuoye.edu.ng/journal

Fig. 3: k-Nearest Neighbour Pseudocode

(Source: Ameen, Balogun, Usman & Fashoto, 2016)

3.4 J48 Decision Tree

A Decision Tree Classifier consists of a decision tree
generated on the basis of instances. Decision tree
learning uses a decision tree (as a predictive model) to
go from observations about an item (represented in the
branches) to conclusions about the item's target value
(represented in the leaves). The root and the internal
nodes are associated with attributes; leaf nodes are
associated with classes. To determine the class for a new
instance using a decision tree, beginning with the root,
successive internal nodes are visited until a leaf node is
reached. At the root node and at each internal node, a
test is applied. The outcome of the test determines the
branch traversed, and the next node visited. The class for
the instance is the class of the final leaf node (Beniwal &
Arora, 2012).

Fig. 4: J48 Decision Tree Pseudocode

(Source: Beniwal & Arora, 2012)

4. RELATED LITERATURE

Although there are many defect predictors in the
literature, there are not so many extensive benchmarking
studies. Comparing the accuracy of the defect predictors
is very important since most of the time the results of
one method is not consistent across different datasets
(Lessmann, Baesens, Mues, & Pietsch, 2008).

Okutan and Yildiz (2012), proposed a novel method
using Bayesian networks to explore the relationships
among software metrics and defect proneness. In
addition to the metrics used in Promise data repository,
two more metrics, i.e. NOD for the number of
developers and LOCQ for the source code quality has
been proposed. The usefulness of the marginal defect
proneness probability of the whole software system, the
set of most effective metrics, and the influential
relationships among metrics and defectiveness has been
derived.

Vipul, Manohar and Sureshchandar (2016), provided a
framework which is expected to be more user-friendly,
effective and acceptable for predicting the defects in
multiple phases across software enhancement projects. A
series of empirical experiments were carried out based
on input and output measures extracted from 50 'real
world' project subsystems. In order to increase the
adoption and make the prediction framework easily
accessible to project managers, a graphical user interface
(GUI) based tool was designed and implemented that
allowed input data to be fed easily.

Preetika and Sameer, (2017) showed that the impact of
the classification technique is minimum using NASA
datasets. Further, they applied this to two new datasets
i.e. the cleaned version of the NASA dataset and
PROMISE dataset, which contains open source software
developed in a variety of settings. The results in these
new datasets showed a clear, statistically distinct
separation of groups of techniques, i.e., the choice of
classification technique has an impact on the
performance of defect prediction models.

The main objective of this study is to evaluate the effect
of filter feature selection techniques on the performance
of heterogeneous classifiers in software defect
prediction.

5. METHODOLOGY

5.1 Description of Dataset

The datasets used in this study are Ten public-domain
software defect datasets provided by the National
Aeronautics Space Administration (NASA) Facility
Metrics Data Program (MDP) repository.

5.2 Experimental Architecture

Based on the experimental architecture (Figure 5), each

of the dataset was analyzed based on 10 fold cross

validation; where the datasets were divided into 10

subsets with 9 subsets used for training the classifier and

the remainder one subset for testing the model

generated by the classifier. Before the training of the

http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 3, Issue 1, March 2018 ISSN: 2579-0625 (Online), 2579-0617 (Paper)

FUOYEJET © 2018 136
engineering.fuoye.edu.ng/journal

classifiers, the datasets were pre-processed by applying

selected filter feature selection technique (PCA, CFS,

FilterSubsetEval) as depicted in Figure 5. Thereafter, the

pre-processed datasets were passed into each classifiers

based on 10-fold cross validation and the generated

models were tested accordingly. The results from the

experiments were examined to determine the effect of

filter feature selection technique on classifiers in

software defect prediction. WEKA data mining tool was

used as the environment for the experiment. The

datasets were classified by the selected classifiers which

were carefully selected based on their characteristics; this

study also used popular classifier performance

evaluation metrics such as: Accuracy, Precision, Recall

and F-measure in its analysis.

Fig. 5: Experimental Architecture

6. RESULTS AND DISCUSSION

From Tables 1, 2, 3 and 4 above, it can be observed that

the results of Naïve Bayes, k-Nearest Neighbor (kNN),

Multilayer Perceptron (MLP) and Decision Tree (J48)

with the preprocessed data, that is, the dataset that have

been reduced using each of the selected filter feature

selection methods (PCA, CFS and FilterSubsetEval, gave

a better result compared to when the datasets were not

pre-processed.

