
DEVELOPMENT OF HYBRID META-HEURISTIC

ALGORITHM FOR SOLVING NP-HARD

COMBINATORIAL OFFICE SPACE ALLOCATION

(OSA) PROBLEM IN A NIGERIA UNIVERSITY

AGBOOLA, OLADIRAN MARTINS

[91/027648]

MAY, 2018

ii

DEVELOPMENT OF HYBRID META-HEURISTIC

ALGORITHM FOR SOLVING NP-HARD

COMBINATORIAL OFFICE SPACE ALLOCATION

(OSA) PROBLEM IN A NIGERIA UNIVERSITY

By

AGBOOLA, OLADIRAN MARTINS

(91/027648)
B.Sc (1997), M.Sc (2009) (UNILORIN)

A Thesis Submitted to the Department of Computer Science, Faculty of Communication

and Information Sciences in Partial Fulfilment of the Requirements for the Award of the

Degree of Doctor of Philosophy in Computer Science

Department of Computer Science

University of Ilorin, Ilorin, Nigeria

MAY, 2018

iii

CERTIFICATION

This certifies that this thesis has been read and approved as meeting the requirements of

the Department of Computer Science, University of Ilorin, Ilorin, Nigeria for the award of

Ph.D degree.

___________________________ _________________________

Prof. J. S. Sadiku Date

(Supervisor)

___________________________ _________________________

Dr. D.R. Aremu Date

(Head of Department)

___________________________ _________________________

 Date

Dr. Tinuke O. Oladele

(PG Coordinator)

___________________________ _________________________

 Date

(External Examiner)

iv

DEDICATION

This work is dedicated to God almighty and my parents late Alhaji Atidade Bello Agboola

and late Deaconess Omorinola Aweke Ruth Agboola. May their souls rest in peace. Amen.

v

DECLARATION

I Agboola Oladiran Martins, hereby declare that this thesis entitled Development of Hybrid

Metaheuristic Algorithm for Solving NP-Hard Combinatorial Office Space Allocation

problem in a Nigeria University is a record of my research work. It has neither been

presented nor accepted in any previous application for a higher degree. All sources of

information have been specifically acknowledged.

In addition, the research work has been ethically approved by the University Ethical

Review Committee.

___________________________ _________________________

Agboola, O. M. Date

vi

ACKNOWLEDGEMENTS

I give thanks to the Almighty God that make this wish a reality, thank him for seeing me

through to him alone I return all glory.

My unquestionable appreciation goes to my supervisor Professor J.S Sadiku for his

constructive criticism and correction of my research work and also the Head of

Department Dr. D.R. Aremu.

 I also use this medium to appreciate the Ag.Dean of Faculty of Communication and

Information Sciences, Dr. R.A Jimoh, the Departmental Post-graduate coordinator Dr.

(Mrs) C. Oladele, the immediate past Post-graduate coordinator Dr. (Mrs) C. O. Abikoye ,

Dr. Oladele, Dr. A.Baje (Young Prof.), Dr. Ameen and all other staff of the Department.

Special appreciation goes to Prof. Gbadeyan J.A of Department of Mathematic,

University of Ilorin, for his encouragement since the inception (under graduate). Dr.

Azeez and Dr. Issa of Library Department University of Ilorin, I thank you for your

support, I also want to thank all my siblings, most especially Mr Agboola Olatunde for his

tireless effort throughout the Programme.

My appreciation also goes to my wife, Mrs Agboola, Adenike Dorcas, my children,

Agboola Fogofoluwa Daniel, Agboola Fowofoluwa Ruth and Agboola Fopefoluwa

Abraham, for their endurance during the research work.

Appreciation goes to everyone that had been part of this success, the likes of Dr. Ajibola

S. A of Osun state University, Osogbo and Dr. Asaju Laro, Mr Ayeni, J.T, Mr Seyi

Fadeyi, Mr Samson Samprog, Mr Sayo, Mr Atolagbe, all staff and students of Computer

Science Department Kwara State Polytechnic, Ilorin and many others. God bless you all.

vii

ABSTRACT

Office Space Allocation (OSA) is a major problem in higher institutions of learning. As a

result of this problem, most of the demanding entities (staff) are wrongly allocated. The

problem of OSA is considered to be Non-Polynomial (NP)-Hard combinatorial

optimization problem which has been attended to by different researchers in the field of

Artificial Intelligence (AI) and Operations Research (OR). Due to its combinatorial

nature, several methods have been proposed, which include mathematical, heuristic and

meta-heuristic methods. Considering the various methods available, meta-heuristic

algorithms in their combinatorial forms need to be developed and tested for solving OSA

in Nigeria Universities. Since the hybridization of the meta-heuristic algorithms

considered in this research is not yet in existence, this study aimed at developing a hybrid

meta-heuristic algorithms of Tabu search and Artificial Bee Colony in solving OSA

problems using University of Ilorin as a case study. The objectives of the study were to; (i)

formulate a mathematical objective function model for OSA problem and calculate penalty

weight; (ii) adapt the algorithms to the problem of OSA; (iii) hybridize Artificial Bee

Colony (ABC) algorithm with Tabu Search algorithm to solve OSA problem; and (iv)

evaluate the algorithms using Halstead’s complexity measures.

The research adopted a five-phase method. These phases included collection of dataset

from the Faculty of Communication and Information Sciences, University of Ilorin, as a

sample for mathematical modelling for solving OSA problem in terms of the objective

function and the constraints. The methodology phases were adaptation of Artificial Bee

Colony, Genetic and Tabu search meta-heuristic algorithms for the OSA problem,

hybridization of ABC and Tabu Search algorithms to enhance the performance of the

allocation, and a comparative study of the hybrid algorithms using halstead’s complexity

measures.

The findings of the study were that:
i. the ABCgave lower penalty weight of 1678.3 when compared with 3885, 4036.6 and

1838.3 of hybrid, Tabu and genetic algorithms respectively;
ii. when Tabu, ABC and genetic algorithms were adapted to the problem of OSA, the

Tabu gave better result in term of time used. Tabu used 1231secs against 3114.8secs
of ABC and 4256.3secs of genetic;

iii. the hybrid algorithm of Tabu and ABC gave better result when compared with the
three algorithms in the second finding in term of time used to solve the OSA problem.
The hybrid used 616.62secs against 1231s, 3114.8s and 4256.3s of Tabu, ABC and
genetic respectively; and

iv. the halstead’s complexity measure such as program vocabulary, program length,
program volume, program intelligence and program difficulty were used to compare
the performance of all the algorithms and the hybrid algorithm gave the best result.
The hybridized meta-heuristic algorithm and mathematical model developed was
effective in solving the OSA problem and the use of population based algorithm
enhanced the performance in allocating all entities to their respective offices. The
hybrid algorithm also outperformed other existing algorithms considering the time
used and the penalty weight. The study recommended the use of more hybridized
algorithms in solving the problem of OSA in Nigeria Universities.

viii

TABLE OF CONTENTS

TITLE PAGE-- i

CERTIFICATION-- ii

DEDICATION--

iii

DECLARATION--- iv

ACKNOWLEDGEMENT--v

ABSRACT---vi

TABLE OF CONTENTS--

vii

LIST OF TABLES--xi

LIST OF FIGURES--xii

LIST OF EQUATIONJS--

xiii

LIST OF ABBREVIATIONS AND NOTATIONS---

xiv

CHAPTER ONE: INTRODUCTION

1.1 Background to the Study ---1

1.2 Principles of Space Allocation --4

1.3 Statement of the Problem --4

1.4Aim and objectives of the study ---6

1.5 Justification of the Study ---

6

1.6 Definition of Operational Terms --7

1.7 Thesis Layout--8

ix

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction ---- --9

 2.1.1 Definition --9

2.1.2 Definition ---10

2.1.3Definition ---10

2.1.4 Definition ---10

2.1.5 Definition ---10

2.1.6 Definition ---10

 2.2 Classification of Optimizatiion Problems --

13

2.2.1 Classification based on Constraints --13

2.2.2 Nature of the Equations Involved --14

2.2.3 Types of Optimization Objective Function --------------------------------------14

 2.2.4 Deterministic Nature of the Problem ---16

 2.2.5 Type of Decision Variables used --17

2.3 Search Techniques ---18

2.3.1 Local Search Techniques --18

2.3.2 Global Search Techniques ---19

2.4Space Allocation Problems (sap) --19

 2.4.1 Space Allocation Problems at Tertiary Institutions ------------------------------20

 2.4.2Office Space Allocation ---22

2.5 Review of Related Work --

22

2.6Appraisal of Literature Review --32

2.7Types of Complexity --33

x

 2.7.1 Algorithms Complexity ---35

2.7.2 Problem Complexity – the p and np classes ---------------------------------------35

2.8Approaches to Solve Optimisation Problems--38

2.9Heuristic and Meta- heuristic Algorithms --39

2.10 Descriptiions of Local based Algorithms --41

2.11Population Based Algorithm ---45

CHAPTER THREE:RESEARCH METHODOLOGY

3.1 Introduction ---50

3.2 The Mathematical Model of the Objective Function --------------------------------------

51

3.3 Description of the Algorithms--56

3.3.1 Tabu Search Algorithm as used as for the OSAP---------------------------------

56

3.3.2 ABC Algorithm as used for the OSAP --58

3.3.3 Genetic Algorithm as used for the OSAP ---

60

3.4 Hybridized (TABU-ABC) Algorithm as used for OSAP ----------------------------------62

3.5 Halstead’s Complexity Measures--66

3.6 Dataset---67

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Introduction --68

4.2 Result and Discussion---69

 4.2.1 Tabu Algorithm---69

 4.2.2 ABC Algorithm---69

xi

 4.2.3 Genetic Algorithm--70

 4.2.4 Hybridize Algorithm--

71

4.3 Comparison of the Result---72

4.4 Halstead Complexity Measures Result--76

4.5 Hardware---

86

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.1 Summary ---87

5.2 Conclusion ---88

5.3 Recommendation--88

5.4 Contribution to Knowledge--88

REFFERECES --89

APPENDIX A---95

APPENDIX B--102

APPENDIX C--106

APPENDIX D--201

APPENDIX E--284

xii

LIST OF TABLES

Table 3.1: Penalty Weight for Each Constraint --55

Table 4.1 : Result of Tabu Algorithm in all the six runs--69

Table 4.2 : Result of ABC algorithm in all the six runs---69

Table 4.3 : Result of Genetic algorithm in all the six runs-------------------------------------70

Table 4.4 : Result of Hybrid algorithm in all the six runs--------------------------------------71

Table 4.5 : Result of the first run for all the algorithm---72

Table 4.6 : Result of the second run for all the algorithm--------------------------------------72

Table 4.7 : Result of the third run for all the algorithm--73

Table 4.8 : Result of the fourth run for all the algorithm---------------------------------------74

Table 4.9 : Result of the fifth run for all the algorithm---74

Table 4.10 : Result of the sixth run for all the algorithm---------------------------------------75

Table 4.11 : Parameters used for measuring the computational complexit------------------76

Table 4.12: Summary of Data Obtained using Halsted Parameters---------------------------77

xiii

LIST OF FIGURES

Figure 2.1: Local and Global optimal solutions of a two-dimensional function-------------11

Figure 3.1: Stages of the Research Methodology--51

Figure 3.2: Tabu search algorithm flowchart---56

Figure 3.3: Tabu Search algorithm as used for the OSAP--------------------------------------57

Figure 3.4: ABC algorithm flowchart---58

Figure 3.5: ABC algorithm as used for OSAP---59

Figure 3.6: Genetic algorithm flow chart---60

Figure 3.7: Genetic algorithm as used for the OSAP---61

Figure 3.8: Hybridizes (Tabu-ABC) flowchart--62

Figure 3.9: Hybridized (Tabu-ABC) algorithm as used for the OSAP-----------------------63

Figure 3.10: New hybrid (TABC) metaheuristic algorithm------------------------------------65

Figure 4.1: Bar chart showing Program effort of the four Algorithms-----------------------78

Figure 4.2: Bar chart showing Program length of the four Algorithms---------------------79

Figure 4.3: Bar chart showing Program length of the four Algorithms---------------------80

Figure 4.4: Bar chart showing memory requirements of the four Algorithms-------------81

Figure 4.5: Bar chart showing Program difficulty of the four Algorithms-----------------82

Figure 4.6: Bar chart showing number of bugs of the four Algorithms---------------------83

Figure 4.7: Bar chart showing execution time in second of the four Algorithms----------84

Figure 4.8: Bar chart showing memory used of the four Algorithms------------------------85

Figure 4.9: Bar chart showing lines of code of the four Algorithms-------------------------86

xiv

LIST OF EQUATIONS

Equation 3.1---66

Equation 3.2---66

Equation 3.3---66

Equation 3.4---66

Equation 3.5---66

Equation 3.6---66

Equation 3.7---

67Equation 3.8---

67

xv

List of Abbreviations/Notations

OSA- Office Space Allocation

ABC- Artificial Bee Colony

(O/I)- Output / Input

ACO- Ant Colony Optimisation

NP- Non-Polynomial

1

CHAPTER ONE

 INTRODUCTION

1.1 BACKGROUND TO THE STUDY

Space is an area occupied by or intended for a person or thing, which is regarded as one of

the highly invaluable resources in any typical organization. The Office Space Allocation

(OSA), therefore aims at making efficient and effective use of the spatial resources so that

the misuse of space is minimized or eradicated. The duty of space allocation often include

constraints as well as objectives on the preference of the specific organization.

In several institutions, a lot of people that use the available resources such as machines,

rooms or spaces are organized into structural units for instance departments, where all the

entities within the same organizational unit are expected to be placed close to one another

(Adewumi and Ali, 2010). This is not an issue when such an organizational unit is large.

However, in a typical university environment for instance, one will not expect that the

rooms occupied by members of an engineering faculty to be within the same building with

rooms occupied by members of the social sciences. This will enable the decomposition of

the office space allocation problem or challengeinto smaller sub-problems (Ulker, 2013).

In the OSA problem, the main purpose is to optimize the efficient and effective use of

space. There are usually at least two components of the misuse of spaces (Landa, 2003).

The first component opines that each room is not expected to be used above its capacity.

This is

2

because the problem of overuse occurs in an organization that has budget restrictions,

whereby workers were asked to share the office space resources. This may force the

employees to work or operate in limited space which can lead to reduced productivity.The

second problem deals with the use of office space below its optimal capacity (Beyeronthy,

2009). Under-use of office space may constitute a serious financial burden as a result of

unnecessary new building costs.

OSA and resources efficiency are of great importance in all institutions or organisations,

from small organisations or companies to large multinational organizations (Awadallah,

Khader, Al-Betar and Woon, 2012). Putting academic institutions into consideration, the

distribution of the available space among staff and students as well as other resources such

as labs, offices, lecture rooms and storage rooms is a process that has to be carried out

constantly because of the changes that often occur in the environment for example office

for new staff, or research students, new lecture rooms or labs, people leaving the

institution, among others (Ulker, 2013).

The available office space is often restricted and an efficient as well as effective

functioning of any academic institution depends a lot on, among other necessary factors,

having a good distribution of the space (Burke, Cowling, Landa and Mecolumn, 2001).

Efficient distribution should make sure that every demanding resource is given the

minimum space required (Burke et.al, 2001). This ensures that the available space is

utilized as efficient as possible so that the additional constraints ca be satisfied to a greater

extent. An efficient utilization of space ensures that neither too much nor too less space is

given to any particular resource than the required minimum. One of the constraints in

space allocation requires that the available rooms meet certain conditions (i.e. senior

lecturers and above must not share offices while research students should be allocated

3

close to their supervisor and lecture rooms should not be located close to a noisy area

among others) (Landa, 2003).

OSA is regarded as space management problem encountered in many educational

institutions (Beyeronthy, Burke, McCollum, McMullan, Landa and Parkes, 2009). The

office space includes lecture halls and rooms dedicated for tutorials as well as seminars,

workshops, and other purposes. The efficiency of OSA management is often measured by

the utilization of spatial resources. Most of the time, the utilization is measured as the

fraction of used office space over the total available space. Contrary to common

perception, the utilization of office space in a lot of universities is quite low. The

proportion of practical utilization was reported to be so low that it ranges between twenty

to thirty percent in the developed world (Beyrouthy et al, 2009) while the percentage could

not be ascertained in the developing world. A specific search on office space allocation

lead to some principle as described by most universities in the developed countries

(University of Michigan, 2012). There is no reference to any automated system, as it is

mainly a manual process. In many universities, the governing body is responsible for the

space allocation process placed under the works division. Requests for office space are

usually made official and in a large office space restructuring request an extensive and

bureaucratic assessement period is normally required. The governing body allocates or

assigns the space to different faculties. It is then the responsibility of the faculty to allocate

or assign space allocated to different departments under the faculty (Ulker, 2013).

The allocation or assignment of office space in any large organization/institution is

normally a problematic issue, which normally requires a significant amount of time to

perform manually (Varleys, 1998). The outcome of this allocation affects the life of

whoever makes use of the space. The problem of space allocation affects almost everyone

in some way or another, whether it is the size or layout of offices or work environment,

limited parking space or even the organization of homes (Burke and Varleys, 1998).

4

This studywill use hybridized metaheuristic algorithm (TABC) to solve the problem of

Office Space Allocation in a tertiary institution focusing on the time of allocation as area

of interest.

1.2 Principles of Space Allocation

i. The space belongs to the institution and the provost is in charge of the allocation.

ii. Spaces are allocated based on the needs for various programme and priorities as

determined by the dean.

iii. Certain quantitative metrics should be developed in order to evaluate the research

space utilization and periodic checks should be put in place to examine the

allocations.

iv. The space is allocated to research activities and not to individuals. Therefore it can

be taken over by the university if there are changes in the research activity.

v. Vacant or under – utilized space should be re-claimed, re-assigned or re-purposed.

vi. Schools are allowed to subsidize research activities that do not generate sufficient

costs related to the space usage.

vii. Optimal use of research space includes shared use of resources and facilities.

viii. Space allocations should be based on maximum utilization of the existing facilities.

ix. Space allocation should take into consideration health regulations and procedures.

(Burke and Varleys, 1998)

1.3 Statement of the Problem

Studies have revealed that office space allocation is a major problem in most higher

institutions of learning, to the extent that most of the demanding entities (staff) are

wrongly allocated,some were not allocated, some offices were used above its

capacitywhile some were used below its capacity. This research work intend to solve the

problem of Office Space Allocation using three metaheuristic algorithms and hybridization

5

of two of these algorithmsto improve on each algorithm weakness of early convergence

and infinite loop trap. Based on the past research work done in this OSAP area by different

researchers, it is considered to be NP-Hard combinatorial optimization problem which has

been attended to by different researchers in the field of Artificial Intelligence (AI) and

Operations Research (Ulker, 2012). Due to its combinatorial nature, several methods have

been proposed, which include mathematical approach (exact method), heuristic methods as

well as meta-heuristic method (Landa et.al, 2012). Considering the various methods

available, meta-heuristic algorithms are regarded as one of the best methods because of the

shortcoming of heuristic methods involving early convergence (Landa, 2003).

Search on office space allocation resulting in fair amount of guidelines,which are

described by most universities in the world (Ulker, 2013). It is unfortunate that most of

these universities only have guidelines on an automated system since space allocations in

several universities involve manual process shouldered on the various units to allocate

space assigned to them (Frimping and Owusu, 2005).The manual office allocation takes

weeks or months to be completed. However, this research work intend to use hybridize

population based meta-heuristic algorithm (Artificial Bee Colony) and local search based

meta-heuristic algorithm (TABU Search) to solve OSA problem faster than manual and

heuristic methods.

Landa (2003) suggested the fully automated system of OSA, that should be tested with a

good range of data sets and also suggested further implementation of OSA using populated

based metaheuristic. Ulker (2013) suggested a good mathematical model of the objective

function and re-allocation of previous allocation due to modifications in entity, room

structure and the constraints associated, which he recommended as future research work.

These recommendations of Landa and Ulker form the bases of this study.

6

1.4 Aim and Objectives of the Study

This study aims at development of hybrid metaheuristic algorithm technique in solving

NP-Hard combinatorial Office Space Allocation problems in a Nigeria University. The

objectives of the study are to:-

i. formulate a mathematical model for OSA problem objective function and calculate

penalty weight;

ii. Adapt ABC,Genetic and Tabu search algorithm to the problem of OSA;

iii. hybridize Artificial Bee Colony(ABC) algorithm with Tabu

Searchalgorithm(TABU) to solve Office Space Allocation Problem;

iv. evaluatethe hybridized and the existing algorithms(TABU,GENETIC and ABC)

using Halstead’s complexity measure(program length, program volume,

program intelligence, program effort, program size, execution time, Line of

codes, number of bugs and program difficulty).

1.5 Justification of the Study

The research literatures reviewed shows that there are different methods used in solving

the problem of OSA in higher institutions of learning, such as mathematical programming

and metaheuristic algorithm (Ulker, 2013), integer programming (Landa and Ulker, 2011),

asynchronous cooperative local search(Burke et al. 2007), harmony search algorithm

(Awadallah et al., 2013), modified harmony search algorithm (Al-Betar, 2013), genetic

algorithm and tabu search (Landa, 2003), hybrid particle swarm optimization (Remi,

2009), particle swarm optimization (Andeep et al., 2013), hill climbing and simulated

annealing(Burke et al., 1999), pattern search and particle search(Luke, 2013), and

Multilevel genetic algorithm (Adewumi, 2010) among others.

7

Since the problem of office space allocation lies within the scope of NP- complete and P ≠

NP, then the problem belongs to the set NP-P. All Np-complete problems are intractable.

The complexity of a problem and the complexity of an algorithm to solve the problem

from a computational point of view shows that an exact algorithm only has the capacity to

solve a particular instance of a combinatory problem to optimality.

The time complexity of some exact algorithm is bounded by an exponential function,

which makes these algorithms inefficient. The interest and the actual implication of the

concept of NP- complete problem lies in the popular belief that an effective and efficient

algorithm for solving such problem does not exist and the algorithm that produces high

quality(or near optimal) solution in a considerable amount of time is needed (Ulker and

Landa, 2012). In view of this assertion, this research work is aimed at solving the problem

of office space allocation in tertiary institutions using hybrid population based algorithm

(Artificial Bee Colony algorithm), Genetic algorithm(Ga) and local search based algorithm

(Tabu algorithm).The OSA model provides basis upon which the office allocation can be

deployed.

1.6 Definition of Operational Terms

Space Allocation – Allocation of available spaces (offices) to entities

Meta –heuristic – Optimization Algorithm for Exploration and Exploitation

Hard Constraint – Rules that must be satisfied at all time

Soft constraint - Rules that can be violated with penalty

Hybrid meta-heuristic – Combination of heuristic and metaheuristicalgorithms

Global optimum - Maximum solution in the search space

Minimal optimum - Minimum solution in the search space

Combinational Optimization - Non-polynomial optimization

Artificial Bee Colony- Population Based meta-heuristic algorithm

8

Genetic- Population Based meta-heuristic algorithm

Tabu search - Local search based algorithm

Heuristic - Optimization Algorithm for Exploitation

Office space allocation - Allocation of available office to entities

Halstead Complexity Measure- Established measure of comparison

1.7 Thesis Layout

The remaing parts of this study is as follows:

Chapter two discusses the literature review of the research work while, chapter three

discusses the methodology used in carrying out the research work. Chapter four is the

discussion of the result and the output while chapter five include the summary, conclusion

and recommendations for future research work on the Office Space Allocation problem.

9

CHAPTER TWO

 REVIEW OF RELATED LITERATURE

2.1 Introduction

Optimization is an important field of study because of its relevance to many areas of life. It

has gained a lot of attention from people in academics, expecially in recent years. Fields

like Computer Science, Mathematics, Economics and many more. The focus of

optimization is to use its techniques in order to determine realistic solutions to

optimization problem, the optimal problem objectives are determined by the solution.

Feasible or realistic solutions are found from a set of feasible solutions that can be found

within the solution space, which are subject to the constraints associated with the problem.

Seeking optimal solutions are always desired of the reseachers in solving real-world

optimization problems. For instance, consider the importance of finding an optimal

solution in running an organisation or a business. In running a business, the business

owner will focus on maximising profits, minimizing costs and be able to do so in the least

amount of time possible. Therefore finding an optimal solution to this problem permits the

business owner to manage the business effectively.

Definition 2.1 (Ariyo, 2013) contains a formal definition of optimisation

Definition 2.1.1: Let f:A→ℝrepresent an objective function. A⊂ℝ represents a set of

feasible solutions that lie within a solution space of real numbers ℝ. Let x0∈A. The goal of

an optimization problem is to find x0∈A⊂ℝ, such that;

f (x0) ≤ f (x) for all x ∈ A. Minimum solution

f (x0) ≥ f (x) for all x ∈ A. Maximum solution

f (x0) that either minimizes or maximizes f is called an optimal solution.

10

Optimal solutions are often found within neighbourhood structures of a solution

space.

The definition 2.2 (Blum and Roli, 2003), therefore gives the definition of a

neighbourhood structure.

Definition 2.1.2: Let :S→2S represent a neighbourhood structure. If s∈S, then (s)⊆S

represents the neighbourhood of s.

Optimal solutions which are found within local neighbourhood structures of a solution

space often stand for the local optima. These local optima can either be the local minimum

or maximum solutions. A solution space consist of several local optimal solutions, andthe

best local optimal solution among them is a global optimum. Global optimum solutions are

local optimal solutions, but local optimal solutions are not necessarily global optimum

solutions. The definitions of a local minimum, local maximum, global minimum and

global maximum solution are given in definitions 2.3, 2.4, 2.5 and 2.6 respectively (Ariyo,

2013).

Definition 2.1.3: Let f represent an objective function and ℝa solution space of real

numbers. A local minimum exists at a point x* ∈ℝ, if there exists some value X > 0 such

that

f (x*) ≤ f (x) subject to |x – x*| <X for all x ∈ℝ

Definition 2.1.4: Let f represent an objective function and ℝa solution space of real

numbers. A local maximum exists at a point x* ∈ℝ, if there exists some value > 0 such

that

f (x*) ≥ f (x) subject to |x – x*| < X for all x ∈ℝ

Definition 2.1.5: Let f represent an objective function and ℝa solution space of real

numbers. A global minimum exists at a point x* ∈ℝ such that,

f (x*) ≤ f (x) for all x ∈ℝ

11

Definition 2.1.6: Let f represent an objective function and ℝa solution space of real

numbers. A global maximum exists at a point x* ∈ℝ such that,

f (x*) ≥ f (x) for all x ∈ℝ

Figure 2.1: Local and Global optimal solutions of a two-dimensional function (Weise,

2009).

Figure 2.1 illustrates optimal solution points, found within the neighbourhood structures of

a solution space. Global optimum solutions are the extremum solutions within the

neighbourhood structure. Local optimum solutions are the best known solutions within the

local neighbourhood structure of the solution space. Possible solutions to optimization

problems are determined by evaluating the problems objective function f, subject to the

restrictions of the problems constraints and controlling the decision variables as the inputs

to f.

Global optimal solutions have been discovered for several real-world problems. The

solution demands an exhaustive search of the solution space. If an algorithm exists that

finds a global optimum solution, within polynomial time (P), the solution will be

considered deterministic and the solution will be traceable. Deterministic solutions have

direct relationships with the objective functions decision variables as well as the results

obtained, i.e. specific inputs to the objective function will produce the exact same solutions

every time.

12

Time complexity is not usually considered important if global optimal solutions are found

within P. On the contrary, if the time complexity increases exponentially as a result of the

increase in the complexity of finding the global optimal solution, then time complexity

will becomes a tangible factor. If only exponential time algorithms exist for determining

the global optimal solution, the problem is considered intractable and is non-deterministic

polynomial (NP) (Silva, 2003). When performing a comprehensive search of the solution

space, solution is not feasible, accepting estimated or approximated near-optimal solutions

is accepted. Near-optimal solutions are found within P.

Time complexity determines the techniques employed to find solutions to optimization

problems. There are two main methods used in solving the problem. The two types are the

exact method and the heuristic algorithm method. Both types of methods find solutions to

optimization problems within P.Exact method algorithms exhaustively search the solution

spaceso as to find global optimal solutions. Exact method algorithms don’t take into

cosederation the computational complexity involved in performing an exhaustive search.

Thus, they are not suitable for NP problems and cannot provide solutions to many real-

world problems. Examples of exact methods include linear programming, dynamic

programming, branch and bound techniques.

Heuristic otherwise referred to as approximatemethod algorithms present near-optimal

solutions to optimization problem. Near-optimal solutions are accepted in a situation

where are no exact method algorithm in existence to provide global optimal solutions

within P. Near-optimal solutions are somewhat inferior solutions, that trade accuracy for a

significant reduction in computational time complexity. They are decision algorithms and

they make use trial and error techniques for determiningpracticable solutions. Heuristic

algorithms was used to provide near-optimal solutions to an NP-Hard Combinatorial

Optimization Problem (COP), which is the subject of this research. It uses either local and

13

global heuristic search methods or techniques.

The rest of this section gives more detailsabout certain important background information

concerned with addressing optimization problems. The information includes discussing the

categorisations of optimization problems, heuristic and metaheuristic methods or

techniques as well as local and global search heuristic algorithms.

2.2. Classification of Optimization Problem

There are many ways of classifying optimization techniques. To start with it can be

classified according to the problem constraints, the nature of the equations and the number

of objective functions. It may also be classified according to the deterministic nature of the

problem and the type of decision variables used, amongst others (Kumar, 2011). There is

no single optimization technique that can solve all types of optimization problems. This

shows that some classifications of optimization techniques may perform effectively for

some classes of optimization problems yet perform poorly (or may not even be applicable)

for others. The classifications are briefly described and discussed below.

2.2.1 Classification Based on Constraints

Constraints can be reffered to as the restrictions applied to an objective function f. They

define the bounds within which feasible solutions are found. There are both hard

constraints and soft constraints. On the one hand, the hard constraints are constraints that

must be enforced and cannot be broken. On the other hand, soft constraints are those which

may be compromised. In order to find feasible solutions, all hard constraints must be

satisfied and as many soft constraints as possible need to be satisfied as well. Grouping

based on constraints fall into two categories. These are unconstrained optimization

problems and constraint optimization problems.

14

i. Unconstrained Optimization Problems: If there are no constraints governing the

evaluation of f, the problem is considered an unconstrained optimization problem.

If k

equal the number of constraints then k = 0.

ii. Constrained Optimization Problems: If there are constraints governing the

evaluation of f, the problem is considered a constrained optimization problem. If k

equals the number ofconstraint then k > = 1. Most real-world optimization

problems are multi-constrained.

2.2.2 Nature of the Equations Involved

Based on the nature of the equations of the objective function f and its constraints,

optimization problems are classified as linear, non-linear, geometric or quadratic

programming problems (Kumar, 2011).

i. Linear Programming Problem (LPP): If f and the constraints governing it are

linear functions of non-negative design variables, then the problem is an LPP. LPP

is

mathematically represented as follows (Kumar, 2011):

Let,

f = objective function

hi(x) = equality constraints

gi(x) = inequality constraints

x = {𝑥1𝑥2, … , 𝑥𝑛} be the design variables

which maximizes

𝑓(𝑥) = ∑ 𝑐(𝑖)𝑥 (𝑖)

𝑛

𝑖=1

subject to;

15

∑ 𝑎(𝑖𝑗)𝑥(𝑖) = 𝑏(𝑗)𝑛
𝑖=1 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑚

𝑥(𝑖) =≥ 0 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑚

where c(i), a(ij) and b(j) are constants

ii. Non-Linear Programming (NLP): If for one or more constraints governing f are

non-linear functions of the design variables, then the problem is NLP (Jain, 2003).

NLP are the most common programming problems encountered. NLP is

mathematically represented as follows (Jain, 2003).

f = objective function

hi(x) = equality constraints

gi(x) = inequality constraints

X = {𝑥1𝑥2, … , 𝑥𝑛} be the design variables

Then

Optimize

f(x)

subject to;

hi(x) = 0 for i =1,2, ...,m

gi(x) ≤ 0 for i = (m+1), ...,p

iii. Geometric Programming Problem (GMP): If function and constraints governing

it are expressed as polynomials of x, then the problem is a GMP (Kumar, 2011).

iv. Quadratic Programming Problem (QPP): These are maximization type NLP

problems which have ‘concaved’ objective functions and linear constraints

(Kumar, 2011).

2.2.3. Types of Optimisation Objective Function

Optimization problems may have single or multiple objectives that will need to be satisfied

in order to obtain feasible solutions.

i. Single-objective programming problem: This type of problem occurswhere there

16

is only a single objective that needs to be evaluated, i.e. l = 1. An example can be

finding the sum of two integers.

ii. Multi-objective programming problem: These are problems where more than

one objective function needs to be simultaneously evaluated, i.e. l > 1. Most real

world problems are multi-objective. According to

Kumar, (2011) the mathematical formulation is as follows:

Let

f = objective function

g j(x) = inequality constraints

Find x which simultaneously optimizes

fi(x) for i =1,...,k

subject to;

gi(x) ≤ 0 for i =1,2, ...,m

2.2.4. Deterministic Nature of the Problem

The deterministic nature of optimization problems related to the computational time

complexity involved in finding feasible solutions. Deterministic or non-deterministic

algorithms can be used to find solution to optimisation problems.

i. Deterministic Algorithms: These are exact method algorithms. Examples include

Divide and Conquer; Branch and Bound, amongst others.

ii. Non-deterministic Algorithms: These are heuristic algorithms, such as Hill

Climbing (HC), Simulated Annealing (SA) and Tabu Search (TS), Artificial Bee

Colony(ABC).

2.2.5 Type of Decision Variables Used

Decision variables are divided into two.The first refersto values taken from a real number

system of values while the second deals with discrete values. Discrete values are

17

independent values which are found within a set of possible inputs. Optimization problems

can be categorised as continuous or combinatorial optimization problems based on the

decision variables used.

i. Continuous Optimization Problems: This category make use of subsets of real

numbered values as the inputs to f. The decision variables used must satisfy the

constraints associated with the problem.

ii. Combinatorial Optimization Problem (COP): This category make use of

discrete values as inputs to f. These inputs also need to satisfy the constraints

associated with the problem. COP’s consist of many NP-Hard problems and near-

optimal solutions are accepted by techniques such as heuristic techniques.

Strategies used to find solutions to COP include ‘constructive’ and ‘improvement’

(local search) heuristic methods.

a. Constructive Heuristics: This techniques starts off with an empty solution

set and iteratively adds solution elements to the set in a systematic way until

a complete solution is determined. Constructive heuristic methods are very

fast compared to improvement heuristic techniques. On the contrary, they

generally provide inferior solutions compared to improvement heuristic

techniques (Syam and Al-Harkam, 2010).

b. Improvement (Local Search) Heuristics: This technique starts off with an

initial random solution, and therefore attempts to improve on this solution.

The improvement is done by using trial and error techniques to search the

solution space for improved solutions. Current solutions are often replaced

by improved solutions during an iterative process.

COP is mathematically represented as follows Weise, (2009):

Let

f = objective function

18

X = {xl, x2,…..,xn}

S = search space

Di= variable domains for 𝑖 = 1, … , 𝑛

Then Optimize

f such that 𝑓: 𝐷1𝑥 𝐷2𝑥 … 𝑥 𝐷𝑛 → 𝑅+

The set of all possible feasible solutions are;

S = {s = (xi,vi) |∀ vi∈ Di } for i = 1, … ,n

Subject to s satisfying all the problem constraints

2.3. Search Techniques

2.3.1 Local Search Techniques

Local search techniques are refer to the algorithms that exploit the local neighbourhood

structures of a particular solution space in search for the local optimum solution. Thus start

off with an initial random solution, and iteratively make local changes within the local

neighbourhood structures of the solution space in order to find improved feasible solutions.

Local search techniques often try to determine the best neighbour surrounding the present

solution. The problem associated with local search heuristic algorithms has been said to

have prematurely converges. ‘Intelligent’ local search metaheuristic algorithms have built

in functionality that reduces the risk of prematurely converging. A typical example of a

local search heuristic algorithm is HC while examples of local search metaheuristic

algorithms are SA and TS.

2.3.2 Global Search Techniques

It is possible to have many local optima in a particular solution space. Global search

technique algorithms focus on determining the single best local optimum solution.It is very

difficult to get global optima solution. There are several real-world problems which exist

19

where finding the global optimal solution still remains practically impossible (Silva,

2003).There is no single global search technique algorithm in existence that guarantee

finding global optimal solution to all types of optimization problems. Thus, global search

heuristic algorithms only attempt to estimate the global optimal solution from a set of local

optima. An example of a global search metaheuristic algorithm is GA, ABC, Ant Colony.

2.4 Space Allocation Problem(SAP)

It has been discovered that one of the extremely difficult COPs’ to solveSAP’s. It deals

with distributing limited amounts of available space amongst the demanding set of entities

requiring space utilization. SAP is a very important managerial responsibility.

Mismanagement in the way limited amounts of space utilized which impacts on the total

operations of an organization negatively. Its effects are inefficient use of the limited

available space, which may affect the general costs involved in operating the organization,

and other ones. Categories of SAP’s consist of bin-packing, resource allocation, knapsack

problems, among others.This section explains SAP’s at tertiary institutions. It illustrates a

number of the problems and the complexities which are related to the issue of addressing

space utilization. This overview will provide a more enhanced understanding to SAP’s at

tertiary institutions. It is suitable in order to introduce the OSAP presented in the

methodology. This section also gives the multiple-knapsack mathematical model that can

be used to mathematically formulate the proposed OSAP.

2.4.1 Space Allocation Problems at Tertiary Institutions

Space utilization at tertiary institution is a very relevant problem. It focuses attention on

allocating limited available space amongst demanding entities which require space

utilization. Demanding entities can be categorized into staff members, lecture venues,

students demanding on-campus accommodation, among others (Silva, 2003). Therefore, it

is not an easy task. Space allocation has to be done in ways that provide the highest level

20

of satisfaction to all demanding entities involved. In the process of doing this, all hard

constraints must be satisfied and as many soft constraints and objectives must also be

satisfied as much as possible. Example of allocating space include allocating adequate

room spaces to members of staff, allocating adequate room spaces for lectures, and

allocating as many eligible students on-campus accommodation from those that require

accommodation, amongst others.

Mismanagement of available spaces at tertiary institutions negatively impacts on the

overall cost andoperation of the institution.This is very important that space be utilized

effectively. However, it is difficult to find optimal solutions in the way space is

utilized.According to Silva(2003), the problems can get further complicated when

considering the dynamic nature in which these organizations are managed. For example,

entities can be added or removed.

In determining solutions to the problems of space allocation the convenience of the entities

must also be considered. For instance, departments in a faculty should be allocated as close

as possible to lecture venues.In addition to this, the health conditions of physically

challenged students as well as other issues should be taken into consideration, before

decisions are made.

These problems make space allocation to become a very important managerial

responsibility. In order to establish effective solutions, automated systems need to be

employed. Automated tools are time efficient and they provide more accurate solutions.

However, a lot of institutions, especially in developing countries, still rely on using manual

processes in dealing with space allocation at tertiary institutions.

i. Manual Approach to Space Allocation at Tertiary Institutions

21

The manual approach of space allocation at higher or tertiary institutions is done in the

following ways: (Burke and Valley, 1998): First approach is that, top level management

will decide on how the available space will be allocated to the different demanding

entities. Such demanding entitiesconsist of various departments, faculties, and more. The

moment the allocation is done, management within these various entities also decide on

how to distribute the assigned space,and the space will be distributed amongst the various

demanding entities that fall under them. This distribution should be done in a fairly ways,

and it should take into consideration the many constraints or restrictions that could be

associated with allocating space. Some of the constraints or restrictions include taking into

account issues like the different sizes of the available space, the locations of the space,

among others. Allocations should be done in a way that is as convenient as possible to all

demanding entities involved.

The procedure for allocation allocation is not easy, as this may be attempted a number of

times before a final solution will be determined. Futhermore, the final solution may not be

an optimal solution. On the other hand, space allocation may be determined relatively

quickly in smaller organisation. While for larger organizations it may be quite more

complicated. This is as a result of the larger sizes of the input data sets, and the

complexities of the constraints and objectives associated with providing solutions.

Mathematical models that can be used to model SAP’s include bin-packing, resource

allocation and knapsack modelling. These models are used to provide more accurate

solutions to SAP’s mathematically. This research employs a branch of a knapsack model

called 0-1 multiple-knapsack. It will be used mathematically to model the various stages of

the OSAP as presented in methodology.

2.4.2 Office Space Allocation

22

Office space allocation problem (OSAP) is a combinatorial optimization problem, solving

many versions of office space allocation system may consume heavy amount of processing

power. However, they can be proficiently implemented in terms of memory requirements.

The time complexity concept includes decision and optimization problem which include

the classes of P, NP, NP-complete, NP-hard and no free-lunch theorem.

Theoretically, problems associated with office space allocation are multi-dimensional

Knapsack, bin packing and generalized assignment.

2.5.Related work

Bolaji, Micheal and Shola (2017) presented an adaptation of ABC algorithm in solving

Office Space Allocation problem. The adaptation involved integration of three

neighbourhood operators with the components of the ABC algorithm. The researcher used

benchmark instances established by University of Nottingham dataset to evaluate the

proposed ABC algorithm. ABC produced a good quality solution in comparison with the

state-of-the-art methods. The program iterations can be trapped in an infinite loop.

Ulker (2013) proposed solving office space allocation problem using mathematical

programming and meta-heuristic algorithm which present recent, efficient and effective

research work in OSA. The objective of this work is to investigate the proposed solution

method that can be used in automated Office Space Allocation Problem.

The work analyse the nature of the problem from the perspective of space misuse

constraints and general objective function. The work also developed binary integer

programming model based on types of constraints or restraints and weighted objective

function. It investigates the possible benefit of utilizing room and floor relationship while

developing the model.

23

The aim of his study is to combine mathematical programming model using integer linear

programming based on definition of different constraints and additional variables and

meta- heuristic algorithm.

The contributions of this research to OSA are the analysis of the OSA problem,

formulation of a new parameterized data instance generator, mathematical programming

model and meta-heuristic approach. These are used in order to extend the state of art in this

area. The work only based its comparison on linear programming and one metaheuristic

algorithm.

Al-Betar et al. (2013) used a modified Harmony Search Algorithm (MHSA) technique in

Solving Space Allocation Problem. The research focused on modifying the Harmony

Search (HS) algorithm and adapted it for the office space allocation. The modification

includes two harmony search operators which are:

(i) memory consideration, where the global – best concept of particle swam

optimization is borrowed and employed ; and

(ii) the pitch adjustment was designed to be a local search agent with three effective

neighbourhood activities.

The modified harmony search algorithm was evaluated using three dataset from

Nottingham and Wolverthampton Universities, where two new best results were

obtained and a comparable result for the third dataset that was out preferred to the

techniques of integer programming and mathematical programming, earlier

proposed by Ulker and Landa (2010, 2011). The MHSA is an extension of the HS

earlier proposed by the same researcher. This research work will experience early

convergence because of the local search agent used.

24

According to Ulker and Landa (2012), a Local search algorithm was presented to solve the

problem of office space allocation. The evolutionary component of the algorithm include

standard crossover and mutation operators and a relatively small population of individuals

where the offspring produced by the evolutionary operators that are subjected to a short

but intensive local search process. The algorithm was designed to produce a solution for

the difficult and highly constrained combinatorial optimization problem (OSA). The

research observed that the mutation rate (m) and the number of local search iterations (h)

turned out to be the performance affecting factors of the algorithm low mutation rate and a

small number of local search in iterations greatly improve the performance of the

algorithm. The researchers concluded that the evolutionary local search algorithm is highly

competitive to the mathematical programming model that was presented earlier for solving

the office space allocation problem. When they were compared for more than half of

instances, the evolutionary local search algorithm yielded better result for the same

execution time. The work got stucked in local optimal because of the local search

algorithm used.

Awadallah et al. (2012) made use of Harmony Search Algorithm (HSA) in solving office

space allocation problem (OSA) subjected to the two constraints (hard and soft

constraints). The harmony search algorithm (HSA) is a population based meta-heuristic

inspired by a musical improvisation process where three (3) operators were used to

generate the new harmony at each iteration (i.e. memory consideration, random

consideration and pitch adjustment). This paper modifies the memory consideration

operator to select from the best solution in the population during the search. The harmony

search algorithm used in this research was evaluated using three datasets. The algorithm

used has weak local search ability, therefore will be trapped in a local optimum.

25

Ulker and Landa (2011) designed complex office space allocation problem instances with

mathematics programming approach which was developed to model and generate test

instances for the difficult combinational optimization problem. An Output /Input

(O/I)integer programming model was developed and a commercial integer linear

programming (ILP) solver was applied. Based on this model, a test instance generator was

also developed to further investigate the difficulty of OSA problem through systematic

experimentation. The objective of this research is to minimize the rate of space misuse

which can be overuse or underuse and the soft constraints violation through the effect of

four constraints with different parameters of the Slack Amount (P) and Violation Rate (v).

It was observed that important factors affecting the optimality proof difficult of the test

instance, which was the differences between the Negative slack (N) and the positive slack

(P) amount. This adjusts the overuse/ underuse of rooms respectively in the generated test

instances. Although the study raises the slack space rate (s) and violation rate (v) which

increases the percentage gaps but concluded that the effect was less prominent than the

effect of N and P. This research is linear in nature and it has a single objective function.

Retyal (2010) studied the performance of a greedy search algorithm and a tabu search

algorithm for generating high quality solutions to the office space allocation problem. The

objectives are to maximize synergies in the organization, minimize the over usage of

limited space and maximize the number of buildings and rooms that can be completely

closed. The computational experiments showed that a tabu search algorithm generated

higher quality solution than a greedy local search algorithm with the same computational

budget. The result of the research experience early convergence.