Table 1: Experimental result of Naïve Bayes on the
 datasets

 CFS FILTER PCA

Metrics Full

Data

sets

Reduced

Datasets

Reduced

Datasets

Reduced

Datasets

Accuracy 82.51% 87.61% 87.60% 86.95%

Precision 0.8768 0.8787 0.8787 0.8659

Recall 0.8252 0.8761 0.876 0.8659

F-Measure 0.8357 0.8727 0.8727 0.8647

Table 2: Experimental result of KNN on the datasets
 CFS FILTER PCA

Metrics Full

Data

sets

Reduced

Datasets

Reduced

Datasets

Reduced

Datasets

Accuracy 87.32% 87.27% 87.40% 86.79%

Precision 0.8686 0.8692 0.8697 0.8617

Recall 0.8733 0.8729 0.8742 0.8678

F-Measure 0.8703 0.8706 0.8715 0.8643

Table 3: Experimental result of Multilayer Perceptron on

 the datasets

 CFS FILTER PCA

Metrics Full

Datasets

Reduced

Datasets

Reduced

Datasets

Reduced

Datasets

Accuracy 88.96% 89.90% 89.94% 89.13%

Precision 0.8758 0.8776 0.8763 0.8754

Recall 0.8896 0.8991 0.8995 0.8913

F-Measure 0.8777 0.8809 0.8815 0.878

Table 4: Experimental result of Decision Tree on the

 datasets
 CFS FILTER PCA

Metrics Full

Datasets

Reduced

Datasets

Reduced

Datasets

Reduced

Datasets

Accuracy 88.42% 89.28% 89.33% 89.58%

Precision 0.8703 0.8697 0.8703 0.8779

Recall 0.8841 0.8929 0.8934 0.8959

F-Measure 0.8751 0.8737 0.8741 0.8759

Naïve Bayes classifier for full dataset had the average

accuracy of 82.51% while for the preprocessed datasets;

Naïve Bayes with CFS had 87.61%, Naïve Bayes with

FilterSubEval had 87.60% and Naïve Bayes with PCA

had 86.95% respectively. KNN classifier had the average

accuracy of 87.32% for full dataset and for the

preprocessed datasets: KNN with CFS had 87.28%, Filter

had 87.40% and PCA had 86.79% . When the dataset

were preprocessed with MLP classifier had the average

accuracy of 88.96%, MLP with CFS had 89.90%, MLP

with FilterSubsetEval had 89.94% while MLP had PCA

had 89.13226%, J48 classifier full dataset had 88.4178% of

average accuracy,J48 with CFS had 89.28%, J48 with

filter subset eval had 89.33% and J48 with PCA had

89.58% respectively. From the results, MLP classifier

with FilterSubsetEval has the highest average accuracy

of 89.94%, this also showed that feature selection is a

good technique to be applied on datasets in software

defects prediction.

7. CONCLUSION AND FUTURE WORK

This study looked into the effect of filter feature selection

on classifiers in software defect prediction. Filter feature

selection algorithm such Principal Component Analysis

(PCA), Filter Subset Evaluation (FSE) and Correlation

Feature Selection Subset Evaluation (CFS) on Classifiers

such as Naïve Bayes (NB), Decision Tree(J48), MLP and

K-Nearest Neighbour were applied on ten NASA

datasets (KC1, KC2, KC3, MC1, MC2, MW1, PC1, PC2,

http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 3, Issue 1, March 2018 ISSN: 2579-0625 (Online), 2579-0617 (Paper)

FUOYEJET © 2018 137
engineering.fuoye.edu.ng/journal

PC3, PC4). The datasets were classified by the selected

classifiers which were carefully selected based on their

characteristics. Naïve Bayes was selected from Bayes

category Classifier, KNN was selected from Instance

Based Learner category, J48 Decision Tree from Trees

Function classifier and Multilayer perceptron was

selected from the neural network classifiers. From the

results, it can be seen that the application of feature

selection to datasets before classification in software

defects prediction is better and should be encouraged

and Multilayer perceptron with FilterSubsetEval had the

best accuracy. It can be concluded that feature selection

methods are capable of improving the performance of

learning algorithms in software defects prediction by

removing the irrelevant or redundant attributes from the

data before the classification process. The researchers

intend to extend this work by considering Multi Criteria

Decision Making Method to evaluate the performance

metric in order to get the best model or classifier for

software defects prediction.