Ulker and Landa (2010) proposed 0/l integer programming model to solve office space

allocation problem with the goal of optimizing the space utilization while satisfying a set

of additional requirements. The research ascertains whether setting some constraints (hard

26

or soft) has considerable impact on the difficulty of the OSA problem. The problem is that

of having a set of rooms (Office, hall), set of entities (people, machine) and then allocate

each of the entities to a room.

Each room has a capacity while each entity has a size, the research optimizes the space

utilization by minimizing the space wastage and ensures satisfaction of specific conditions

that establish prerequisitess for the way in which entities are to be allocated to rooms. The

research considered six constraints. All allocation, same room, not sharing,

nearby,capacity, away from and any of the constraints can be set as hard (must be

satisfied) or soft (desirable to satisfy) in their formulation. When constraint is set as soft,

minimizing its violation becomes an objective in the problem formulation. An 0/l integer

programming model was developed (exact method) and solve the problem using PLEX.

The researcher concluded that the most difficult soft constraint to optimize is the same

room constraint and that setting all constraints as hard makes solving the problem

unrealisable. The research work make use of exact method which did not put time into

consideration.

Burke et al. (2007) researched into the use of asynchronous Cooperative Local Search

concept in solving Office Space Allocation Problem in the universities and other

organizations. Their objective was to use certain number of entities such as students, staff

and equipment, which must be allocated into specific rooms, utilize the space to the

maximum while satisfying number of hard and soft constraints. An asynchronous

cooperative local search approach was developed, in which a population of local search

threads cooperate asynchronously to find better solutions. This approach integrates a

cooperation mechanism in which a pool of genes (part of solutions) is shared to improve

the global search strategy. The research was implemented by extending four single

solutions meta-heuristics (Hill – climbing, Simulated Annealing, Tabu Search and a hybrid

27

meta-heuristic) to population based variant, using asynchronous cooperative mechanism.

In each case, the population-based approach performs better than the single solution, using

comparable computation time. The research concludes that the Asynchronous Cooperative

meta-heuristics developed, improve upper known results for a number of test instances.

The research work experienced early convergence.

Landa (2003) Metaheuristic and Multi-objective approaches for Office space allocation.

The research presented an investigation on application of metaheuristic techniques for

solving the office space allocation problem in academic Institutions using four well known

metaheuristic, Iterative Improvement, Simulated Annealing, Tabu search and Genetic

algorithms. The researcher concluded that the metaheuristic algorithm perform better than

other methods and proposed the use of populated algorithm for future research work. The

research work will be trapped locally and will also experience an infinite loop.

Tanzila Islam and Zunayed Kauyl (2016) Design an Automated university time table

generator using Tabu-search algorithm. This algorithm helps to generate a course schedule

for university by analyzing the search space and averts in-essential exploration. It optimise

this solution and keeps the list of recently visited area in the tabulist .The objective is to

derive a suitable time tabling system for courses and exams with proper requirements to

minimize violation of constraints and find a feasible solution. Tabu-search algorithm helps

the proposed system to solve the problem within a reasonable time frame and gives a better

solution than the manual system.

Frank and Alexandra (2015) proposed linear programming model to solve allocation of

classroom spaces to various student groups. The research was aimed at using linear

programming to solve both the problem of over-allocation and that of under-allocation

considering the Premier Nurse’s training College, Kumasi. The objective of the work is to

find out how classroom space are allocated to the students of the college based on the

28

various programs and courses offered and also to develop a linear programming model to

allocate the space for various programs and courses offered and also to develop a linear

programming model to allocate the space for various programmers to ensure optimal use

of the classroom.

Sandeep et al. (2013) discussed automated timetable generator using Particle Swarm

Optimization (PSO) to solve the problem of course timetabling. The research has two

objectives: to give a detail introduction to the topic of timetabling, particle Swarm

Optimization (their methods and variations); the second objective is the application of Pso

to the problem of course timetabling. The research work based its modelling on four main

factors (teacher, courses, time solution and classroom) together with other teaching

facilities. The combination of these four factors was defined as the particle position and

each particle represents a solution group. The researcher stated that Eberchart (1998)

proposed the inertial weight value concept and added an inertial weight value (w) to the

original PSO algorithm. The inertial weight was used to balance the global search ability

in order to boost the capability to locate the optional solution and convergence rate. The

researcher discussed the application of inertial weight factor to type of PSO to solving the

problem of timetabling. The work was used to reduce the computational compulsion of the

timetabling and also designed particle concluding on the basis of time slot.

Luke (2013) applied three optimization algorithm to campus parking space allocation

problem in the university, the research formulated and modelled solution for solving the

car parking space allocation (CPSA) problem by applying heuristic and meta-heuristic

techniques such as Genetic algorithm (GA), pattern search (PS) and particle swam pattern

search. The research compared the result obtained by the optimization algorithm to the

result obtained from the CPLEX software and an exact method used in solving CPSA

problem. It was stated that the new technique is better. The research model caters for the

29

reserved and unreserved parking policies in the campus. An investigation of the

mathematical model formulated was done to cater for the parking space policies of the

institution. The researcher generated some variants of real world data which were used to

evaluate the optimization model formulated and was concluded that optimization

algorithm can effectively provide solution to the car park space allocation.

Ayachi (2010) presented a research work on Genetic Algorithm (GA) to solve space

container storage problem in the port. The study included Regular container, Open side,

open top, empty and refrigerated containers. The objective was to determine an optimal

container arrangement which obeys customers’ delivery deadlines, minimizes the re-

handle operations of containers and reduces the stop time of container ship. The adaptation

of the genetic algorithm to the container storage problem was detailed and the proposed

approach was compared to a last-In-first-Out (LIFO) and was applied to the same problem

and the proposed method yielded a better result.

Chieh-Yuan and Ming-Chung (2010) proposed a two stages Simulated Annealing (SA)

algorithm to solve the problem of shelf space allocation in retailing stores. In retailing

stores, divergent displaying strategies are said to directly influence customers purchasing

decision and also the profit margin of a store. In most of the researches, items are allocated

into shelf space based on product type similarity neglecting the affinity relationship

between product categories, another argument for the need of the research work is that

customer’s purchase behaviour on product that is located at eye-level layer of shelf usually

gets much more attention from customers than other layers.To solve this shelf allocation

problem, a modified Simulated Annealing (SA) algorithm with better initial strategy was

developed with the following objectives to:

i. Construct the product category affinity matrix ;

ii. Locate the shelf space of product category;

iii. Allocate the self space of product type ;

30

iv. Develop an optimum shelf allocation technique for retail store ; and

v. Adopt the Simulated Annealing (SA) algorithm.

The research aims at developing an efficient heuristic algorithm with initial solution

setting that can increase the solution quality and reduce the convergence speed to solve

multi-level self space allocation problem considering the affinity between product

categories and important weight of shelf spaces.

Adewumi (2010) studied space allocation problem using a multi-level heuristic driven by

genetic algorithm (GA) to solve the hostel space allocation problem under domain specific

constraints. The research examined the sensitivity analysis of various genetic algorithm

operators in order to establish the baseline for practical deployment. The study was based

on a real-life multi-stage case of hostel space allocation problem with large data set. The

simulation was performed using the data set. The paper’s major concern was the allocation

of various categories of students into hostels in order to maximize bed space utilization.

The research result provided a firm foundation for decision making by relevant authority in

the university on the allocation of hostel space that achieved a four-point three objectives

of transparency, reliability, efficiency and effectiveness for hostel allocation.

Asharm (2009) asserted that a mathematical program that solves the problem of

determining the optimal allocation of limited resources needed to meet a specific objective

is the linear programming.The researcher uses optimization problem where both the

objective function to be optimized and all constraints are linear as regards decision

variables. It determines the way to accomplish the best result such as maximizing profit

and minimizing cost in a particular mathematical model given some list of requirements,

its considered as linear equation. POM-QM window 4 (software for Quantitative methods,

production and operation management by Haward J. Weiss) was employed based on the

simplex algorithm to achieve optimal solution. The analysis of the result indicated that six

(50%) of the twelve classroom could be used to produce the highest classroom space of six

31

hundred and forty students. It was observed that the management could use two hundred

and eighty (280) extra spaces to increase the student’s intake and can also use the research

work to reduce the number of classroom used by 50%.

Remi Safai (2009) developed a hybrid particle swam optimization to automate the design

of the university course timetabling problem (UCTP) by proposing three algorithm which

include (i) hybrid particular swam optimization constraints – based – reasoning (PSO-

CBR), (ii) Hybrid particle swam optimization Local search (PSO-LS) and (iii) standard

particle swam optimization (PSO) to solve the UCTP. The researcher stated that time-

tabling problem is computationally an NP – Complete problem and has been model as

constraint – satisfaction problem (CSP) making it very difficult to solve, using

conventional optimization technique. In their study, a hybrid approach of PSO and other

related constraints handling techniques were tested to solve UCTP. The research compared

the hybrid approach with the other approaches and concluded that the hybrid particle

swarm optimization algorithm provides feasible solution but to have a near optimal one

with acceptable computational time, hybrid PSO-CBR is more promising and it shows that

the convergence of optimizing UCTP is efficient due to the CBR ability to significantly

reduce the search space.

According to Burke et al. (1999), the study proposed the review of the algorithms to solve

the problem of space allocation or distribution (Hill climbing Simulated Annealing and

genetic algorithm) using three different data sets from three different universities. It was

stated that the space allocation problem within UK universities is highly constrained, and

has multiple objectives, extensively among various institutions which require frequent

modifications. The research revealed that application of local search, meta- heuristics and

evolutionary algorithm to OSA problem can yield better result and a extensive comparison

between all the three techniques are presented using real test data. The objectives of the

32

research is to examine or investigate the application of the three algorithms to the variants

of the space allocation problem, comparing the advantages and disadvantages to obtain a

better understanding of the problem and proposed future hybridization of such methods

and additional methods. The three algorithms try to find the global optimum in the solution

space.

The Hill Climbing algorithm has been referred to as a heuristic search algorithm which

may become stuck in local optima, but simulated annealing and genetic algorithm avoid

this local optimal by performing a broader exploration of the solution space. This paper

applied three moves to modify allocation and explore the search space. The moves are

ALLOCATE, RELOCATE and SWAP during the construction of the crucial solution and

space exploration, the following parameters were investigated to determine the appropriate

neighborhood exploration in each algorithm resources search, room search, space

deviation and termination criteria.

2.6Appraisal of Literature Review

Office space allocation problem is considered a Non-deterministic polynomial

combinatorial problem. Because of its combinatorial nature, several solution methods were

proposed, such as exact method that gives the actual solution to same set of problem.

Heuristic method such as hill climbing and metaheuristic solution such as Artificial Bee

Colony, ant colony, genetic algorithm, variable neighborhood search algorithm, simulated

annealing. The heuristic and metaheuristic algorithms provide near optimal solution to

OSA problem within a reasonable time, the accuracy is trade off for time.

The computational complexity of a problem is normally determined by the best algorithm

which can be discovered to solve the problem. From a extensive perspective, the efficiency

of an algorithm is examined in term of the resources that are needed to execute the

33

algorithm and this include time and space (Johnson 1979). There are two categories of

classifying the problem, the

polynomial (P) and Non-deterministic Polynomial (NP). The complexity of a problem and

the complexity of an algorithm to solve a problem give a sign of how difficult it is to solve

the problem from a computational point of view.

An exact algorithm is capable of solving a giving instance of a combinatorial optimisation

problem to optimality. Nevertheless, the time complexity of exact solution algorithm is

inefficient. The interest and actual significance of the concept of NP-complete problem lies

in the popular belief that an efficient algorithm for solving such problem does not exist and

that the algorithm which produces high quality (or near optimal) solution in a reasonable

amount of time are then needed. Al-Harkeem(2010) said decision algorithm which uses

trial by error techniques in deciding on the next improved solution to exploit within the

local neighborhood structure of a solution space and also suffer from premature

convergence.

This review shows that several researchers has applied several methods and algorithms to

solving space allocation problem which ranges from mathematical and metaheuristic

algorithm(Ozgur 2013), Integer Programming(landa & Ozgur 2011), harmony search

algorithm(Awadallah et al 2013), Multilevel genetic algorithm(Adewumi 2010), Particle

swarm optimization(Remi, 2009) among others.

2.7 Types of Complexity

2.7.1 Algorithms Complexity

The theory of algorithm complexity is concerned with the identification of problems which

are computationally easy to solve and problems that are computationally hard to solve

(Garey & Johnson, 1979; Rayward-Smith, 1986). This theory also deals with identifying

34

those algorithms that are efficient and those that are inefficient from a computational point

of view. From a general perspective, the efficiency or effectiveness of an algorithm is

examined in terms of the computing resources that are necessary to execute the algorithm

and this includes execution time and space. The execution time is the number of steps that

the algorithm takes to process the input and give an output. The space indicates the amount

of memory that will be needed to run the algorithm. Nevertheless, in the theory of

algorithms complexity, the efficiency of algorithms is always expressed in terms of its

time complexity.

The time complexity is depicted by a function of the size of the input, which partains to the

size of the problem instance. More particularly, the time complexity for an algorithm is

described by its worst-case behaviour, which is the highest number of basic operations that

the algorithm is expected to perform for an input of size n. The time complexity of an

algorithm is expressed using the notation Ο (g(n)) which is defined as follows: A function

f(n) is said to be Ο (g(n)) if there is a constant k such that |f(n)| ≤ k⋅|g(n)| for n ≥ 0. In other

words, Ο (g(n)) refers to functions that do not grow faster than g(n) and the Ο (g(n))

notation indicates that the algorithm’s worst-case time complexity is bounded by g(n).

Algorithms that possess a time complexity explained by a polynomial function (e.g. Ο

(4n), Ο (n3), etc.) are considered efficient because they can be run in reasonable amount of

time for inputs of considerable size. On the contrary, if the time complexity of the

algorithm is explained by an exponential function (e.g. Ο (3n), Ο (nlog n), etc.), then the

algorithm is considered to be inefficient because it can be run in a reasonable amount of

time only for inputs of small length, but for larger inputs running the algorithm becomes

impractical. The dissimilarity between polynomial time algorithms and exponential time

algorithms deals with the rate at which their computational time complexity increases,

given an increase in the size of the input (n). Remember that the time complexity of an

35

algorithm means to the worst-case performance. There exist some polynomial time

algorithms which are not quite useful in practice because n is typically large in practical

instances. Also, there exist some exponential time algorithms considered as useful due to

the fact that they can run quickly in practice as a result of small values of n encountered in

practical instances.

2.7.2 Problem Complexity – The P and NP Classes

The computational complexity of a problem is determined by the best algorithm which can

be found to solve the problem (Garey and Johnson, 1979). At a high level of abstraction, if

a polynomial time algorithm can be found for a given or particular problem, then the

problem is considered tractable or not so hard. However, if no such algorithm is available

for the problem, i.e. only exponential time algorithms can be constructed, the problem is

considered intractable or very hard even if the problem is solvable. The major

consideration for the development of the theory of computational complexity is decision

problem. Most optimisation problems can be considered as a decision problem. A decision

problem is a problem for which the answer is ‘yes’ or ‘no’ based on whether the input

satisfies the particular conditions in the problem. Some examples of decision problems are

presented below: EVEN. Given a natural number n, is n an even number? The answer is

‘yes’ if n is even or ‘no’ if n is odd. PRIME. Given a natural number n, is n a prime

number? The answer is ‘yes’ if n is prime or ‘no’ if n is composite.

Satisfiability. Given a Boolean expression f (x1, x2,…xn), can the variables x1, x2,…xn

be fixed to values that make the value of f true? The answer is ‘yes’ if there is a setting of

the variables that makes f true and ‘no’ otherwise.

Hamiltonian cycle. Given a graph G(V,E) with N nodes, is there a cycle of edges in G

that includes each of the N nodes? The answer is ‘yes’ if such cycle is in existence and

‘no’ otherwise. The space allocation problem described in the Literature review can also

be stated as a decision problem:

36

Space allocation. Given n entities and m available rooms, is it possible to construct an

allocation of the n entities to the m rooms in such a way that all existing constraints (hard

and soft) are satisfied and the space misuse is minimized. The answer is ‘yes’ if such an

allocation exists and ‘no’ otherwise.

Problems are often classified into two classes. According to Garey and Johnson (1979),

and Rayward Smith (1986), the two classes are: P and NP classes. The class P includes all

those

problems for which an efficient (polynomial time) deterministic algorithm has been found.

On the contrary, the class NP includes all those problems for which a non-deterministic

polynomial time algorithm is known to solve the problem (NP stands for non-deterministic

polynomial). In the decription of a non-deterministic algorithm there are two stages

involved.Guessing a structure for the problemtakes place at the first stage. What is done at

the second stage is to verify whetherthe given structure is or is not a solution to the

problem. Then, the algorithm is said to be a non-deterministic polynomial time algorithm

if for each instance of the problem there is a guess that can be verified by the deterministic

phase for answer ‘yes’ in a polynomial time. Then, if P are problems solved in polynomial

time by deterministic algorithms and NP are problems solved in polynomial time by non-

deterministic algorithms, the question is whether P = NP or P ≠ NP. In fact, this is the most

important open question in computational complexity theory. It is clear that P ⊆ NP, which

means that non-deterministic algorithms are more powerful than deterministic algorithms.

If there is a deterministic algorithm for a problem, a non-deterministic one can be

constructed by simply not using the guessing stage. No efficient algorithm has been found

for numerous problems which are in the NP class. This strengthens the belief that P ≠ NP

but this conjecture has not been proved. There existseveral problems considered to be in

NP for which no efficient algorithm has been discovered and these problems are

considered NP-hard in the strong sense. The multiple knapsack problem and the

37

generalized assignment problems constitute examples of these problems and it is generally

believed that no efficient algorithm exists for these (and all other NP-hard) combinatorial

problems, i.e. they are intractable. If it is true that P ≠ NP, then the problems in the set NP

− P are intractable. As a result of this, when tackling a particular problem, it is important to

confirm whether the problem belongs to the class of tractable or intractable problems. One

important way to confirm this is to determine if the problem of interest is or not related to

another problem that is already known to be tractable or intractable. Reducing one problem

to another is the method used to determine whether there is a relationship between the two

problems or not. Reduction is to provide a

transformation that permits to map one instance of the first problem into one instance of

the second problem. This transformation permits to convert one algorithm that solves one

problem into an algorithm that solves the other problem. There is a significant class of

problems in NP, this is the class NP-complete. The first work towards the theory of NP-

completeness was reported by Cook in 1971 (Cook, 1971). Cook (1971) proved that any

problem in NP can be reduced to the satisfiability problem. This means that if there is an

efficient algorithm to solve the satisfiability problem, it means that any problem in NP can

also be solved by an efficient algorithm. These problems are said to be NP-complete and

are considered the hardest NP in a way. This is because if there is no single NP-complete

problem that has an efficient algorithm to solve it, then none of them has an efficient

algorithm and they are all intractable (Landa, 2003). Many problems have been proven to

be NP-complete (or reduced to the satisfiability problem) but it has not been proved that

these problems are intractable. Nevertheless, it is widely assumed that finding an efficient

algorithm for any problem in NP-complete is unlikely (Ulker, 2013). Then, if a problem is

NP-complete and P ≠ NP then the problem belongs to the set NP − P. In other words, the

problem (and all in NP-complete) might belong to P only if P = NP. Then, if it is assumed

that NP-complete problems are intractable, i.e. P ≠ NP, then when a problem is known to

38

be NP-complete, the focus should not be on finding efficient algorithms. Instead one

should aim to design algorithms that produce high-quality solutions with no guaranteed

optimality, for example design useful algorithms to solve the problem in practice.

2.8Approaches to Solve Optimisation Problems

The complexity of a problem and the complexity of an algorithm in solving problem gives

an indication of how hard it is to solve the problem from a computational view point. An

exact algorithm is capable of solving a given instance of a combinatorial optimisation

problem to optimality. However, the time complexity of some exact algorithms is bounded

by an exponential function, which makes these algorithms inefficient. The interest and

practical

significance of the concept of NP-complete problems lies in the general belief that an

efficient algorithm for solving such problems does not exist and that algorithms that

produce high quality (or near-optimal) solutions in a reasonable amount of time are then

needed. Such a heuristic is defined byReeves(1995) as a “technique which seeks good (i.e.

near-optimal) solutions at a reasonable computational cost without being able to assure

either feasibility or optimality, or even in many cases to state how close to optimality a

particular feasible solution is”. Constructive algorithms are examples of heuristics (also

known as greedy methods). These are very simple heuristics that construct the solution in a

series of steps based on the strategy of making the best decision (based on a certain

criterion) at every step. Another example of heuristic methodology is local search (which

can also be reffered to as neighbourhood search) where neighbouring solutions are

explored in an attempt to improve the solution (although worse solutions can be accepted

as an interim step). In the last couple of decades, more advanced heuristic approaches

reffered to as metaheuristics have been widely developed and applied to a variety of

optimisation problems (for instance, Glover and Kochenberger, 2003; Voss et al., 1999;

39

Aarts and Lenstra, 1997; Osman and Kelly, 1996; Osman and Laporte, 1996; Rayward-

Smith et al., 1996; Reeves, 1995). A metaheuristic is described in Voss et al., (1999 P ix)

as “an iterative master process that guides and modifies the operations of subordinate

heuristics to efficiently produce high-quality solutions. It has the capacity to manipulate a

complete (or incomplete) single solution or a collection of solutions at every iteration. The

subordinate heuristics can be high (or low) level procedures, or a simple local search, or

just a construction method”. When solving combinatorial optimisation problems, there are

exact algorithms that, given enough time, can guarantee finding an optimal solution. There

are also very specialised heuristics that exploit knowledge of the problem domain and

produce solutions of good quality. There also existsome metaheuristics that are not

actually designed for a particular problem but are considered general approaches that can

be tuned for any problem. While certain metaheuristics may need tuning, others may act as

a black box since they can be implemented

with none or very little information about the problem being solved. An example of such

black-box approach is random search, which can be used to compare the performance of

other algorithms.

2.9Heuristic and Meta-heuristic Algorithm

Heuristic algorithms provide near-optimal solutions to non-deterministic optimization

problems in P. They are decision algorithms, which employ trial and error techniques in

deciding on the next improved solution to exploit within the local neighbourhood

structures of a solution space. Heuristic algorithms are iterative algorithms and normally

stop when the initial number of iterations complete. Heuristic algorithms may suffer from

premature convergence. Premature convergence is the possibility of an algorithm being

stuck in local optima. This can give a largely inferior feasible solution compared to the

global optimal solution. An example of a heuristic algorithm is HC (Ariyo, 2013).

40

Metaheuristic algorithms refer to the improved heuristic algorithms. They build on

heuristic algorithm methods and are more effective and efficient in searching the solution

space. These algorithms employ ‘advanced’ methods in order to prevent premature

convergence. This gives room for the possibility of finding more improved feasible

solutions by performing a wider or more extensive search of the local neighbourhood

structures. Some advanced methods include using memory ability, learning from other

decision variables as well as randomly ‘jumping’ to other local neighbourhood structures,

amongst others. Metaheuristics algorithms are modelled using real life sequences of

events. Examples include the way ants and bees search for food and the annealing process

associated with cooling heated metal. Metaheuristic algorithms may not be problem

specific. Examples of metaheuristic algorithms include SA, TS, GA, ABC, Ant colony etc.

Metaheuristic algorithms need to find a good balance between exploring and exploiting the

local neighbourhood structures of the solution space (Syam and Al-Harkam,

2010).

Exploration involves looking for more ‘promising’ local neighbourhood structures. These

‘promising’ areas may contain improved solutions. Exploitation involves searching within

a local neighborhood search area in order to find its local optimum. Looking for a good

balance between exploration and exploitation means that an algorithm should quickly

determine promising local neighbourhood structures but must not spend too much time

searching for local optima (Syam and Al-Harkam, 2010).

In Computer Science and Mathematical optimization, a metaheuristic optimization is a

higher level procedure or heuristic designed to find, generate, or select a heuristic (partial

search algorithm) that may provide a sufficiently good solution to an optimization

problem, especially with incomplete or imperfect information. Metaheuristic is a method

used to solve very general classes of problems. It combines objective functions of heuristic

41

in an abstract and efficient manner usually without utilizing deeper insight into their

procedure, i.e. by treating them as black – box procedures. The word “Meta” means

beyond or higher level. Metaheuristic algorithms can be classified as either local search

algorithms or population based algorithms (Bum and Roli, 2001). Examples of local search

algorithms are Simulated Annealing, Tabu Search, Greedy Randomized Adaptive Search,

Hill Climbing and Variable Neighbourhood Search, among others. On the other hand,

examples of Population-Based Algorithms are Genetic Algorithm, Scatter Search, Ant

Colony, Artificial Bee Colony, Particle Swarm Optimization and Memetic Algorithms,

among others.

2.10. Descriptions of Local Based Algorithm

i. Simulated Annealing Algorithm

Simulated Annealing (SA) is a generic probabilistic metaheuristic for the global

optimization problem of locating a good approximation to the global optimum of a

particularfunction in a broad search space. It is regularly employed when the search space

is discrete. For certain

problems, simulated annealing may be more efficient than exhausted enumeration

provided that the goal is only to find an acceptable good solution in a fixed amount of time

rather than the best possible solution.

The name, an inspiration, comes from annealing in metalunary, a teaching involving

heating and controlled cooling of a material to increase the size of the crystal and decrease

their defect. Both attributes belong to the material that depend on its thermodynamic free

energy. This notion of slow cooling is implemented in the simulated Annealing algorithm

as a slow decrease in probability of accepting worse solution as it explores the solution

space. Accepting worse solution is a fundamental property of metaheuristics because it

42

allows for a more-extensive search for the optimal solution. Simulated annelling searching

for a maximum objective is to get the highest point.

ii. Tabu Search Algorithm

Tabu-search is a metaheuristic that attempts to guide the search in a systematic and

intelligent way by using flexible and adaptive memory structure and some intensification

and exploration strategies (Glovor et al. 1986 and 1993; Glovor and Laguna 1997; Hasen

(1986). The major components of tabu search are: short term memory, long term memory

and intensification and diversification strategies.

Short-Term Memory:- is used to forbid revisiting solution and then avoid cycling and

being trapped in poor local optima.

Long-term Memory:- Is used as a type of learning procedure to generate intensification

and diversification strategies. Long-term memory is employed to collect information

during the overall search process that permits the identification of common properties in

good visited solution and also to attempt to visit solution with diverse properties from

already visited. The implementation of both short term and long term memory is based on

four principles.

1. Recency:- is an indication of how recent it was that certain solution were visited.

2. Frequency:- is an indication of how often solution was visited.

3. Quality:- refers to keeping information about visited solution with good fitness

values of identifying good solution component and simulate more intensive search

in promising areas of the solution space.

4. Influence:- Is used to identify those change induced in the solution structure that

has been proved to be more beneficial.

43

iii. Variable Neighbourhood Search

Maldenovic and Itensen (1997) Variable Neighborhood Search (VNS) is based on the idea

of employing multiple neighbourhood structures in the process of local search. VNS

algorithm tries to exploit the motion that a local optimum with respect to a single

neighbourhood structure may not necessarily be optimal from the point at another

neighbourhood structure. However, a global optimum of a problem is locally optimal in all

neighbourhoods irrespective of the neighborhood structures used. In a VNS, a fair amount

of different neighbourhood structures that represent different areas in the search space is

desired. The intensification of the search can be satisfied via a local search within a single

neighborhood while diversification may be achieved by systematically switching to

different neighborhood structures.

The basic of VNS algorithm is usually divided into three (3) stages.

1. Shaking stage

2. Local search stage

3. Move stage

The Neighborhood structure list N (which consists of neighborhood Nk) is sorted in order

from index K = 1 to K = Kmax.

- Shaking Stage:- A random solution is created by using the neighborhood structure

Nk starting with K = 1. The solution in shaking stage is improved by local search

operator using this neighborhood structure Nk. If the new local optimum solution is

better than the incumbent solution, then this new solution is accepted.

- Move Stage:- If the solution cannot be improved with this neighborhood Nk the

algorithm switches to the next neighbourhood (Nk + 1) in the neighbourhood list.

If none of the neighbourhood structure is able to improve the solution x, then

neighbourhood index is reset back to k = 1, and the algorithm continues with a new

random solution generated by the shaking stage. The VNS algorithm continues

until a pre-determined termination criteria is met.

44

iv. Greedy Randomised Adaptive Search Procedure Algorithm

Greedy Randomized Adaptive Search Procedure (GRASP) (Resende Ribecro, 2003) is a

multi start metaheuristic in which every iteration of the search comprises of two stages;

which are construction stage and local search stage. A feasible solution is generated in the

construction phase or stage and this solution is improved to a local optimal by means of a

local search operator. The initial construction phase of every iteration may be much more

complex than just randomly picking a new point in the search space. According to

Resende, (1922), this was described as an iterative construction process where a particular

element (gene) is “added” at a time where the elements to be added are chosen with

respect to a greedy function. Here, not necessary the best possible all element is sent but

one of the top candidates is selected randomly. After the initial solution is generated this

way, a local search is applied to refine it.

v. Hill Climbing Algorithm

Hill climbing (HC) (1780) is an old and simple search and optimization algorithm for

single objective function F. In principle, hill climbing algorithms perform a loop in which

the currently known best solution individual p* is used to produce one offspring P-new. If

this new individual is better than its parent, it replaces it, then the cycle starts all over again

in this sense. It is similar to an evolutionary algorithm with a population size of 1.

Although the search space g and the problem space x are most often the same in hill

climbing, we differentiate them in algorithm for the purpose of generality. Furthermore,

Hill climbing usually employs a parameter less search operation to create the first solution

candidate and from there on, unary operation to generate the offspring, without losing its

generality. This makes use of the reproduction operation from evolutionary algorithm.The

major problem associated with Hill climbing is premature convergence, for example it gets

easily stuck on a local optimum. It make use of the best known solution candidate x* to

45

look for new point in the problem space x. Hill climbing uses a unary reproduction

operation similar to mutation in evolutionary algorithm. It should be noted that Hill

climbing can be implemented using deterministic approach if the neighbour sets in search

space G.

2.11Population Based Algorithms

i. Genetic Algorithm (GA)

Genetic Algorithm (GA) were in essence suggested by Holland in his book, Adaptation in

Natural and Artificial System (Holland, 1975). Nevertheless, the ideas of using evolution

and recombination for optimization were suggested even earlier by Bremerman, (1962). A

genetic algorithm is a population based techniques that is based on principles of natural

evolution (Goldberg, 1989; Man et al.1999; Michalewlez, 1999). The major concept in

genetic algorithm is to generate a population of individuals and then, during a number of

iterations (generations) to evolve this population by means of self-adaptation and

recombination.

1. Initialize population

2. Find fitness of population

3. While (termination criteria is reached) doparent selection

4. Crossover with probability pc

5. Mutation with probability pm

6. Decode and fitness calculation

7. Survivor selection

8. Find best

9. Return best

iii. Particle Swarm Optimization Algorithm

46

\Particle swarm optimization algorithm (PSO) is a biologically inspired computational

search and optimization technique developed in 1995 by Eberhart and Kennedy based on

the social behaviour of birds flocking or first schooling. Normally, a flock of animals that

have no leaders will find first fort by random, follow one of the members of the group that

has the closest position to a food source (potential solution). The flock achieves its best

condition simultaneously through communication among members who already have a

more beneficial situation. Animal that has a better condition will inform its flock and the

others will simultaneously move to the place. This would happen repeatedly until the best

condition or a food source is discovered. The procedure of PSO algorithm in discovering

optimal value follows the work of this animal society. Particle swarm comprises of a

swarm of particles, where particle represents a feasible solution.

iii. Scatter Search Algorithm

Scatter Search (SS) was first introduced in Glover (1977) as a heuristic for integer

programming. In the original proposal, solutions are purposely (i.e. non-randomly)

generated to take account of characteristics in different parts of the solution space. Scatter

search orients is explorations systematically relative to a set of reference points that

normally comprises of good solutions obtained by previous problem solving attemps,

where criteria for “good” are not restricted to objective function values, and may apply to

sub collection of solutions rather than to a particular solution as in the case of solution that

differs from one another according to particular specification. The scatter search template

(Glover 1998) has served as the main reference for most of the scatter search

implementations to date. The dispersion patterns created by these designs have been found

useful in several application area. (Lagunna, 2003).

iv. Ant Colony Algorithm

47

Ant behaviour was the inspiration for the metaheuristic optimization technique, in

computer science and operations research. The Ant colony optimization algorithm (A.C.O)

is a probabilistic technique for solving computational problems which can be used in

finding good paths through graph.It is a swarm intelligence optimization method. In the

natural world, ants generally wander randomly, and upon finding food go back to their

colony while laying down pheromones trails. If other ants find such path they are likely

not to keep travelling at random but instead follow the trail, returning and reinforcing it if

they finally find food. Overtime, however the pheromones trails start to evaporate, this

reducing its attractive strength. The more time it takes for an ant to travel down the path

and back again, the more time the pheromones have to evaporate. A shortest path gets

matched over more frequently and thus the pheromones density becomes higher on shorter

path than longer ones.

Pheromones evaporation has the advantage of avoiding the convergence to a local optimal

solution, if there were no evaporation at all, the path chosen by the first ant would tend to

be excessively attractive to the following ones. In such a case, the exploration of the

solution space would be constrained. Therefore, when one ant finds a good path from the

colony to a food source, other ants are more likely to follow that path and (positive

feedback) eventually leads to all the ants following a single path. The concept of the ant

colony algorithm is to mimic this behaviour with “simulated ant” walking around the

graph representing the problem solved.

v. Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) algorithm is a swarm based meta-heuristic algorithm that was

introduced by Karaboga in 2005 for optimization of numerical problem. It was inspired by

the intelligent foraging behaviour of honeybees. The algorithm is specially based on model

for the

48

foraging behaviour of honey bee colonies.The models comprises of three important

components, namely Employed and unemployed foraging bees, and food source. The first

two components employed and unemployed foraging bee search for rich food source

which is the third component, close to their hive. The model also defines two leading

models of behaviours which are important for self-organizing and collective intelligence-

recruitment of foragers to rich food source leading to a positive feedback, and

abandonment of poor source by foragers causing negative feedback.

Artificial forager bees (agents) search for rich artificial food source (good solution for a

given problem). To apply ABC, the considered optimization problem is first converted, the

problem of finding the best parameter vector which minimizes an objective function, then

the artificial bee randomly discovers a population of initial solution vectors and then

iteratively improves them by employing the strategies moving towards better solution by

means of a neighbourhood search mechanism while abandoning poor solution.

The ABC metaheuristic contains three groups of bees.

1. Employed Bee-: employed bee associated with specific good source

2. On looker Bee-: watching the dance of employed bees within the hive to choose a

food source.

3. Scout-: searching for food source randomly both onlooker and scouts are called

unemployed bees. Initially, all food source position are discovered by the scout

bees, later on, the nectar of food source are exploited by employed bee and on

looker bee and this continual exploration will finally cause them to become

exhausted. The employed bee which was exploiting the exhausted food source

49

became a scout bee in search of further food source once again. In other words, the

employed, whose food source had been exhausted, became a scout bee.

In ABC the position of food source represents a possible solution to the problem andthe

nectar amount of food source corporate to the quality (fitness) of the associated solution,

the number of employed bee is equal to the number of food source (solution) because

every employed bee is associated with just only one food source.

50

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

The research methodology involves five phases, through which the research objectives

were achieved. These include:

i. Collection of Dataset for the Faculty of Communication and Information

Sciences, this include the measurement of all the room to be allocated, total

number and cadre of academic staff, amenities available in the offices including

toilet facility.

ii. Mathematical Modelling: This stage mathematically modelled the office space

allocation problem in terms of the objective function and the constraints. This

mathematical model serves as one of the contributions to knowledge, of this

research work.

iii. Adaptation of ABC, Genetic and Tabu search meta-heuristic algorithm for the

office space allocation problem (OSAP). This stage adopted the Artificial Bee

Colony, Genetic and Tabu search to the problem of OSA.

iv. Hybridized ABC and Tabu Search algorithms. This stage hybridized the

features of these two algorithms to enhance the performance. Also, a

comparative study of the hybrid, ABC, Genetic and Tabu Search(in iii above)

was done in this phase.

v. Comparative evaluation of the hybridized and the existing algorithms (TABU,

Genetic and ABC) using Halstead’s complexity measure(Program vocabulary,

Program length, Program volume, Program intelligence and program

difficulty).

51

Figure 3.1: Block Diagram for Research Methodology

3.2The Mathematical Model of the Objective Function

Objective function = Usage penalty + Soft Constraint Penalty

Usage Penalty = Under-use + 2 x overuse

Objective Function = Under-use + 2overuse + Soft Constraint Penalty

Maxz= ΣMaxCr – ΣmerSe + 2ΣMerSe – Cr + Σwij Σmij

 = ΣMaxCr + ΣMerSe – Cr + Σwij Σmij

Max Cr= Maximum capacity of a room

OSA MODELING

ADAPTATION OF ABC, GENETIC AND

TABU TO OSAP

HYBRIDIZED ABC AND TABU SEARCH

ALGORIITHM

COMPARATIVE EVALUATION OF

PROPOSED AND EXISTING

ALGORITHM

52

Under Use = Addition of maximum capacity of a room – Addition of member of entity

allocated to a room multiply by size of the entity.

Soft Constraint = 2 multiply (*) by addition of member of entity to a room multiply (*)

by size of the entity minus (-) capacity of the room plus(+) addition of penalty weight for

the violation of soft constraint in particular rows and colon by addition of member of

entity in a particular row and particular colon.

Weight of Summation of Violated Constraint

∑ ∑ Wij

n

j=1

n

l=1

= Wi1 + Wi2 + Wi3 … … … Win

All Allocated:

If each entity e ϵ E that is: must be allocated to exactly one room r ∈ 𝑅

Addition of member entity allocated to a room is equal to 1 and each room will

represent a fraction for an entity.

∑ 𝑚𝑒𝑟 = 1 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑒𝑛𝑡𝑖𝑡𝑦 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟⍱ 𝑟 ∈ 𝑅

Near by:

If e1 and e2 have to be allocated to nearby room then

Member of entity 1 is less than addition of all other member to be allocated to

nearby room is less than 1

Me1r < Σme2< 1 ⍱ 𝑟 ∈ R

Capacity:

Entities in a group have to be allocated on the basis of cadre.

Mer1 + ΣmBr = 1 ⍱ 𝑟 ∈ R

Mer1 = 1 - ΣmBr⍱ 𝑟 ∈ R

53

Member of entity in a room = one minus addition of all other staff (Br) to be allocated to

a room.

Member allocated to a room is less than addition of all other members to be allocated to

the other rooms is also less than one

Not Sharing

If entity e should not share a room with any other entity.

The Hard constraint states that Professor should not share a room.

This implied that:

Mer = 1 ⍱ 𝑟 ∈ R

Σme1r = 1

That is all professor must occur have and only one room.

Away from:

Entities e1 and e2 have to be allocated in a room separately to a room away from

each other. This implied that :

Mer = 1 → ΣmBr = 0

Same room

Entity e1 and e2 have to be allocated to the same room.

Me1r = 1 → Me2r= 1⍱ 𝑟 ∈ R

Where

Soft Constraint = is the weighted sum of the Penalty due to the violation of the

Constraint

Se = is the cadre of the entity e

Cr = is the capacity of room r

Wij = Penalty weight for the violation of Soft Constant

R = Set of rooms

E = Set of entities

54

e1 = element of E

Mer = member of entity allocated to room

Mij = member of entity in a particular room.

Maxz = ΣMaxCr + ΣMerSe – Cr + Σwij Σmij

 Subject to:

∑ 𝑚𝑒𝑟 = 1 All Allocated

Σme2< 1 Near By

Mer1 + ΣmBr = 1 Capacity

Mer = 1 Not Sharing

ΣmBr = 0 Away From

Me2r = 1 Same Room

55

Table 3.1: Penalty Weight for each constraint (Ozgur and Landa 2011)

ID TYPE OF

CONSTRAINT

DESCRIPTION OF

THE CONSRAINT

PENALTY

WEIGHT

1 Allocation All entity should be

allocated

20

2 Same room Entity e1 and e2 can

be in a room

10

3 Not sharing Entity e should not

share a room

50

4 Nearby Entity e1 and e2

should be in a

nearby room

10

5 Away from Entity e1 and e2

should be away

from one another

10

6 Capacity A room capacity

must be maintain

10

56

3.3 Description of the Algorithm

3.3.1 Tabu Search algorithm

Figure: 3.2 Tabu search algorithm flowchart

Data Collection

Start

Clustering of

entity/room

Generate initial value

for entity and initialize

Tabu list

Select Entity

N

o

Allocate entity

Ye

s

No Update Tabu list

and memorize

entity

End

Ye

s

Entity

not in

Tabu

Entity

/Roo

m Fit

Ye

s

No

MC

N?

57

Step 1: Prepare inputs

Step 2: Initialise tabuList

Step 3: Initialise program parameters

Step 4: Generate Initial Solution and initialise

Step 5: Calculate penalties for each solution

Step 6: Save best solution

Step 7: Do until maxCycle

 Step 7.1 for each solution

 Step 7.2 randomly select a neighbour solution and a staff

 Step 7.3 DoWhile (combination of staff and neighbour allocation is not

tabuList)

 Step 7.3.1 randomly select a neighbour solution and a staff

 Step 7.4 allocate staff to selected office

 Step 7.5 calculate the penalty for the modified solution

 Step 7.6 if new penalty < old penalty

 Step 7.6.1 replace allocations in solution with the updated one

 else

 Step 7.6.2 add new allocation to tabuList

 Step 7.6.3 reverse the change made

 Step 7.7 Keep best "solution" in memory

Step 8 Output results

Figure 3.3 Tabu Search algorithm as used for the OSAP

3.3.2 ABC Algorithm

58

Figure 3.4: ABC algorithm flowchart

Data Collection

Start

Clustering of entity/room

Generate initial value for entity

Select Entity

Allocate entity using ABC

No

Yes

End

dd
Yes

No
Entity

/Room

Fit

MCN?

59

Step 1: Prepare inputs

Step 2: Initialise program parameters

Step 3: Generate Initial food source and initialise

Step 4: Calculate penalties for each food source

Step 5: Save best food source

Step 6: Do until maxCycle

 Step 6.1 SendEmployedBees

 Step 6.2 CalculateProbabilities

 Step 6.3 SendOnlookerBees

 Step 6.4 Save best food source

 Step 6.5 SendScoutBees

Step 7 Output results

Figure 3.5 ABC ALGORITHM AS USED FOR THE OSAP

60

3.3.3 Genetic Algorithm

Figure 3.6: Genetic algorithm flow chart

Data Collection

Start

Initialize of population entity

room

Generate population for entity

Select Population

Allocate population using

GENETIC

No

Yes

End Yes

No

Population/

Room Fit

MCN?

Create

Mutation

61

Step 1: Prepare inputs

Step 2: Initialise program parameters

Step 3: Generate Populations

Step 4: Create Mutations

Step 5: Calculate penalties for each mutation created

Step 6: Save fitted mutation

Step 7: Do until maxCycle

 Step 7.1 SelectionOperation

 Step 7.2 CalcSelections;

 Step 7.3 CrossOverOperator

 Step 7.4 MutationOperator

Step 7.5 Save fitted mutation

Step 7 Output results

Figure 3.7: Genetic Algorithm as used for the OSAP

62

3.4 Hybridized algorithm

Figure 3.8: Hybridizes (tabc) flowchart

Data Collection

Start

Clustering of entity/room

Generate initial value for entity

and initialize tabu list

Select Entity

No

Allocate entity using ABC

Yes

No
Update Tabu list and

memorize entity

Yes
End

Yes

No
Entity not

in Tabu

Entity

/Room Fit

MCN?

63

Step 1: Prepare inputs

Step 2: Initialise tabuList

 Step 3: Initialise program parameters

 Step 4: Generate Initial food source and initialise

 Step 5: Calculate penalties for each food source

 Step 6: Save best food source

 Step 7: Do until maxCycle

 Step 7.1 SendEmployedBees(tabuList)

 Step 7.2 CalculateProbabilities

 Step 7.3 SendOnlookerBees(tabuList)

 Step 7.4 Save best food source

 Step 7.5 SendScoutBees(tabuList)

Step 8 Output results

Figure 3.9: Hybridized (tabu-abc) Algorithm as used for the OSAP

64

1. //Prepare inputs

 input: entity, penalty, room, staff, n, MCN, maxTrialLimit

2. //Initialize parameters

 Tabulist = 0, X = (x1, x2, x3...xn), trialLimit = 0

3. //Iterate through n

 Do

 x = randomly generated solution entity/room from the solution space

 //Evaluate x using ABC and Iterate through MCN

 Do

 //Send Employee bees

 y = check for neighbour solution in x

 if y is not in solution x then

 x = change entity/room in the solution space

 //Calculate penalty

 penalty p = penalty

 else

 //increase trialLimit

 trialLimit = trialLimit + 1

 //Send Onlooker bees

 w = check for neighbour solution in x

 if w is not in solution x then

 x = change entity/room in the solution space

65

 //Calculate penalty

 penalty p = penalty

 else

 //increase trialLimit

 trialLimit = trialLimit + 1

 //Get fitness

 Compute Fitness for x = x* (x1*, x2*, x3*...xn*)

 // Send Scout Bee

 if trialLimit >= maxTrialLimit

 //test for fitest solution in tabulist

 if x* = tabulist then

 //Perform tabulist update

 tabulist = x*

 else

 //Perfrom allocation for x

 x = x*

 Until MCN

 Until n

4. Stop

Figure 3.10: New Hybrid (TABU-ABC) Metaheuristic Algorihtm

66

3.5Halstead Complexity Measures

Halstead algorithms have measurable characteristics analogous to physical laws.The

model is based on four different parameters:

n1: the number of distinct operators (instruction types, keyword) in a program, n2: the

number of distinct operands (variables and constant).