REFERENCES

Ahmad, A. K., & Nashat, M. (2012). Metaheuristic Optimization

Algorithms for Training Artificial Neural Networks.

International Journal of Computer and Information Technology,

1(2). 1-6.

Ameen, A. O., Balogun, A. O., Usman, G. & Fashoto, S. G. (2016):

Heterogenous Ensemble Methods Based On Filter Feature

Selection. Computing, Information System Development

Informatics & Allied Research Journals. Vol 7 No 4. Pp 63-78.

Aruna, S., Dilsha, D., Radhika, R., & Swathi, J.N. (2016). Cost

Sensitive Classification and Feature Selection for Software

Defect Prediction. International Journal of Advanced Research in

Computer Science and Software Engineering. 6(4), 1-2.

Balogun, A. O., Mabayoje M. A., Salihu, S. & Arinze, S.A. (2015):

Enhanced Classification Via Clustering Using Decision Tree

for Feature Selection. International Journal of Applied Information

Systems (IJAIS). 9(6):11-16.

Beniwal, S., & Arora, J., (2012). Classification and Feature Selection

Techniques in Data Mining. International Journal of Engineering

Research & Technology (IJERT), Vol. 1 Issue 6, August–2012.

Fenton, N. E., & Pfleeger, S.L., (1996). Software Metrics: A Rigorous

and Practical Approach, 2nd ed. International Thomson Computer

Press.

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A

Systematic Literature Review on Fault Prediction Performance

in Software Engineering. IEEE Transactions on Software

Engineering, 38(6), 1276–1304.

Ishani, A., Vivek, T., & Anju, S. (2015). Open Issues in Software

Defect Prediction. International Conference on Information and

Communication Technologies, 46. 1-2,

doi:10.1016/j.procs.2015.02.161

Khoshgoftaar, T. M., Bullard, L. A., & Gao, K.,(2009). Attribute

selection Using Rough Set in Software Quality Classification.

International Journal of Reliability, Quality and Safety Engineering

16(1). 73 – 89.

Khoshgoftaar, T. M., Gao, K., Napolitano, A., & Wald, R. (2013). A

Comparative Study of Iterative and Non-Iterative Feature

Selection Techniques For Software Defects Prediction.

Information system Frontiers 16(5). 73 – 89. DOI: 10.1007/s10796-

013-9430-0

Koru, A. G. & Liu, H. (2005). An investigation of the effect of

module size on defect prediction using static measures,

SIGSOFT Software Engineering Notes,Vol.30, No.4,pp.1-5

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008).

Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings. IEEE

Transactions on Software Engineering, 34(4), 485–496.

Miao, L., Liu, M., & Zhang, D., (2012). Cost Sensitive Feature

Selection with application in software defect prediction.

International Conference on Pattern Recognition, Tsukuba, Japan,

p.967-970.

Okutan, A. & Yıldız, O. T. (2012). Software defect prediction using

Bayesian networks. Empirical Software Engineering, (2012), pp.

1-28.

Preetika, V. & Sameer, A. (2017). Analysing Software Defect

Prediction Techniques – A Review of Literature. International

Journal of Research and Development in Applied Science and

Engineering (IJRDASE). ISSN: 2454-6844

Shivaji, S., Whitehead, E., Akella, R., & Kim, S. (2009). Reducing

Features to Improve Bug Prediction, Automated Software

Engineering, 2009. ASE'09.24th IEEE/ACM International

Conference on, pp.600-604..

Tina, R. & Sherekar, S. (2013). Performance Analysis of Naive Bayes

and J48 Classification Algorithm for Data Classification.

International Journal of Computer Science and Applications Vol. 6,

p 2.

Vipul, V., Manohar, L., & Sureshchandar, G. S. (2016), Defect

Prediction Framework Using Neural Networks for Software

Enhancement Projects. British Journal of Mathematics &

Computer Science .16(5): 1-12.

http://engineering.fuoye.edu.ng/journal