N1: the total number of occurrences of the operators,

N2: the total number of occurrences of the operands.

these numbers, several measures can be calculated:

Program vocabulary n = n1+ n2 (3.1)

Program length N = N1+ N2 (3.2)

From the four counts, a number of useful measures can be obtained. The number of bit

required to specify the program is called volume (V) of the program and is obtained

through equation 3.3

V = N*log2n (3.3)

The program difficulty level (L). Which is the difficulty of understanding a program, is

calculated by equation 3.4.

L=(2n2)/(n1N2) (3.4)

The intelligence content of a program (I) can be calculated by equation 3.5.

I = L* V (3.5)

In an attempt to include the psychological aspects of complexity in the measures.

Halstead studied the cognitive processes related to the perception and retention of simple

stimuli. In his model, the number of discriminations made in the preparation of a

program called effort (E) is given by equation 3.6

 E = V/L (3.6)

The memory used is referred to as program memory size which is been measure in

kilobyte(KB) is given by equation 3.7

67

M = Total memory-(free+buffer+cache) (3.7)

The total execution time of the program is given in equation 3.8

T= E/18 (3.8)

The total number of bugs in the program is measure in equation 3.9

No of bugs = V/3000.

3.6 Data set for Faculty of Communication and Information sciences as used by

OSAP

See APPENDIX E

68

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

 This chapter discuss the implementation and result of the three metaheuristic algorithms

together with the hybridized algorithm, the result was evaluated Using Halstead

Complexity measure. The algorithms were implemented using C# programming language

with MySQL database. The program consist of six class/module(Staff, Office, allocation,

solution, MySQL database, input set).

The program randomly generate the solution and start comparing the solution to get the

best solution, the weigth of the penalty violated is calculated by checking each allocation

against each constraint to know whether or not the constraints are violated.

4.2.Implementation

See Appendix D

69

4.2. Experimental Results

4.2.1 Tabu Algorithm

Table 4.1: Result of TABU Algorithm for the six runs.

PARAMETER RUN1 RUN2 RUN3 RUN4 RUN5 RUN6

RUNTIME /SEC

1106.40 1111.48 1094.55 1280.61 1263.57 1532.64

MEMORY

USED

(KB)

8951 17260KB 25602 33893 42162 50612

PENALTY

WEIGHT(Count)

4030 3950 3880 4170 4070 4120

Considering the run time, memory used and the penalty weight of each of the runs. The third

run gives the best result, in term of run time. It returned the least run time of 1094.55 seconds,

25602kilobyte and penalty weight of 3880count which is the least penalty in all the six runs.

The sixth run returned the worse run time of 1532.64 seconds, 50612kb and 4120 penalty

weight.

4.2.2 ABC Algorithm

Table 4.2: Result of ABC algorithm for six runs.

PARAMETER RUN1 RUN2 RUN3 RUN4 RUN5 RUN6

RUNTIME

/SEC

3039.25 3115.20 3235.94 3034.79 3096.62 3167.15

MEMORY

USED

664KB 666KB 666KB 666KB 666KB 666KB

PENALTY 1640 1640 1460 1380 1460 2490

70

WEIGHT

Considering the run time, memory used and the penalty weight of each of the runs. The fouth

run gives the best result, in term of run time. It returned the least run time of 3034.79 seconds,

666 kilobyte and penalty weight of 1380count which is also the least penalty in all the six runs.

While the third run returned the worse time of 3235.94 seconds,666kb and 1460 penalty

weight.

4.2.3 Genetic Algorithm

Table 4.3: Result of Genetic Algorithm for six runs.

PARAMETER RUN1 RUN2 RUN3 RUN4 RUN5 RUN6

RUNTIME

/SEC

4368.06

4293.79 4306.61 4193.06 4185.75 4190.71

MEMORY

USED(KB)

648 650 650 650 650 650

PENALTY

WEIGHT

1760 1960 1890 1670 2020 1730

Considering the run time, memory used and the penalty weight of each of the runs. The fifth

run gives the best result, in term of run time. It returned the least run time of 4185.75 seconds,

650kilobyte and penalty weight of 2020count. While first returned the worse run time of

4368.06seconds, 648kb and 1760 penalty weight.

71

4.2.4 Hybridized Algorithm

Table 4.4 Result of Hybrid Algorithm for six runs.

PARAMETER RUN1 RUN2 RUN3 RUN4 RUN5 RUN6

RUNTIME /SEC

666.21 692.03 661.32 561.82 563.35 555.04

MEMORY

USED(KB)

688 689 692 692 695 697

PENALTY

WEIGHT(COUNT)

3830 3890 3980 3800 3850 3960

Considering the run time, memory used and the penalty weight of each of the runs. The sixth

run gives the best result, in term of run time. It returned the least run time of 555.04 seconds,

697kilobyte and penalty weight of 3960. While run two returned worse time of 692.03

seconds, 689kb and 3890 penalty weight.

Considering all the best run for each of the adapted algorithms. The Hybridized algorithm

returned the best run time (least) of 555.04 as against 1094.55 seconds of TABU search,

3034.79 seconds of ABC and 4185.75 seconds of Genetic algorithm. The Genetic algorithm

has the highest run time of all the algorithms.

72

4.2 Comparision of the Results

Table 4.5: Result of the first run for all the algorithm.

At the first run, the hybridized algorithm outperforms the other algorithms in the processing

time. While the hybridized used 666.21seconds which is 2373.04(64.04%) seconds less than

ABC’s time of 3039.25 seconds, 439.83(24.83%) less than TABU’s time of 1106.40 seconds

and 3701.85(73.53%) seconds less than genetic time of 4368.06 seconds. The time complexity

is the major consideration of metaheuristic algorithm as discussed in Landa Silva 2003 PhD

thesis and Ulker 2013 PhD thesis among other researchers.

Table 4.6: Result of the second run for all the Algorithm.

RUN1 HYBRID(AB

C-TABU)

ABC TABU GENETIC

RUN TIME

(seconds)

666.21 3039.25 1106.40 4368.06

MEMORY

USED(KB)

688 664 8951 648

PENALTY

WEIGHT

3830 1640 4030 1760

RUN2 HYBRID(AB

C-TABU)

ABC TABU GENETIC

RUN TIME 692.03 3115.20 1111.48 4293.79

73

At the second run, the hybridized algorithm outperforms the other algorithms in the processing

time. While the hybridized used 692.03seconds which is 2423.17(63.65%) seconds less than

ABC’s time of 3115.20seconds, 419.45(23.26%) less than TABU’s time of 1111.48 seconds

and 3601.76(72.24%) seconds less than genetic time of 4293.79 seconds.

Table 4.7 Result of the third run for all the algorithm.

At the third run, the hybridized algorithm outperforms the other algorithms in the processing

time. While the hybridized used 661.32seconds which is 2574.46(66.06%) seconds less than

ABC’s time of 3235.94 seconds, 433.23(24.67%) less than TABU’s time of 1094.55 seconds

and 3645.29(73.38%) seconds less than genetic time of 4306.61 seconds.

MEMORY USED 689KB 666KB 17260KB 650KB

PENALTY

WEIGHT

3890 1640 3950 1960

RUN3 HYBRID(AB

C-TABU)

ABC TABU GENETIC

RUN TIME 661.32 3235.94 1094.55 4306.61

MEMORY USED 692KB 666KB 25602KB 650KB

PENALTY

WEIGHT

3980 1460 3880 1890

74

Table 4.8: Result of the fouth run for all the Algorithm.

At the fourth run, the hybridized algorithm outperforms the other algorithms in the processing

time. While the hybridized used 561.82seconds which is 2472.97(68.76%) seconds less than

ABC’s time of 3034.79 seconds, 718.79(53.90%)less than TABU’s time of 1280.61 seconds

and 3631.24(76.37%) seconds less than genetic time of 4193.06 seconds.

Table 4.9: Result of the fifth run for all the algorithm.

At the fifth run, the hybridized algorithm outperforms the other algorithms in the processing

time. While the hybridized used 563.35seconds which is 2533.27(69.22%) seconds less than

RUN4 HYBRID(AB

C-TABU)

ABC TABU GENETIC

RUN TIME 561.82 3034.79 1280.61 4193.06

MEMORY USED 692KB 666KB 33893KB 650KB

PENALTY

WEIGHT

3800 1380 4170 1670

RUN5 HYBRID(AB

C-TABU)

ABC TABU GENETIC

RUN TIME 563.35 3096.62 1263.57 4185.75

MEMORY USED 695KB 666KB 42162KB 650KB

PENALTY

WEIGHT

3850 1460 4070 2020

75

ABC’s time of 3096.62 seconds, 700.22(38.33%) less than TABU’s time of 1263.57 seconds

and 3622.24(76.28%) seconds less than genetic time of 4185.75seconds.

Table 4.10: Result of the sixth run for all the algorithm.

At the sixth run, the hybridized algorithm outperforms the other algorithms in the processing

time. While the hybridized used 555.04seconds which is 2612.11(70.18%) seconds less than

ABC’s time of 3167.15 seconds, 977.60(46.83%) less than TABU’s time of 1532.64 seconds

and 3635.67(76.61%) seconds less than genetic time of 4190.71 seconds.

Hybridisation of algorithms brings together the strengths of the individual algorithms and also

few of the weakness (Nicholas, 2012) as shown in the values returned by the algorithms

discussed.

 Furthermore, the parameters set for each of the algorithms as stated above were set only to

generate preliminary results. For instance, the number that was set for foraging cycle for each

run (100 in this case) is usually in hundreds. This will exponentially increase the execution

time of the algorithms to hours, thereby also increasing the difference between the execution

time of the hybridised algorithm and the execution time of other algorithms.

RUN6 HYBRID(AB

C-TABU)

ABC TABU GENETIC

RUN TIME 555.04 3167.15 1532.64 4190.71

MEMORY USED 697KB 666KB 50612KB 650KB

PENALTY

WEIGHT

3960 2490 4120 1730

76

4.3 Halstead Complexity measures Result

Table 4.11: Parameters used for measuring the computational complexity

Parameter ABC TS GA HYBRID

No of distinct operators (n1) 27 25 21 22

Total number of operators (N1) 1290 1143 1379 1107

No of distinct operands (n2) 30 21 23 21

Total number of operands (N2) 638 625 719 539

Length of program (N= N1+N2) 1928 1768 2098 1646

Program Vocabulary (n= n1+n2) 57 46 44 43

Table 4.11 shows the parameters considered and their values used in the computation of the

four algorithms complexity.

77

Table 4.12: Summary of Data Obtained using Healstead Parameters.

PARAMETERS ABC TS GA HYBRID

Program Length N=N1+N2 1928 1768 2098 1646

MemoryRequirement(volume)

V = N*log2n

11245 9765.5 11453 8931.6

Program Difficulty 287.1 372.02 328.23 282.33

Program Effort

L=(2n2)/(n1N2)

3228672 3633057 3789614 2521697

ProgramSize(KB) M=Total

Memory-(free+buffers+

Cache)

667KB 650KB 29747KB 692KB

Execution Time 3114.83s 3601.00s 1039.54s 616.63s

Lines of Code T=E/18 658 739 869 602

Intelligence of a program 3228439.5 3632998.3 3759218.5 2521658.6

No of bugs B=V/3000 3.75 3.98 3.82 2.98

Table 4.12 shows the comparison of the four algorithms, the computed results are presented in

the table. It should be noted that the four algorithms considered produced a feasible solutions

as shown in the result table in appendix

78

Figure 4.1: Bar chart showing Program effort of the four Algorithms

Figure 4.1 shows the graphical representation of the programming effort of all the algorithms

and the hybrid has the least effort when compared to the Tabu, ABC and Genetic. Table 4.13

shows the program effort of ABC, TS, GA and the developed hybrid to be 3228672, 3633057,

3789614 and 2521697 respectively. This is the quantitative measure of the effort involved in

the implementation of the four algorithms.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

ABC TS GA HYBRID

Program Effort

79

Figure 4.2: Bar chart showing Program length of the four Algorithms

This depicts that the program length for ABC, TS, GA and hybrid algorithms are 1928, 1768,

2098 and 1646respectively. The graph shows that the hybridised algorithm has the least lines

of program for its allocation.

0

500

1000

1500

2000

2500

ABC TS GA HYBRID

Program Length

80

Figure 4.3: Bar chart showing Program length of the four Algorithms

This depicts that the program intelligence for ABC, TS, GA and hybrid algorithms are

3228439.5, 3632998.3, 3759218.5 and 2521658.6 respectively. The graph shows that the

hybridised algorithm has the best program in term of intelligence for its allocation.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

ABC TS GA HYBRID

Intelligence of a program

81

Figure 4.4: Bar chart showing memory requirements (Volume) of the four Algorithms

Figure 4.4 depicts the Average Memory Requirement of the four algorithms which shows that

ABC, TS, GA and the developed hybrid takes 11245.0, 9765.5, 11453.0 and 8931.6. It

indicates that the hybrid utilizes less average memory space in terms of memory requirement

to generate the optimum solution.

0

2000

4000

6000

8000

10000

12000

14000

ABC TS GA HYBRID

Memory Requirement

82

Figure 4.5: Bar chart showing Program difficulty of the four Algorithms

Difficulty of understanding the four programs are presented in figure 4.5 as 287.1, 372.02,

328.23 and 282.33 for ABC, TS, GA and the developed hybrid respectively.The most difficult

algorithm is the Tabu search

0

50

100

150

200

250

300

350

400

ABC TS GA HYBRID

Program Difficulty

83

Figure 4.6: Bar chart showing number of bugs of the four Algorithms

Figure: 4.6 chart shows number of bugs in each of the program as 3.75, 3.98, 3.82 and 2.98

respectively. Tabu search algorithm has the highest no of bugs while the developed hybrid has

the least.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ABC TS GA HYBRID

No of bugs

84

Figure 4.7: Bar chart showing execution time in second of the four Algorithms

The chart average execution time of theABC, TS, GA and hybrid algorithms are 3114.83s,

3601.00s, 1039.54s and 616.63s respectively.The developed hybrid returns a feasible office

space allocation as an output in a lesser time compared with other algorithm.

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

ABC GA TS HYBRID

Execution Time

85

Figure 4.8: Bar chart showing memory used of the four Algorithms

Figure 4.8 depicts that the program size of ABC, TS, GA and hybrid algorithms are 667KB,

650KB, 29747KB and 692KB respectively, which shows that TS utilizes the least memory

than ABC, GA and the developed hybrid.

0

5000

10000

15000

20000

25000

30000

35000

ABC GA TS HYBRID

Memory Used

86

Figure 4.9: Bar chart showing lines of code of the four Algorithms

Figure 4.9 specify the lines of code which is the total number of lines of the executable codes

in the program. It was 658, 739, 869 and 602 respectively for ABC, TS, GA and the

developed hybrid.

From all the parameters used for computation and their values, the developed hybrid algorithm

produced a feasible office space allocation using the least execution time, memory

requirements, program effort, program length, lines of code and program intelligence.

4.5 System Specification

The test on office space allocation scheduling was run on a Laptop with the following

configurations: Intel processor, Core i5, 4GRAM, 500GB HDD and Windows 8.1

0

100

200

300

400

500

600

700

800

900

1000

ABC GA TS HYBRID

Lines of Code

87

88

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary

This study present method of office space allocation automation in tertiary institution, space is

regarded as spatial resources within an organization/Institution. This research work aims at

development of hybrid meta-heuristic algorithm in solving NP-hard combinatorial office space

allocation problem (OSAP) by formulating a mathematical model for the problem, and

hybridize populated based metaheuristic algorithm (ABC) with a local based metaheuristic

algorithm (Tabu) to solve the stated problem. The OSAP has been attempted by several

researchers using different methods ranging from the mathematical method, heuristic and

meta-heuristic methods. The efficiency of these methods was based on the computational time

complexity. Meta-heuristic is considered to be one of the best methods and this is the main

focus of this research work. The work done in this research work confirmed the superiority of

the hybrid algorithm over other algorithm used, the hybridised returned lesser average time and

memory space used when compared with other algorithm. The dataset for the study was from a

primary source (Faculty of Communication and Information Sciences, University of Ilorin).

The implementation was carried out using C# programming language. The result of the OSAP

shows that the hybridized algorithm(TABC) allocate at lesser time than the ABC,Tabu and the

Gentic algorithm.

89

5.2Conclusion

The techniques and deployed were Tabu-Search algorithm (TB), Artificial Bee Colony

algorithm (ABC), Genetic algorithm and hybridized algorithms (TABC). The purpose of the

hybridization is to synergize the strengths of underlying algorithms for possible improved

performance using Time Complexity. Consider the aim of this research work, the hybridized

algorithm was able to allocate all the entities to their respective office in lesser time compare to

the other algorithm when not hybridized, this serve as an improvement on the two other

algorithms when compared independently.

5.3 Recomendation

The result of this study shows that the hybridized meta-heuristic algorithm outperformed other

algorithm as used in the literature and the use of population-based algorithm also enhanced the

performance. The researcher recommends that in future research work the use of more

hybridized algorithm should be encouraged in other to have wider bases of comparism

between several hybridized algorithms, consider more population-base algorithm in solving

OSA problem and also consider hybridised heuristic and metaheuristic as well.

5.4 Contributions to knowledge

(i) The hybridized algorithm has given a very significant improvement in terms of the

time used in the six runs, compare to other three algorithms which is the major

consideration in this study. This shows that the hybridized algorithm of ABC and

TABU Search give better result in solving Office Space Allocation Problem.

(ii) The study mathematically modelled the constraints used in solving office space

allocation problem.

90

REFERENCES

Adewumi, A.O. & Ali, M.M (2010). A multi-level Genetic Algorithm for a multi stage space

Allocation problem, Mathematical and Computer Modulling: An international journal

of computing, v.51.n.1-2, p.109-126.

Ariyo, S.A (2013) Studies of Heuristics for Hostel Space Allocation problem. Unpublished

MSc thesis Submitted to the School of Mathematics, Statistics and Computer Science,

University of Kwazulu-Nata Durban, South Africa.

Al-Betar, M.A., Awedallah, M.A., Khader,A.T, Woon, P.C., & Doush, L.Y.(2013). A

modified harmony search for office space allocation. The 6th International Conference

on Information Technolog. Malaysia: University of Sains.

Awadallah, M. A., Khader, A. T, Al-Betar, M. A. & Woon, P.C. (2012). Office-space-

allocation problem using harmony search algorithm. In T. Huang, Z. Zeng, C. Li, & C.

Leung(Eds)ICONIP (2), volume 7664 of Lecture Notes in Computer Science. (Pp. 365-

374). Springer.

Ayachi, R; kamati, M.k; Souri, A.& Borne, K. (2010). A Genetic Algorithm to solve the

container space allocation problem. International Conference on Computational

Intelligence and Vehicular System (CIVS) **LACS. Ecole Nationales des ingenieurs

de tunis Bp 37 Le Belvelere 1002 Tunis, Tunisia.

Ashram, R. (2009). Binary fuzzy goal programming for effective utilization of IT professional

model for human resources allocation in health organization. India: Institute of

Engineering and Management, Ashram Campus.

Blum, C & Roli, A.(2003) Metaheuristics in combinatorial optimization: Overview and

conceptual Comparison. ACM Computing Surveys. Vol. 35, No. 3, September 2003.

91

Burke, E. K., Cowling, P. & Landa, S. (2001a). Hybrid population-based metaheuristic

approaches for the space allocation problem. In Proceedings of the 2001 Congress on

Evolutionary Computation (CEC 2001), pp 232-239.

Burke, E.K. & Varley, D.B. (1998). Space allocation: An analysis of higher education

requirements. In E.K. Burke & M.W. Carter. (Eds.) The practice and theory of

automated timetabling II: Selected papers from the 2nd International Conference on the

practice and theory of automated timetabling. Springer, pp.20-33.

Burke, E.K., Cowling, P., Landa, S. J., & Mecolumn, B.(2001). Three methods to automate the

space allocation process in UK universities. Lecture notes in computer science.

Springer, Heldelberg (2001). Vol 2019, pp. 254-273.

Burke, E.K., Cowling, P.,& Landa, S. J.(2007) Asynchronous cooperative local search for

office space allocation .Informs journal on computing (2007) pubsonline.informs.org

 Beyrouthy, C. (2008). Models, solution methods and threshold behaviour for the teaching

space allocation problem. Unpublished Ph.D Thesis, School of Computer Science and

Information Technology, University of Nottingham.

Beyrouthy, C., Burke, E.K., McCollum, B., McMullan, P., Landa, S. & Parkes, A.J. (2009).

Towards improving the utilization of university teaching space. The journal of

operational Research Society, 60;130-143.

Bremerman, H.(1962) Optimization through evolution and recombination. Barkely: University

of California.

Bolaji, A.L, Micheal, L & Shola P.B (2017) Optimization of Office - Space Allocation

Problem Using Artificial Bee Colony Algorithm. In: Tan Y., Takagi H., Shi Y.(Eds).

Advances in Swarm Intelligence. ICSI 2017. LectureNote In Computer Science, Vol

10385. Springer, Cham.

92

Chieh, Y. & Ming,C. (2010). Applying two stages simulated Annealing algorithm for shelf

space allocation problems. Proceeding of the world Congress on engineering 2010 vol

III WCE 2010. June 30-July 2, 2010. London,UK.

Cook, A.(1971). The complexity of theorem proving procedure . Toronto: Department of

Computer Science, University of Toronto.

Eberhart ,R. (1998). Proposed inertial weight value to the original PSO Algorithm. India:

Department of Electrical Engineering, Pudue School of Engineering Technology.

Emmanuel,K. (2003). Bayesian subset simulation (BSS) on space allocation . Harvard

University. https//scholar.harvard.edu/../progressive..

Frank , A. (2015). Proposed linear programming model to solve allocation

problem.Amsterdam: Department of Computer Science, Friedrich- Alexandra-

University, Amsterdam,

Frimping, F.O. & Owusu, A. (2015). Allocation of classroom space using linear programming

(A case study of Prember Nurses Training Collge Kumasi). Journal of Economics and

sustainable Development. Vol 6.(2), 2-16.

Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability – A guide to the Theory of

NP – Completeness W. H. Freeman

Giannikos, J., El-Darzi, E. & Lees, P. (1998). An integer goal programming model to allocate

offices to staff in an academic institution. London, UK.: London Press.

Glover, F. W. & Laguna, M. (1997). Tabu search. Norwell, U.S.A Kluwer Academic

Publishers.

Goldberg, F. (1989). Introduction to genetic algorithm .Cambridge: Massachuselts Istitute 0f

technology.UK.

Hansen, M.P. (1998). Metaheuristics for multiple objective combinatorial optimization.

Unpublished PhD thesis. School of Mathematics, Statistics and Computer, University

of Kwazulu-Nata Durban, South Africa

Islam, T., Shahriar, Z., Perves, M., Hasan, M. (2016). University Time tabu generator using

93

Tabu search. Journal of Computer and Communications. 4 pp.28-37.

Jain, K. S. & Singh, P. V. (2003). Water Resource Systems Planning and Management. UK,

Elsevier Pub.

Jeel, L.O. (2013). Model and solution to campus parking space allocation problem.

International Journal of the Operational Research Society, 46(6), 713-720.

Jyoti, S. R. & Shankar, S. (2014). Genetic algorithm and hybrid genetic algorithm for space

allocation problem International Journal of Computer Application 95(4), 975-987 .

Karaboga, D. (2005). An idea based on honey bee swarm for numeric optimization.

Netherland: Computer Engineering Department, Erciyes University.

Landa Silva, J.D (2003). metaheuristics and multi objectives approaches for space llocation.

Unpublished PhD Thesis. University of Nottingham.UK.

Landa, S.J. & Burke, E.K.(2007). Asynchronous cooperative local search for the office space-

allocation problem. INFORMS Journal on Computing 19(4), 575–587

 Lee, J. (2004). A first Course in Combinatorial Optimization. Cambridge: Cambridge

University Press, UK.

Lagunna, H. (2003). Principle of scatter search algorithm . Colorado: University of Colorado

Boulder.

Mladenovic, N. & Hansen, P. (1997). Variable neighbourhood search. Journal of Computers

and Operations Research. 24(11),1097-1100.

Man, E. & Michalewlez, Y. (1999). Introduction to genetic algorithm. Cambridge:

Massachuselts Institute of Technology.

Nicholas, B. (2012). The relevance of efficiency to different theories of society: Economics of

the welfare state (5th ed.). Oxford: Oxford University Press

Nyonyi, Y. (2010). Modelling of hostel space allocation. Nigeria: African Institute for

Mathematical Sciences (AIMS).

Osman, O. & Kelly, L. (1996). Modern heuristic method.Beurit: American University of

Beurit.(AUB).

94

Ozgur, U. & Landa, S.J. (2011). A 0/1 integer programming model for the office space

allocation problem. Automated Scheduling Optimization and Planning (ASAP)

Nottingham: university of Nottingham.

Ozgur, U. & Landa S. (2012). Designing difficult office space allocation problem instance

with mathematical programming. Proceedings of the 10th International Conference on

Experimental Algorithm, Crete Greece in SEA, pp 280-291.

Ozgur, U. & Landa, S.(2012). Evolutionary local search for solving the office space allocation

problem. In WCCI 2012 IEEE World Congress in Computational Intelligence, June

10-15, 2012. Brisbane Australia pp. 3573-3580.

Ozgur, U. & Landa, S.J. (2011). Designing difficult Office space allocation problem instance

with mathematical programming with Automated Scheduling Optimization and

Planning (ASAP). Nottingham: University of Nottingham, Jubilee Campus.

Ozgur, U. (2013). Office space Allocation by using mathematical programming and

metaheuristic. Unpulished PhD Thesis, University of Nottingham, UK.

Lopes,R. & Girimonte, D. (2010). The office-space-allocation problem in strongly

hierarchized organizations. Journal of Evolutionary Computation in Combinatorial

Optimization, 60(22), 143-153.

Rayward, S., Osman, I. Reeves, C & Smith, G. D. (Eds) (1996). Modern Heuristic Search

Method. Wiley: westley Publishers.

Reeves, C. R. (Ed) (1995). Modern heuristic techniques for combinatorial problems. New

York, McGraw Hill.

Remi, D. (2009). Adaptive meta-models for crack characterization in eddy-current testing

using particle swam. France: Department of Electromagnetism Laboratories .University

of Paris.

Resende, M. G..& Ribeiro, C. C. (2003). Greedy randomized adaptive Search Procedures. In F.

Glover & G. Kochenberger (Eds) Handbook of metaheuristics (pp.219-249). Kluwer:

Academic Publishers.

95

Ritzman, L., Bradford, J. & Jacobs, R. (1980). A multiple objective approach to space planning

for academic facilities. Journal of Management Science. 25(9),895-906.

ROJAS, G.S. & TORRES, J.F. (2005). Genetic algorithm for designing bank office layouts.

19thInternational Conference on Production Research (Industrial Engineering

Department. Los Andes University. Carnera 1N ISA 10. Bogota Colombia).

Romuald, J & John S. G. (2006). A genetic programming approach to the space layout

planning problem. Key centre of Design computing. Australia: Department of

Architectural and Design Science, University of Sydney.

Sandeep,M. (2013). A review of meta-heuristic approach to solve facility layout problem.

India:Mechanical and Engineering Department, National Institute of

Technology (NIT) kurushetra, Haryana.

Syam, P. W. & Al-Harkan, M. I(2010). Comparison of three meta heurisics to optimizehybrid

flow shop scheduling problem with parallel machines. World Academy of Science,

Engineering and Technology 62 (20),10-20.

University of Michigan. Research space guidelines (2012). URL

http://www.provost.umich.edu/space/other/ResearchSpaceGuildelines.pdf.

Voss, E. (1999). Heuristic and multi-objectives Approach for space allocation.UK: University

of Nottingham.

Weise, T. (2009). Global optimization algorithms – theory and application. Retrieved from

http://www.it-weise.de/projects/book.pdf

http://www.provost.umich.edu/space/other/ResearchSpaceGuildelines.pdf
http://www.it-weise.de/projects/book.pdf

96

APPENDIX A

GENETIC.CI

S

STAF

F NO

DEPT. CADRE RUN1 RUN

2

RUN

3

RUN

4

RUN

5

RUN

6

1 TELECOM AL 30 30 30 26 30 21

2 TELECOM AL 11 26 1 8 12 17

3 ICS AL 16 18 12 7 40 14

4 ICS AL 33 39 33 38 38 2

5 ICS AL 2 38 2 32 2 30

6 ICS AL 38 38 3 2 36 33

7 COMSC AL 35 24 11 35 6 35

8 COMSC AL 6 6 39 11 6 6

9 COMSC AL 5 6 6 17 6 11

10 COMSC AL 6 11 11 6 6 6

11 MASSCO

M

AL 6 3 3 6 12 2

12 MASSCO

M

AL 3 34 36 2 35 5

13 ICS AL 1 28 2 2 38 5

14 TELECOM AL 40 38 37 34 37 36

15 MASSCO

M

AL 3 15 5 7 34 17

16 ICS AL 36 33 38 2 33 8

17 ICS AL 39 25 33 33 37 38

18 ICS GA 3 38 38 38 2 16

19 ICS GA 2 38 37 2 4 33

20 LIB L1 4 32 37 3 2 39

21 LIB L1 28 37 29 3 23 40

22 LIB L1 23 38 24 37 28 28

23 LIB L1 28 40 28 28 23 4

24 LIB L1 29 33 28 28 28 39

25 TELECOM L1 34 37 29 34 23 34

26 MASSCO

M

L1 7 7 3 3 5 3

27 COMSC L1 3 37 35 6 35 2

28 COMSC L1 39 3 3 8 39 12

29 COMSC L1 18 2 1 2 2 6

30 LIB L1 2 29 40 40 37 29

31 LIB L1 23 3 26 32 34 37

32 MASSCO

M

L1 38 34 32 37 26 3

33 LIB L1 4 34 32 4 39 17

34 ICS L2 29 36 27 36 66 5

35 COMSC L2 3 35 35 35 6 37

36 COMSC L2 6 2 2 16 12 4

37 ICS L2 2 2 39 33 38 38

38 LIB L2 37 37 37 37 37 32

39 TELECOM L2 26 39 26 37 26 5

97

40 MASSCO

M

L2 7 7 15 15 7 15

41 ICS L2 33 35 33 5 33 18

42 COMSC L2 35 3 36 3 6 35

43 MASSCO

M

L2 37 6 8 5 3 3

44 MASSCO

M

L2 37 43 31 14 31 5

45 LIB L2 36 29 37 14 29 6

46 COMSC PROF 5 2 2 2 55 2

47 LIB PROF 5 6 3 6 5 6

48 LIB PROF 3 1 3 3 64 4

49 COMSC PROF 4 4 3 2 71 5

50 COMSC READE

R

5 5 5 17 5 17

51 ICS READE

R

14 5 3 21 12 4

52 TELECOM READE

R

2 5 2 1 14 25

53 LIB READE

R

4 5 2 4 17 12

54 LIB SL 24 31 24 31 31 5

55 LIB SL 23 7 25 4 24 16

56 COMSC SL 27 5 27 27 27 2

57 COMSC SL 2 17 5 17 5 5

58 COMSC SL 17 3 6 11 12 6

59 COMSC SL 12 15 14 4 2 8

60 COMSC SL 3 27 2 14 12 17

61 COMSC SL 6 14 5 5 5 17

62 COMSC SL 5 5 5 6 5 5

63 COMSC SL 5 11 17 17 11 5

64 COMSC SL 8 5 15 18 1 5

 ABC

.CIS

STAFF

NO

DEPT. CADRE RUN1 RUN2 RUN3 RUN4 RUN5 RUN6

1 TELECOM AL 26 30 39 39 1 31

2 TELECOM AL 1 39 6 30 39 22

3 ICS AL 3 1 4 25 6 4

4 ICS AL 2 37 38 6 4 46

5 ICS AL 2 37 32 37 17 30

6 ICS AL 38 2 35 4 4 17

7 COMSC AL 32 39 29 8 7 33

8 COMSC AL 3 16 8 16 8 21

9 COMSC AL 12 16 17 16 14 16

10 COMSC AL 17 16 16 16 16 3

11 MASSCOM AL 38 11 18 18 5 21

12 MASSCOM AL 5 15 32 28 28 12

13 ICS AL 2 6 37 32 35 16

14 TELECOM AL 39 39 38 1 14 28

98

15 MASSCOM AL 11 39 5 29 6 35

16 ICS AL 6 4 36 26 26 3

17 ICS AL 35 32 33 37 5 3

18 ICS GA 4 2 28 37 2 10

19 ICS GA 2 33 37 38 2 27

20 LIB L1 40 3 30 6 2 27

21 LIB L1 5 2 3 3 37 3

22 LIB L1 3 7 7 3 34 3

23 LIB L1 40 34 7 3 6 38

24 LIB L1 4 40 14 34 3 34

25 TELECOM L1 39 33 17 4 3 3

26 MASSCOM L1 28 5 15 25 11 40

27 COMSC L1 2 3 2 29 29 39

28 COMSC L1 2 4 12 14 5 17

29 COMSC L1 37 2 2 14 4 7

30 LIB L1 40 40 34 6 40 33

31 LIB L1 40 40 40 3 15 27

32 MASSCOM L1 7 38 5 38 38 34

33 LIB L1 40 22 27 26 30 14

34 ICS L2 3 2 38 14 3 3

35 COMSC L2 8 35 29 8 2 27

36 COMSC L2 37 17 6 17 6 16

37 ICS L2 35 35 33 6 37 37

38 LIB L2 32 4 30 6 7 37

39 TELECOM L2 40 3 4 39 39 12

40 MASSCOM L2 32 3 15 28 11 5

41 ICS L2 3 6 31 27 26 16

42 COMSC L2 6 39 29 37 8 37

43 MASSCOM L2 8 11 5 17 16 24

44 MASSCOM L2 11 17 28 25 28 17

45 LIB L2 4 5 31 24 24 6

46 COMSC PROF 5 3 5 5 4 2

47 LIB PROF 2 6 6 5 6 5

48 LIB PROF 5 3 5 2 2 4

49 COMSC PROF 3 2 5 4 3 4

50 COMSC READER 5 5 5 5 5 3

51 ICS READER 5 16 12 21 18 18

52 TELECOM READER 3 14 25 5 2 15

53 LIB READER 3 12 17 31 12 13

54 LIB SL 3 3 4 2 2 5

55 LIB SL 7 12 8 3 5 17

56 COMSC SL 5 5 5 5 3 4

57 COMSC SL 18 17 17 17 17 23

58 COMSC SL 36 14 17 14 14 14

59 COMSC SL 14 8 36 36 36 12

60 COMSC SL 2 5 26 25 26 3

61 COMSC SL 5 5 17 14 5 6

62 COMSC SL 5 17 17 17 17 24

63 COMSC SL 5 17 6 17 17 8

64 COMSC SL 2 18 17 14 5 7

99

 ABC

.CIS

STAFF

NO

DEPT. CADRE RUN1 RUN2 RUN3 RUN4 RUN5 RUN6

1 TELECOM AL 26 30 39 39 1 31

2 TELECOM AL 1 39 6 30 39 22

3 ICS AL 3 1 4 25 6 4

4 ICS AL 2 37 38 6 4 46

5 ICS AL 2 37 32 37 17 30

6 ICS AL 38 2 35 4 4 17

7 COMSC AL 32 39 29 8 7 33

8 COMSC AL 3 16 8 16 8 21

9 COMSC AL 12 16 17 16 14 16

10 COMSC AL 17 16 16 16 16 3

11 MASSCOM AL 38 11 18 18 5 21

12 MASSCOM AL 5 15 32 28 28 12

13 ICS AL 2 6 37 32 35 16

14 TELECOM AL 39 39 38 1 14 28

15 MASSCOM AL 11 39 5 29 6 35

16 ICS AL 6 4 36 26 26 3

17 ICS AL 35 32 33 37 5 3

18 ICS GA 4 2 28 37 2 10

19 ICS GA 2 33 37 38 2 27

20 LIB L1 40 3 30 6 2 27

21 LIB L1 5 2 3 3 37 3

22 LIB L1 3 7 7 3 34 3

23 LIB L1 40 34 7 3 6 38

24 LIB L1 4 40 14 34 3 34

25 TELECOM L1 39 33 17 4 3 3

26 MASSCOM L1 28 5 15 25 11 40

27 COMSC L1 2 3 2 29 29 39

28 COMSC L1 2 4 12 14 5 17

29 COMSC L1 37 2 2 14 4 7

30 LIB L1 40 40 34 6 40 33

31 LIB L1 40 40 40 3 15 27

32 MASSCOM L1 7 38 5 38 38 34

33 LIB L1 40 22 27 26 30 14

34 ICS L2 3 2 38 14 3 3

35 COMSC L2 8 35 29 8 2 27

36 COMSC L2 37 17 6 17 6 16

37 ICS L2 35 35 33 6 37 37

38 LIB L2 32 4 30 6 7 37

39 TELECOM L2 40 3 4 39 39 12

40 MASSCOM L2 32 3 15 28 11 5

41 ICS L2 3 6 31 27 26 16

42 COMSC L2 6 39 29 37 8 37

43 MASSCOM L2 8 11 5 17 16 24

44 MASSCOM L2 11 17 28 25 28 17

45 LIB L2 4 5 31 24 24 6

46 COMSC PROF 5 3 5 5 4 2

100

47 LIB PROF 2 6 6 5 6 5

48 LIB PROF 5 3 5 2 2 4

49 COMSC PROF 3 2 5 4 3 4

50 COMSC READER 5 5 5 5 5 3

51 ICS READER 5 16 12 21 18 18

52 TELECOM READER 3 14 25 5 2 15

53 LIB READER 3 12 17 31 12 13

54 LIB SL 3 3 4 2 2 5

55 LIB SL 7 12 8 3 5 17

56 COMSC SL 5 5 5 5 3 4

57 COMSC SL 18 17 17 17 17 23

58 COMSC SL 36 14 17 14 14 14

59 COMSC SL 14 8 36 36 36 12

60 COMSC SL 2 5 26 25 26 3

61 COMSC SL 5 5 17 14 5 6

62 COMSC SL 5 17 17 17 17 24

63 COMSC SL 5 17 6 17 17 8

64 COMSC SL 2 18 17 14 5 7

HYBRID.CI

S

STAF

F NO

DEPT. CADRE RUN1 RUN

2

RUN

3

RUN

4

RUN

5

RUN

6

1 TELECOM AL 8 33 8 33 29 57

2 TELECOM AL 3 21 24 8 4 60

3 ICS AL 6 28 43 38 24 24

4 ICS AL 1 65 18 1 37 15

5 ICS AL 11 6 21 16 8 29

6 ICS AL 6 6 6 15 47 35

7 COMSC AL 39 23 23 11 28 4

8 COMSC AL 15 23 2 11 16 47

9 COMSC AL 57 15 39 6 33 1

10 COMSC AL 7 39 34 4 30 26

11 MASSCO

M

AL 2 37 11 2 6 65

12 MASSCO

M

AL 2 3 63 60 34 11

13 ICS AL 35 24 7 19 3 28

14 TELECOM AL 4 8 47 24 4 18

15 MASSCO

M

AL 2 26 1 39 26 6

16 ICS AL 34 35 40 28 7 15

17 ICS AL 37 43 16 21 37 23

18 ICS GA 6 43 16 16 7 39

19 ICS GA 37 4 33 23 38 7

20 LIB L1 40 2 60 7 1 23

21 LIB L1 47 34 30 30 2 2

22 LIB L1 33 38 35 7 1 30

23 LIB L1 16 2 65 34 2 37

101

24 LIB L1 40 29 38 37 40 16

25 TELECOM L1 38 60 26 43 54 3

26 MASSCO

M

L1 26 1 28 18 15 34

27 COMSC L1 28 18 34 40 28 40

28 COMSC L1 23 11 29 4 16 47

29 COMSC L1 18 30 3 16 11 38

30 LIB L1 65 40 4 47 2 33

31 LIB L1 63 19 30 26 23 21

32 MASSCO

M

L1 29 37 37 3 57 8

33 LIB L1 43 57 15 35 21 19

34 ICS L2 66 66 66 66 66 66

35 COMSC L2 15 39 39 6 33 26

36 COMSC L2 1 35 33 28 35 38

37 ICS L2 6 7 7 54 38 28

38 LIB L2 43 57 54 37 2 37

39 TELECOM L2 8 33 26 33 39 57

40 MASSCO

M

L2 26 1 37 39 15 8

41 ICS L2 37 24 6 19 8 15

42 COMSC L2 28 11 29 6 30 1

43 MASSCO

M

L2 29 26 28 2 26 6

44 MASSCO

M

L2 2 37 1 60 6 11

45 LIB L2 19 29 30 35 2 30

46 COMSC PROF 55 64 64 64 55 64

47 LIB PROF 64 55 55 62 62 62

48 LIB PROF 62 62 62 55 64 55

49 COMSC PROF 71 71 71 71 71 71

50 COMSC READE

R

27 27 36 45 45 14

51 ICS READE

R

31 46 61 41 61 17

52 TELECOM READE

R

46 17 5 22 46 36

53 LIB READE

R

61 5 14 31 31 45

54 LIB SL 17 5 42 36 5 52

55 LIB SL 17 5 51 42 22 22

56 COMSC SL 42 61 41 27 14 41

57 COMSC SL 5 22 31 14 46 27

58 COMSC SL 52 52 52 5 27 31

59 COMSC SL 36 14 46 17 51 42

60 COMSC SL 51 27 45 61 14 61

61 COMSC SL 22 42 31 46 36 51

62 COMSC SL 5 31 27 51 61 5

63 COMSC SL 14 36 31 14 41 46

64 COMSC SL 70 70 70 70 70 70

102

103

APPENDIX B

ABC Program: Distinct Operators and Operands used for the Complexity

S/N OPERATOR FREQUENCY OPERANDS FREQUENCY

1 {} 179 USING_SYSTEM 41

2 Int 85 YOUR_OFICEF 2

3 = 238 STAF E ID 12

4 += 19 OFFICE _ID 38

5 \n 7 I 46

6 + 226 OFFICE GROUP 6

7 \r\n 4 LIST 47

8 && 17 OFFICE TOILET 9

9 > 29 OFFICE_CAPACITY 22

10 < 29 OFFICE_PROPERTIES 10

11 Foreach 16 STAFF LIST 26

12 If 63 ID 166

13 Else 12 OFFICE_PROXIMITY 15

14 For 33 RESOURCES 6

15 I++ 18 TYPE 56

16 == 33 THREADING 11

17 GOTO 1 TABLE 42

18 ++k 3 DEPT 13

19 Catch 11 CADRE 12

20 Console.Write 59 ALLOCS.LENGHT 12

21 STRING 54 THIS.CADRE A 2

22 NAME

SPACE.abc

7 THIS.CADRE B 2

23 INPUT

SET.CS

1 THIS.CADRE C 4

24 BREAK 8 STAFF NAME 4

25 RETURN 41 OCCUPIED 2

26 SsTATIC 39 My OFFICE 2

27 PUBLIC 58 K 14

28 staffGroups 4

29 0 7

 1 5

 n1=27 N1=1290 n2= 30 N2=638

104

Tabu Search: Distinct Operators and Operands used for the Complexity

S/N OPERATOR FREQUENCY OPERANDS FREQUENCY

1 {} 163 USING

SYSTEM

41

2 Int 107 Penalty 18

3 = 278 STAFF ID 11

4 += 18 OFFICE ID 34

5 \n 6 I 48

6 + 185 OFFICE GROUP 6

7 \r\n 3 LIST 44

8 && 18 OFFICE

TOILET

9

9 > 28 OFFICE

CAPACITY

26

10 < 27 OFFICE

PROPERTIES

10

11 Foreach 14 STAFF LIST 41

12 If 40 ID 154

13 Else 9 OFFICE

PROXIMITY

15

14 For 47 RESOURCES 6

15 I++ 13 TYPE 54

16 == 33 THREADING 10

17 Console.Write 13 TABLE 42

18 ++k 3 DEPT 15

19 Name

space.abc

7 CADRE 12

20 Input set.cs 1 K 14

21 Break 8 0 15

22 Return 42

23 Public 21

24 String 54

25 catch 5

 n1=25 N1=1143 n2=21 N2=625

105

Genetic Algorithm: Distinct Operators and Operands used for the Complexity

S/N OPERATOR FREQUENCY OPERANDS FREQUENCY

1 {} 179 USING

SYSTEM

41

2 Int 152 Penalty 21

3 = 346 STAF E ID 11

4 += 19 OFFICE ID 37

5 \n 6 I 48

6 + 207 OFFICE

GROUP

6

7 \r\n 4 LIST 38

8 && 17 OFFICE

TOILET

9

9 > 50 OFFICE

CAPACITY

22

10 < 61 OFFICE

PROPERTIES

9

11 Foreach 16 STAFF LIST 19

12 If 63 ID 172

13 Else 12 OFFICE

PROXIMITY

15

14 For 52 RESOURCES 6

15 I++ 18 TYPE 67

16 == 39 THREADING 11

17 Inti 29 TABLE 52

18 ++k 3 DEPT 13

19 Name

space.abc

7 CADRE 14

20 RETURN 41 DATATABLE 13

21 PUBLIC 58 ARRAY 21

22 INSERTDATA 57

23 0 17

 n1=21 N1= 1379 n2=23 N2= 719

106

Hybrid Program: Distinct Operators and Operands used for the Complexity

S/N OPERATOR FREQUENCY OPERANDS FREQUENCY

1 {} 181 USING

SYSTEM

41

2 Int 165 penalty 14

3 = 188 STAF E ID 11

4 += 19 OFFICE ID 28

5 \n 8 ID 34

6 + 146 OFFICE GROUP 14

7 \r\n 3 LIST 39

8 && 19 OFFICE

TOILET

9

9 > 25 OFFICE

CAPACITY

18

10 < 27 OFFICE

PROPERTIES

10

11 For each 16 STAFF LIST 34

12 If 45 ID 97

13 Else 16 OFFICE

PROXIMITY

15

14 For 45 RESOURCES 6

15 I++ 22 TYPE 62

16 == 45 THREADING 11

17 * 5 TABLE 40

18 ++k 3 DEPT 13

19 CONSOLE.WRITE 17 CADRE 10

20 RETURN 26 INSERTDATA 12

21 PUBLIC 29 0 21

22 STRING 57

 n1=22 1107 n2=21 539

107

APPENDIX C

ABC SOURCE CODE

Allocation.CIS

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace abc_osap

{

 class Allocation

 {

 public int staffID { get; set; }

 public int officeID { get; set; }

 public Allocation (int staff, int office)

 {

 staffID = staff;

 officeID = office;

 }

 public string Print()

 {

 string to_ret = "";

 string staff_rec = InputSet.GetStaffById(staffID).Display();

 to_ret += staff_rec + "\n";

 Console.Write(" ---- Allocated to: ");

 to_ret += " ---- Allocated to: " + "\r\n";

 string office_rec = InputSet.GetOfficeById(officeID).Display();

 to_ret += office_rec + "\r\n";

 Console.Write("\n");

 return to_ret;

 }

 }

}

InputSet.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

namespace abc_osap

{

 class InputSet

 {

 static Office[] offices;

 public static List<Office> officesList = new List<Office>();

 public static Dictionary<string, List<Office>> officeGroups = new

Dictionary<string,List<Office>>();

 static Staff[] staff;

108

 static int[] officeGrp;

 public static List<Staff> staffList = new List<Staff>();

 public static Dictionary<string, List<Staff>> staffGroups = new Dictionary<string,

List<Staff>>();

 public static void DeclareArray(int numOff)

 {

 ABC SOURCE CODE

 //numSol is the number of office in the inputset

 officeGrp = new int[numOff];

 }

 public static void Load()

 {

 int i;

 MySQLDatabase myDb = new MySQLDatabase();

 //selecting data from table

 DataTable records;

 try

 {

 //selecting office records

 //Console.WriteLine("1");

 records = myDb.Select(null, "offices");//null means to fetch all data from the table

 //Console.WriteLine("2");

 if (records != null && records.Rows.Count > 0)

 {

 offices = new Office[records.Rows.Count];

 i = 0;

 foreach (DataRow row in records.Rows)

 {

 //Console.WriteLine(row["id"].GetType());

 //string d = row["type"].ToString();

 offices[i] = new Office();

 offices[i].id = (int)row["id"];

 offices[i].type = row["type"].ToString();

 offices[i].properties = row["properties"].ToString();

 offices[i].capacity = (int)row["capacity"];

 offices[i].toilet = row["toilet"].ToString() == "" ? 0 : (int)row["toilet"];

 offices[i].resources = (int)row["resources"];

 offices[i].proximity = row["proximity"].ToString();

 officesList.Add(offices[i]);

 if (!officeGroups.ContainsKey(offices[i].type))

 officeGroups[offices[i].type] = new List<Office>();

 officeGroups[offices[i].type].Add(offices[i]);

 }

 }

 else

 Console.WriteLine("No office record found!");

109

 //System.Threading.Thread.Sleep(1000000);

 //selecting staff records

 //Console.WriteLine("3");

 records = myDb.Select(null, "staff");//null means to fetch all data from the table

 //Console.WriteLine("4");

 if (records != null && records.Rows.Count > 0)

 {

 staff = new Staff[records.Rows.Count];

 i = 0;

 foreach (DataRow row in records.Rows)

 {

 staff[i] = new Staff();

 staff[i].id = Convert.ToInt16(row["id"]);

 staff[i].typeId = Convert.ToString(row["type_id"]);

 staff[i].cadre = Convert.ToString(row["cadre"]);

 staff[i].staffName = Convert.ToString(row["staff_name"]);

 staff[i].dept = Convert.ToString(row["dept"]);

 staffList.Add(staff[i]);

 //this part might not be needed

 if (!staffGroups.ContainsKey(staff[i].typeId))

 staffGroups[staff[i].typeId] = new List<Staff>();

 staffGroups[staff[i].typeId].Add(staff[i]);

 //this part might not be needed

 }

 }

 else

 Console.WriteLine("No staff record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 System.Threading.Thread.Sleep(1000000);

 }

 }

 public static Office GetOfficeById(int id)

 {

 foreach (Office office in officesList)

 {

 if (office.id == id) return office;

 }

 return null;

 }

 public static void loadOfficeCapacity()

 {

 foreach (Office office in officesList)

 {

110

 Program.officeCapacity[office.id] = office.capacity;

 }

 }

 public static int GetOfficeIndexById(int id)

 {

 for (int i = 0; i < officesList.Count(); i++)

 {

 if (officesList[i].id == id) return i;

 }

 return -1;

 }

 public static Staff GetStaffById(int id)

 {

 foreach (Staff staff in staffList)

 {

 if (staff.id == id) return staff;

 }

 return null;

 }

 public static int getOfficeByTypeName(string typey, string dept)

 {

 Found:

 int k = 0;

 foreach (Office office in officesList)

 {

 if (office.type == typey)

 {

 if (office.resources == 1)

 {

 if (crossCheck(office.id) && checkCapacity(office.id) > 0 &&

checkWhoIsInTheOffice(office.id, dept) && isItProfSuit(typey, office.toilet))

 {

 officeGrp[k] = office.id;

 k += 1;

 }

 }

 }

 }

 //Console.WriteLine(ox + " T:" + typey);

 if (k == 0)

 {

 //Console.WriteLine(k);

 ClearTypeRoom(typey);

 goto Found;

 }

 //System.Threading.Thread.Sleep(600);

 int rnd = Program.r.Next(0, k - 1);

 return officeGrp[rnd];

 }

111

 static void ClearTypeRoom(string typey)

 {

 for (int numTmp = 0; numTmp < Program.tmp.Length; numTmp++)

 {

 Office xx = GetOfficeById(Program.tmp[numTmp]);

 if (xx != null)

 {

 if (xx.type == typey)

 {

 Program.tmp[numTmp] = 0;

 }

 }

 }

 }

 static bool crossCheck(int officeid)

 {

 for (int numTmp = 0; numTmp < Program.tmp.Length; numTmp++)

 {

 if (officeid == Program.tmp[numTmp])

 {

 return false;

 }

 }

 return true;

 }

 static int checkCapacity(int officeid)

 {

 return Program.officeCapacity[officeid];

 }

 static bool checkWhoIsInTheOffice(int officeid, string dept)

 {

 if (Program.officeWhoIsThere[officeid] == dept || Program.officeWhoIsThere[officeid]

== null)

 {

 return true;

 }

 return false;

 }

 static bool isItProfSuit(string typed, int toilet)

 {

 if (typed == "A" && toilet == 0)

 {

 return false;

 }

 return true;

 }

 static int[] ShuffleArray(int[] array)

 {

112

 Random r = new Random();

 for (int i = array.Length; i > 0; i--)

 {

 int j = r.Next(i);

 int k = array[j];

 array[j] = array[i - 1];

 array[i - 1] = k;

 }

 return array;

 }

 }

}

/*

 //THIS PART IS TO TEST THE DATABASE CLASS

 string db = "vp_validation_system";

 string dbuid = "root";

 string dbpwd = "";

 //instantiating the db class

 MySQLDatabase myDb = new MySQLDatabase(dbuid, dbpwd, db);

 //selecting data from table - there shouldn't be any records for now

 System.Data.DataTable records;

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 // You could just add a statement 'using System.Data;' at the beginning and then use

'System.Data.DataTable' just as 'DataTable'

 Console.WriteLine("All records inserted:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //insert record to table 'sample_codes'

113

 Dictionary<string, string>[] insertData = new Dictionary<string, string>[3]; //An array

of dictionaries, each dictionary represents a row to be inserted

 insertData[0] = new Dictionary<string, string>();

 insertData[0].Add("code", "563443y3uh87grr"); //column name, value in table

'sample_codes'

 insertData[0].Add("used", "0"); //another column name, value in table 'sample_codes'

 insertData[1] = new Dictionary<string, string>();

 insertData[1].Add("code", "fhbeiurhg34u23434");

 insertData[1].Add("used", "0");

 insertData[2] = new Dictionary<string, string>();

 insertData[2].Add("code", "fdhrbru3u9rwei9jcks");

 insertData[2].Add("used", "0");

 try

 {

 myDb.Insert(insertData[0], "sample_codes");

 myDb.Insert(insertData[1], "sample_codes");

 myDb.Insert(insertData[2], "sample_codes");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error inserting: " + e.Message);

 }

 //selecting data from table

 Console.WriteLine();

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 // You could just add a statement 'using System.Data;' at the beginning and then use

'System.Data.DataTable' just as 'DataTable'

 Console.WriteLine("All records inserted:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //another select

114

 Console.WriteLine();

 Dictionary<string, string> search = new Dictionary<string, string>();

 search.Add("id", "1");

 search.Add("used", "0"); //this is not necessary, but just to indicate that u could have

multiple search conditions

 try

 {

 records = myDb.Select(search, "sample_codes");

 Console.WriteLine("Record with id=1 and used=0 (should be only one record):");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //update

 Dictionary<string, string> updateData = new Dictionary<string, string>();

 updateData.Add("code", "5555555555555555");

 updateData.Add("id", "2"); //this will be only used in the WHERE clause and not to

update bcos I will instruct the function so via its parameter

 try

 {

 myDb.Update(updateData, "id", "sample_codes");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error updating: " + e.Message);

 }

 //delete

 try

 {

 myDb.Delete("id", "3", "sample_codes"); //deleting record with id=3

 }

 catch (Exception e)

 {

 Console.WriteLine("Error deleting: " + e.Message);

 }

 //selecting everything again to see changes made with uodate and delete

 Console.WriteLine();

 try

115

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 Console.WriteLine("All records after modifications:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //Using the function 'Count'

 Console.WriteLine();

 Console.WriteLine("Number of all records left in table 'sample_codes': " +

myDb.Count("sample_codes"));

 Console.Read();

 }*/

MySQLDatabase.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

using MySql.Data.MySqlClient;

namespace abc_osap

{

 class MySQLDatabase

 {

 private MySqlConnection connection;

 private string server = "localhost";

 private string database = "abc_osap";

 private string uid = "root";

 private string password = "";

 //Constructor

 //public MySQLDatabase(string uname, string pwd, string db)

 public MySQLDatabase()

 {

 Initialize();

 //Initialize(uname, pwd, db);

 //In case there any other thing one would like to have done on instantiation aside from

just initializing

 }

116

 //Initialize values

 //private void Initialize(string uname, string pwd, string db)

 private void Initialize()

 {

 //server = "localhost";

 //database = db;

 //uid = uname;

 //password = pwd;

 string connectionString;

 connectionString = "SERVER=" + server + ";" + "DATABASE=" +

 database + ";" + "UID=" + uid + ";" + "PASSWORD=" + password + ";";

 connection = new MySqlConnection(connectionString);

 }

 //open connection to database

 private bool OpenConnection()

 {

 try

 {

 connection.Open();

 return true;

 }

 catch (MySqlException ex)

 {

 //The two most common error numbers when connecting are as follows:

 //0: Cannot connect to server.

 //1045: Invalid user name and/or password.

 switch (ex.Number)

 {

 case 0:

 throw new System.Exception("0 - Cannot connect to server");

 case 1045:

 throw new System.Exception("1045 - Invalid username/password");

 }

 return false;

 }

 }

 //Close connection

 private bool CloseConnection()

 {

 try

 {

 connection.Close();

 return true;

 }

 catch (MySqlException ex)

 {

 throw new System.Exception(ex.Message);

 }

117

 }

 //Insert statement

 public void Insert(Dictionary<string, string> ins, string table) //a dictionary data structure

is used to easily accomodate any number of columns in insert

 {

 int k=0;

 string query = "INSERT INTO "+table+" SET ";

 foreach (KeyValuePair<string, string> column in ins) {

 if (++k > 1) query += ", ";

 query += column.Key+" = '"+column.Value+"'";

 }

 //open connection

 if (this.OpenConnection() == true)

 {

 //create command and assign the query and connection from the constructor

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Execute command

 cmd.ExecuteNonQuery();

 //close connection

 this.CloseConnection();

 }

 }

 //Update statement

 public void Update(Dictionary<string, string> ins, string updateKey, string table)

 {

 int k = 0;

 string query = "UPDATE " + table + " SET ";

 foreach (KeyValuePair<string, string> column in ins)

 {

 if (column.Key != updateKey) {

 if (++k > 1) query += ", ";

 query += column.Key + " = '" + column.Value + "'";

 }

 }

 query += "WHERE "+updateKey+" = '"+ins[updateKey]+"'";

 //Open connection

 if (this.OpenConnection() == true)

 {

 //create mysql command

 MySqlCommand cmd = new MySqlCommand();

 //Assign the query using CommandText

 cmd.CommandText = query;

 //Assign the connection using Connection

 cmd.Connection = connection;

 //Execute query

 cmd.ExecuteNonQuery();

 //close connection

 this.CloseConnection();

118

 }

 }

 //Delete statement

 public void Delete(string key, string value, string table)

 {

 string query = "DELETE FROM " + table + " WHERE "+key+" = '"+value+"'";

 if (this.OpenConnection() == true)

 {

 MySqlCommand cmd = new MySqlCommand(query, connection);

 cmd.ExecuteNonQuery();

 this.CloseConnection();

 }

 }

 //Select statement

 public DataTable Select(Dictionary<string, string> search, string table, string connector =

"AND")

 {

 int k = 0;

 DataTable dbTable = new DataTable();

 string query = "SELECT * FROM " + table;

 if (search != null)

 {

 query += " WHERE ";

 foreach (KeyValuePair<string, string> column in search)

 {

 if (++k > 1) query += " " + connector + " ";

 query += column.Key + " = '" + column.Value + "'";

 }

 }

 //Open connection

 if (this.OpenConnection() == true)

 {

 //Create Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Create a data reader and Execute the command

 MySqlDataReader dataReader = cmd.ExecuteReader();

 if (dataReader.HasRows)

 dbTable.Load(dataReader);

 //close Data Reader

 dataReader.Close();

 //close Connection

 this.CloseConnection();

 }

 return dbTable;

 }

119

 public DataTable Query(string query)

 {

 DataTable dbTable = new DataTable();

 //Open connection

 if (this.OpenConnection() == true)

 {

 //Create Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Create a data reader and Execute the command

 MySqlDataReader dataReader = cmd.ExecuteReader();

 if (dataReader.HasRows)

 dbTable.Load(dataReader);

 //close Data Reader

 dataReader.Close();

 //close Connection

 this.CloseConnection();

 }

 return dbTable;

 }

 //Count statement

 public int Count(string table)

 {

 string query = "SELECT Count(*) FROM "+table;

 int count = -1;

 //Open Connection

 if (this.OpenConnection() == true)

 {

 //Create Mysql Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //ExecuteScalar will return one value

 count = int.Parse(cmd.ExecuteScalar() + "");

 //close Connection

 this.CloseConnection();

 }

 return count;

 }

 }

}

Office.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

120

namespace abc_osap

{

 class Office

 {

 public int id { get; set; }

 public int capacity { get; set; }

 public string proximity { get; set; }

 public string properties { get; set; }

 public string type { get; set; }

 public int toilet { get; set; }

 public int resources { get; set; }

 public string Display()

 {

 Console.Write("Room: " + id + "; Properties: " + properties + "; TypeID: " + type + ";

Capacity:" + capacity);

 return "Room: " + id + "; Properties: " + properties + "; TypeID: " + type + ";

Capacity:" + capacity + "\r\n";

 }

 public void Copy(Office other)

 {

 this.capacity = other.capacity;

 this.properties = other.properties;

 this.type = other.type;

 this.id = other.id;

 this.proximity = other.proximity;

 this.toilet = other.toilet;

 this.resources = other.resources;

 }

 }

}

Program.cs

using System;

using System.Diagnostics;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace abc_osap

{

 class Program

 {

 static int np = 20; /* The number of colony size (employed bees+onlooker bees)*/

 static int foodNumber = np/2; //ie. number of solutions, equal to num of employed bees

 static int trialsLimit = 100; /*A food source which could not be improved through

"trialsLimit" trials is abandoned by its employed bee*/

 static Solution[] foods = new Solution[foodNumber]; //foods - initial solution

 static int beeSearchLimit = 5;

 public static int[] tmp = new int[100];

 public static int[] officeCapacity = new int[100];

121

 public static string[] officeWhoIsThere = new string[100];

 //upper bounds

 static int staff_ub, office_ub;

 public static Random r = new Random();

 static void Main(string[] args)

 {

 Stopwatch stpWatch = new Stopwatch();

 stpWatch.Start();

 MySQLDatabase myDb = new MySQLDatabase();

 //int maxCycle = 2500; /*The number of cycles for foraging {a stopping criteria}*/

 int maxCycle = 2; /*The number of cycles for foraging {a stopping criteria}*/

 //int runtime = 30; /*Algorithm can be run many times in order to see its robustness*/

 int runtime = 1; /*Algorithm can be run many times in order to see its robustness*/

 //use inputset class to handle input

 InputSet.Load(); //loading inputs

 //setting upper bounds

 staff_ub = InputSet.staffList.Count - 1;

 office_ub = InputSet.officesList.Count - 1;

 Solution fittest = new Solution (InputSet.staffList.Count);

 //continue here after writing other functions

 //double mean=0;

 using (System.IO.StreamWriter file = new

System.IO.StreamWriter(@"C:\Users\Public\abc_results.txt"))

 {

 for (int run = 0; run < runtime; run++)

 {

 stpWatch.Reset();

 stpWatch.Start();

 Console.WriteLine("Run: " + (run + 1));

 file.WriteLine("Run: " + (run + 1));

 InputSet.loadOfficeCapacity();

 Init();

 //fittest = GetFittest();

 for (int iter = 0; iter < maxCycle; iter++)

 {

 Console.WriteLine("iteration: " + (iter + 1));

 file.WriteLine("iteration: " + (iter + 1));

 //fittest.Print();

 SendEmployedBees();

 System.Threading.Thread.Sleep(20000);

 CalcProbabilities();

 SendOnlookerBees();

122

 fittest = GetFittest();

 SendScoutBees();

 }

 Console.WriteLine((run + 1).ToString() + ":");

 file.WriteLine((run + 1).ToString() + ":");

 Console.WriteLine("Best Allocation:");

 file.WriteLine("Best Allocation:");

 Array.Clear(tmp, 0, tmp.Length);

 Dictionary<string, string> solsToInsert = new Dictionary<string, string>();

 string fit_sol = fittest.Print();

 file.WriteLine(fit_sol);

 /*//System.out.println("%d. run: %e \n",run+1,GlobalMin);

 System.out.println((run+1)+".run:"+bee.GlobalMin);

 bee.GlobalMins[run]=bee.GlobalMin;

 mean=mean+bee.GlobalMin;*/

 stpWatch.Stop();

 TimeSpan ts = stpWatch.Elapsed;

 String elapsedTime = String.Format("{0:00}:{1:00}:{2:00}.{3:00}", ts.Hours,

ts.Minutes, ts.Seconds, ts.Milliseconds / 10);

 Console.WriteLine("=========");

 file.WriteLine("=========");

 Console.WriteLine("RunTime: " + elapsedTime);

 file.WriteLine("RunTime: " + elapsedTime);

 long memory = GC.GetTotalMemory(true);

 double mem = memory / 1024;

 mem = Math.Round(mem, 2);

 Console.WriteLine("Memory Used: {0}KB", mem.ToString());

 file.WriteLine("Memory Used: {0}KB", mem.ToString());

 Console.WriteLine();

 file.WriteLine(" ");

 foreach (Allocation solAlloc in fittest.allocs)

 {

 solsToInsert.Add("run", run.ToString());

 solsToInsert.Add("staff_id", solAlloc.staffID.ToString());

 solsToInsert.Add("office_id", solAlloc.officeID.ToString());

 solsToInsert.Add("penalty", fittest.penalty.ToString());

 solsToInsert.Add("alorithm_time", elapsedTime);

 solsToInsert.Add("memory_used", mem.ToString() + "KB");

 myDb.Insert(solsToInsert, "solutions");

 solsToInsert.Clear();

 }

 }

 }

 Console.Read();

 }

 static void Init()

 {

 for (int i = 0; i < foodNumber; i++)

123

 {

 foods[i] = new Solution(InputSet.staffList.Count);

 //Console.WriteLine("Staff Count: "+InputSet.staffList.Count);

 for (int k = 0; k < InputSet.staffList.Count; k++)

 {

 int randOffice = 0;//Convert.ToInt16(r.NextDouble() *

(InputSet.officesList.Count() - 1));

InputSet.DeclareArray(InputSet.officeGroups[InputSet.staffList[k].typeId].Count);

 randOffice = InputSet.getOfficeByTypeName(InputSet.staffList[k].typeId,

InputSet.staffList[k].dept);

 tmp[k] = randOffice;

 officeWhoIsThere[randOffice] = InputSet.staffList[k].dept;

 officeCapacity[randOffice] -= 1;

 //Console.WriteLine(InputSet.staffList[k].id + "OF" + InputSet.staffList.Count +

"**" + InputSet.staffList[k].cadre + "(" + InputSet.staffList[k].id + ")==" + randOffice + "(" +

InputSet.GetOfficeById(randOffice).properties + ")");

 foods[i].allocs[k] = new Allocation(InputSet.staffList[k].id, randOffice);

 }

 foods[i].calcPenalty();

 Array.Clear(tmp, 0, tmp.Length);

 InputSet.loadOfficeCapacity();

 }

 //Console.Read();

 }

 static void ReInit(int i)

 {

 //foods[i] = new Solution(InputSet.staffList.Count);

 for (int k = 0; k < InputSet.staffList.Count; k++)

 {

 int randOffice = Convert.ToInt16(0 + r.NextDouble() *

(InputSet.officeGroups[InputSet.staffList[k].typeId].Count()-1));

 foods[i].allocs[k] = new Allocation(InputSet.staffList[k].id,

InputSet.officesList[randOffice].id);

 }

 foods[i].calcPenalty();

 }

 static Solution GetFittest() {

 Solution fittest = foods[0];

 for (int i = 1; i < foods.Length; i++) {

 if (fittest.penalty > foods[i].penalty) fittest = foods[i];

 }

 return fittest;

 }

 static double SumFitness()

 {

 double fitSum = 0;

 for (int i = 1; i < foods.Length; i++)

 {

 fitSum += foods[i].getFitness();

124

 }

 return fitSum;

 }

 static void SendEmployedBees()

 {

 for (int i=0; i<foodNumber; i++)

 {

 for (int q = 0; q < beeSearchLimit; q++) {

 int d = InputSet.staffList.Count - 1;

 Solution newSol = new Solution(InputSet.staffList.Count);

 newSol.Copy(foods[i]);

 /*The parameter to be changed is determined randomly*/

 int param2change = Convert.ToInt16(r.NextDouble() * d);

 /*A randomly chosen neighbour solution*/

 int neighbour = Convert.ToInt16(r.NextDouble() * (foodNumber - 1));

 /*Randomly selected solution must be different from the solution i*/

 while (neighbour == i)

 neighbour = Convert.ToInt16(r.NextDouble() * (foodNumber - 1));

 newSol.allocs[param2change].officeID =

foods[neighbour].allocs[param2change].officeID;

 newSol.calcPenalty();

 if (newSol.penalty < foods[i].penalty)

 foods[i].Copy(newSol);

 else

 foods[i].trials++; /*if the solution i can not be improved, increase its trial

counter*/

 }

 }

 }

 static void CalcProbabilities()

 {

 for (int i = 1; i < foods.Length; i++)

 {

 foods[i].probability = foods[i].getFitness() / SumFitness();

 }

 }

 static void SendOnlookerBees()

 {

 int i = 0, t = 0;

 while (t < foodNumber)

 {

 if (r.NextDouble() < foods[i].probability)

 {

125

 t++;

 int d = InputSet.staffList.Count - 1;

 Solution newSol = new Solution(InputSet.staffList.Count);

 newSol.Copy(foods[i]);

 /*The parameter to be changed is determined randomly*/

 int param2change = Convert.ToInt16(r.NextDouble() * d);

 /*A randomly chosen neighbour solution*/

 int neighbour = Convert.ToInt16(r.NextDouble() * (foodNumber-1));

 /*Randomly selected solution must be different from the solution i*/

 while (neighbour == i)

 neighbour = Convert.ToInt16(r.NextDouble() * (foodNumber-1));

 newSol.allocs[param2change].officeID =

foods[neighbour].allocs[param2change].officeID;

 newSol.calcPenalty();

 if (newSol.penalty < foods[i].penalty)

 foods[i].Copy(newSol);

 else

 foods[i].trials++; /*if the solution i can not be improved, increase its trial

counter*/

 }

 i++;

 if (i == foodNumber)

 i = 0;

 }

 }

 /*determine the food sources whose trial counter exceeds the "trialsLimit" value. In Basic

ABC, only one scout is allowed to occur in each cycle*/

 static void SendScoutBees()

 {

 int maxTrialIndex, i;

 maxTrialIndex = 0;

 for (i = 1; i < foodNumber; i++)

 {

 if (foods[i].trials > foods[maxTrialIndex].trials)

 maxTrialIndex = i;

 }

 if (foods[maxTrialIndex].trials >= trialsLimit)

 {

 ReInit(maxTrialIndex);

 }

 }

 }

}

Solution.cs

using System;

using System.Collections.Generic;

126

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

namespace abc_osap

{

 class Solution // AKA Food Source

 {

 public double penalty { get; set; } //inverse is the fitness; the nectar amount

 public double probability;

 public int trials;

 public Allocation[] allocs;

 public Solution(int numSol)

 {

 //numSol is the number of staff in the inputset

 allocs = new Allocation[numSol];

 }

 public Solution(Solution clone)

 {

 allocs = new Allocation[clone.allocs.Length];

 for (int i = 0; i < clone.allocs.Length; i++)

 {

 allocs[i] = new Allocation(clone.allocs[i].staffID, clone.allocs[i].officeID);

 }

 penalty = clone.penalty;

 probability = clone.probability;

 }

 public string Print()

 {

 string to_ret = "";

 for (int i = 0; i < allocs.Length; i++)

 {

 to_ret += allocs[i].Print();

 }

 Console.WriteLine("Penalty: " + penalty);

 to_ret += "Penalty: " + penalty;

 return to_ret;

 }

 public void Copy(Solution clone)

 {

 allocs = new Allocation[clone.allocs.Length];

 for (int i = 0; i < clone.allocs.Length; i++)

 {

 //Console.WriteLine(InputSet.staffList[clone.allocs[i].staffID].cadre + "==" +

InputSet.officesList[clone.allocs[i].officeID].type);

 allocs[i] = new Allocation(clone.allocs[i].staffID, clone.allocs[i].officeID);

 }

 penalty = clone.penalty;

127

 probability = clone.probability;

 }

 public double getFitness()

 {

 return 1 / penalty;

 }

 public void calcPenalty()

 {

 MySQLDatabase myDb = new MySQLDatabase();

 //selecting data from table

 DataTable records;

 penalty = 0;

 for (int i = 0; i < allocs.Length; i++)

 {

 try

 {

 //selecting office records

 records = myDb.Query("SELECT * FROM entity_constraints JOIN constraints

ON constraint_type LIKE type WHERE entity_kind LIKE 'staff' AND entity_id =

'"+Convert.ToString(allocs[i].staffID)+"'");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (DataRow row in records.Rows)

 penalty += Violates(Convert.ToString(row["constraint_type"]), allocs[i],

row);

 //penalty += Convert.ToDouble(row["weight"]);

 }

 records = myDb.Query("SELECT * FROM entity_constraints JOIN constraints

ON constraint_type LIKE type WHERE entity_kind LIKE 'office' AND entity_id = '" +

Convert.ToString(allocs[i].officeID) + "'");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (DataRow row in records.Rows)

 //penalty += Convert.ToDouble(row["weight"]);

 penalty += Violates(Convert.ToString(row["constraint_type"]), allocs[i],

row);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 }

 //Console.WriteLine("Penalty: " + penalty);

 }

 int Violates(string constraintType, Allocation presentAlloc, DataRow constraintRow)

 {

 switch (constraintType)

 {

128

 case "allocation":

 if (presentAlloc.officeID !=

Convert.ToInt16(constraintRow["concerned_entity_id"]))

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "non-allocation":

 if (presentAlloc.officeID ==

Convert.ToInt16(constraintRow["concerned_entity_id"]))

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "same-room":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) == allocs[i].staffID

&& allocs[i].officeID != presentAlloc.officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "not-same-room":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) == allocs[i].staffID

&& allocs[i].officeID == presentAlloc.officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "not-sharing":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (presentAlloc.officeID == allocs[i].officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "capacity": //remember to put a counter such that for each solution, if the

constraint is capacity, it can only be called once

 int occupied = 0;

 for (int i = 0; i < allocs.Length; i++)

 {

 if (presentAlloc.officeID == allocs[i].officeID)

 occupied++;

 }

 if (occupied > InputSet.GetOfficeById(presentAlloc.officeID).capacity)

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "nearby": //proximity for offices should be defined in both ways, but nearby

constraint for staff should be defined only in one way

 for (int i = 0; i < allocs.Length; i++)

129

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) ==

allocs[i].staffID) //this is the staff whom I should be near

 {//now check if both our offices are in close proximity. But what if we have the

same office?

 Office myOffice = InputSet.GetOfficeById(presentAlloc.officeID);

 Office yourOffice = InputSet.GetOfficeById(allocs[i].officeID);

 if (presentAlloc.officeID != allocs[i].officeID &&

myOffice.proximity.IndexOf("," + yourOffice.id + ",") < 0 &&

yourOffice.proximity.IndexOf("," + myOffice.id + ",") < 0)

 { //this means the constraint has been violated bcos the offices are not nearby

as expected

 return Convert.ToInt16(constraintRow["weight"]);

 } //else, they are in close proximity and the constraint is therefore not

violated

 else

 return 0;

 }

 }

 break;

 case "away-from": //proximity for offices should be defined in both ways, but nearby

constraint for staff should be define only in one way

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) ==

allocs[i].staffID) //this is the staff whom I should be near

 {//now check if both our offices are in close proximity. But what if we have the

same office?

 Office myOffice = InputSet.GetOfficeById(presentAlloc.officeID);

 Office yourOffice = InputSet.GetOfficeById(allocs[i].officeID);

 if (presentAlloc.officeID == allocs[i].officeID ||

myOffice.proximity.IndexOf("," + yourOffice.id + ",") >= 0 &&

yourOffice.proximity.IndexOf("," + myOffice.id + ",") >= 0)

 { //this means the constraint has been violated bcos the offices are nearby

 return Convert.ToInt16(constraintRow["weight"]);

 } //else, they are not in close proximity and the constraint is therefore not

violated

 else

 return 0;

 }

 }

 break;

 default:

 return 0;

 }

 return 0;

 }

 }

}

Staff.cs

130

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace abc_osap

{

 class Staff

 {

 public string[] cadarA = new string[3];

 public string[] cadarB = new string[3];

 public string[] cadarC = new string[5];

 public int id { get; set; }

 public string staffName { get; set; }

 public string cadre { get; set; }

 public string typeId { get; set; }

 public string dept { get; set; }

 public string Display()

 {

 Console.Write("Staff: " + id + "; Dept: " + dept + "; Cadre: " + cadre + "; TypeID: " +

typeId);

 return "Staff: " + id + "; Dept: " + dept + "; Cadre: " + cadre + "; TypeID: " + typeId +

"\r\n";

 }

 public void Copy(Staff other)

 {

 this.staffName = other.staffName;

 this.cadre = other.cadre;

 this.typeId = other.typeId;

 }

 public void initCadre()

 {

 //Type A

 this.cadarA[0] = "HOD";

 this.cadarA[1] = "PROF";

 //Type B

 this.cadarB[0] = "SL";

 this.cadarB[1] = "READER";

 //Type C

 this.cadarC[0] = "AL";

 this.cadarC[1] = "L1";

 this.cadarC[2] = "L2";

 this.cadarC[3] = "GA";

 }

 }

}

131

TABU SOURCE CODE ICS

Allocation.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace tabu_osap

{

 class Allocation

 {

 public int staffID { get; set; }

 public int officeID { get; set; }

 public Allocation (int staff, int office)

 {

 staffID = staff;

 officeID = office;

 }

 public string Print()

 {

 string to_ret = "";

 string staff_rec = InputSet.GetStaffById(staffID).Display();

 to_ret += staff_rec + "\n";

 Console.Write(" ---- Allocated to: ");

 to_ret += " ---- Allocated to: " + "\n";

 string office_rec = InputSet.GetOfficeById(officeID).Display();

 to_ret += office_rec + "\r\n";

 Console.Write("\n");

 return to_ret;

 }

 }

}

InputSet.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

namespace tabu_osap

{

 class InputSet

 {

 static Office[] offices;

 public static List<Office> officesList = new List<Office>();

 public static Dictionary<string, List<Office>> officeGroups = new Dictionary<string,

List<Office>>();

132

 static int[] officeGrp;

 static Staff[] staff;

 public static List<Staff> staffList = new List<Staff>();

 public static Dictionary<string, List<Staff>> staffGroups = new Dictionary<string,

List<Staff>>();

 public static void DeclareArray(int numOff)

 {

 //numSol is the number of office in the inputset

 officeGrp = new int[numOff];

 }

 public static void Load()

 {

 int i;

 MySQLDatabase myDb = new MySQLDatabase();

 //selecting data from table

 DataTable records;

 try

 {

 //selecting office records

 //Console.WriteLine("1");

 records = myDb.Select(null, "offices");//null means to fetch all data from the table

 //Console.WriteLine("2");

 if (records != null && records.Rows.Count > 0)

 {

 offices = new Office[records.Rows.Count];

 i = 0;

 foreach (DataRow row in records.Rows)

 {

 //Console.WriteLine(row["id"].GetType());

 //string d = row["type"].ToString();

 offices[i] = new Office();

 offices[i].id = (int)row["id"];

 offices[i].type = row["type"].ToString();

 offices[i].properties = row["properties"].ToString();

 offices[i].capacity = (int)row["capacity"];

 offices[i].toilet = row["toilet"].ToString() == "" ? 0 : (int)row["toilet"];

 offices[i].resources = (int)row["resources"];

 offices[i].proximity = row["proximity"].ToString();

 officesList.Add(offices[i]);

 if (!officeGroups.ContainsKey(offices[i].type))

 officeGroups[offices[i].type] = new List<Office>();

 officeGroups[offices[i].type].Add(offices[i]);

 }

 }

 else

 Console.WriteLine("No office record found!");

133

 //System.Threading.Thread.Sleep(1000000);

 //selecting staff records

 //Console.WriteLine("3");

 records = myDb.Select(null, "staff");//null means to fetch all data from the table

 //Console.WriteLine("4");

 if (records != null && records.Rows.Count > 0)

 {

 staff = new Staff[records.Rows.Count];

 i = 0;

 foreach (DataRow row in records.Rows)

 {

 staff[i] = new Staff();

 staff[i].id = Convert.ToInt16(row["id"]);

 staff[i].typeId = Convert.ToString(row["type_id"]);

 staff[i].cadre = Convert.ToString(row["cadre"]);

 staff[i].staffName = Convert.ToString(row["staff_name"]);

 staff[i].dept = Convert.ToString(row["dept"]);

 staffList.Add(staff[i]);

 //this part might not be needed

 if (!staffGroups.ContainsKey(staff[i].typeId))

 staffGroups[staff[i].typeId] = new List<Staff>();

 staffGroups[staff[i].typeId].Add(staff[i]);

 //this part might not be needed

 }

 }

 else

 Console.WriteLine("No staff record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 System.Threading.Thread.Sleep(1000000);

 }

 }

 public static Office GetOfficeById(int id)

 {

 foreach (Office office in officesList)

 {

 if (office.id == id) return office;

 }

 return null;

 }

 public static void loadOfficeCapacity()

 {

 foreach (Office office in officesList)

 {

134

 Program.officeCapacity[office.id] = office.capacity;

 }

 }

 public static int GetOfficeIndexById(int id)

 {

 for (int i = 0; i < officesList.Count(); i++)

 {

 if (officesList[i].id == id) return i;

 }

 return -1;

 }

 public static Staff GetStaffById(int id)

 {

 foreach (Staff staff in staffList)

 {

 if (staff.id == id) return staff;

 }

 return null;

 }

 public static int getOfficeByTypeName(string typey, string dept)

 {

 Found:

 int k = 0;

 foreach (Office office in officesList)

 {

 if (office.type == typey)

 {

 if (office.resources == 1)

 {

 if (crossCheck(office.id) && checkCapacity(office.id) > 0 &&

checkWhoIsInTheOffice(office.id, dept) && isItProfSuit(typey, office.toilet))

 {

 officeGrp[k] = office.id;

 k += 1;

 }

 }

 }

 }

 //Console.WriteLine(ox + " T:" + typey);

 if (k == 0)

 {

 //Console.WriteLine(k);

 ClearTypeRoom(typey);

 goto Found;

 }

 //System.Threading.Thread.Sleep(600);

 int rnd = Program.r.Next(0, k - 1);

 return officeGrp[rnd];

 }

135

 static void ClearTypeRoom(string typey)

 {

 for (int numTmp = 0; numTmp < Program.tmp.Length; numTmp++)

 {

 Office xx = GetOfficeById(Program.tmp[numTmp]);

 if (xx != null)

 {

 if (xx.type == typey)

 {

 Program.tmp[numTmp] = 0;

 }

 }

 }

 }

 static bool crossCheck(int officeid)

 {

 for (int numTmp = 0; numTmp < Program.tmp.Length; numTmp++)

 {

 if (officeid == Program.tmp[numTmp])

 {

 return false;

 }

 }

 return true;

 }

 static int checkCapacity(int officeid)

 {

 return Program.officeCapacity[officeid];

 }

 static bool checkWhoIsInTheOffice(int officeid, string dept)

 {

 if (Program.officeWhoIsThere[officeid] == dept || Program.officeWhoIsThere[officeid]

== null)

 {

 return true;

 }

 return false;

 }

 static bool isItProfSuit(string typed, int toilet)

 {

 if (typed == "A" && toilet == 0)

 {

 return false;

 }

 return true;

 }

 static int[] ShuffleArray(int[] array)

136

 {

 Random r = new Random();

 for (int i = array.Length; i > 0; i--)

 {

 int j = r.Next(i);

 int k = array[j];

 array[j] = array[i - 1];

 array[i - 1] = k;

 }

 return array;

 }

 }

}

/*

 //THIS PART IS TO TEST THE DATABASE CLASS

 string db = "vp_validation_system";

 string dbuid = "root";

 string dbpwd = "";

 //instantiating the db class

 MySQLDatabase myDb = new MySQLDatabase(dbuid, dbpwd, db);

 //selecting data from table - there shouldn't be any records for now

 System.Data.DataTable records;

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 // You could just add a statement 'using System.Data;' at the beginning and then use

'System.Data.DataTable' just as 'DataTable'

 Console.WriteLine("All records inserted:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

137

 //insert record to table 'sample_codes'

 Dictionary<string, string>[] insertData = new Dictionary<string, string>[3]; //An array

of dictionaries, each dictionary represents a row to be inserted

 insertData[0] = new Dictionary<string, string>();

 insertData[0].Add("code", "563443y3uh87grr"); //column name, value in table

'sample_codes'

 insertData[0].Add("used", "0"); //another column name, value in table 'sample_codes'

 insertData[1] = new Dictionary<string, string>();

 insertData[1].Add("code", "fhbeiurhg34u23434");

 insertData[1].Add("used", "0");

 insertData[2] = new Dictionary<string, string>();

 insertData[2].Add("code", "fdhrbru3u9rwei9jcks");

 insertData[2].Add("used", "0");

 try

 {

 myDb.Insert(insertData[0], "sample_codes");

 myDb.Insert(insertData[1], "sample_codes");

 myDb.Insert(insertData[2], "sample_codes");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error inserting: " + e.Message);

 }

 //selecting data from table

 Console.WriteLine();

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 // You could just add a statement 'using System.Data;' at the beginning and then use

'System.Data.DataTable' just as 'DataTable'

 Console.WriteLine("All records inserted:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

138

 //another select

 Console.WriteLine();

 Dictionary<string, string> search = new Dictionary<string, string>();

 search.Add("id", "1");

 search.Add("used", "0"); //this is not necessary, but just to indicate that u could have

multiple search conditions

 try

 {

 records = myDb.Select(search, "sample_codes");

 Console.WriteLine("Record with id=1 and used=0 (should be only one record):");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //update

 Dictionary<string, string> updateData = new Dictionary<string, string>();

 updateData.Add("code", "5555555555555555");

 updateData.Add("id", "2"); //this will be only used in the WHERE clause and not to

update bcos I will instruct the function so via its parameter

 try

 {

 myDb.Update(updateData, "id", "sample_codes");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error updating: " + e.Message);

 }

 //delete

 try

 {

 myDb.Delete("id", "3", "sample_codes"); //deleting record with id=3

 }

 catch (Exception e)

 {

 Console.WriteLine("Error deleting: " + e.Message);

 }

139

 //selecting everything again to see changes made with uodate and delete

 Console.WriteLine();

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 Console.WriteLine("All records after modifications:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //Using the function 'Count'

 Console.WriteLine();

 Console.WriteLine("Number of all records left in table 'sample_codes': " +

myDb.Count("sample_codes"));

 Console.Read();

 }*/

MySQLDatabase.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

using MySql.Data.MySqlClient;

namespace tabu_osap

{

 class MySQLDatabase

 {

 private MySqlConnection connection;

 private string server = "localhost";

 private string database = "abc_osap";

 private string uid = "root";

 private string password = "";

 //Constructor

140

 //public MySQLDatabase(string uname, string pwd, string db)

 public MySQLDatabase()

 {

 Initialize();

 //Initialize(uname, pwd, db);

 //In case there any other thing one would like to have done on instantiation aside from

just initializing

 }

 //Initialize values

 //private void Initialize(string uname, string pwd, string db)

 private void Initialize()

 {

 //server = "localhost";

 //database = db;

 //uid = uname;

 //password = pwd;

 string connectionString;

 connectionString = "SERVER=" + server + ";" + "DATABASE=" +

 database + ";" + "UID=" + uid + ";" + "PASSWORD=" + password + ";";

 connection = new MySqlConnection(connectionString);

 }

 //open connection to database

 private bool OpenConnection()

 {

 try

 {

 connection.Open();

 return true;

 }

 catch (MySqlException ex)

 {

 //The two most common error numbers when connecting are as follows:

 //0: Cannot connect to server.

 //1045: Invalid user name and/or password.

 switch (ex.Number)

 {

 case 0:

 throw new System.Exception("0 - Cannot connect to server");

 case 1045:

 throw new System.Exception("1045 - Invalid username/password");

 }

 return false;

 }

 }

 //Close connection

 private bool CloseConnection()

 {

 try

141

 {

 connection.Close();

 return true;

 }

 catch (MySqlException ex)

 {

 throw new System.Exception(ex.Message);

 }

 }

 //Insert statement

 public void Insert(Dictionary<string, string> ins, string table) //a dictionary data structure

is used to easily accomodate any number of columns in insert

 {

 int k = 0;

 string query = "INSERT INTO " + table + " SET ";

 foreach (KeyValuePair<string, string> column in ins)

 {

 if (++k > 1) query += ", ";

 query += column.Key + " = '" + column.Value + "'";

 }

 //open connection

 if (this.OpenConnection() == true)

 {

 //create command and assign the query and connection from the constructor

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Execute command

 cmd.ExecuteNonQuery();

 //close connection

 this.CloseConnection();

 }

 }

 //Update statement

 public void Update(Dictionary<string, string> ins, string updateKey, string table)

 {

 int k = 0;

 string query = "UPDATE " + table + " SET ";

 foreach (KeyValuePair<string, string> column in ins)

 {

 if (column.Key != updateKey)

 {

 if (++k > 1) query += ", ";

 query += column.Key + " = '" + column.Value + "'";

 }

 }

 query += "WHERE " + updateKey + " = '" + ins[updateKey] + "'";

 //Open connection

 if (this.OpenConnection() == true)

142

 {

 //create mysql command

 MySqlCommand cmd = new MySqlCommand();

 //Assign the query using CommandText

 cmd.CommandText = query;

 //Assign the connection using Connection

 cmd.Connection = connection;

 //Execute query

 cmd.ExecuteNonQuery();

 //close connection

 this.CloseConnection();

 }

 }

 //Delete statement

 public void Delete(string key, string value, string table)

 {

 string query = "DELETE FROM " + table + " WHERE " + key + " = '" + value + "'";

 if (this.OpenConnection() == true)

 {

 MySqlCommand cmd = new MySqlCommand(query, connection);

 cmd.ExecuteNonQuery();

 this.CloseConnection();

 }

 }

 //Select statement

 public DataTable Select(Dictionary<string, string> search, string table, string connector =

"AND")

 {

 int k = 0;

 DataTable dbTable = new DataTable();

 string query = "SELECT * FROM " + table;

 if (search != null)

 {

 query += " WHERE ";

 foreach (KeyValuePair<string, string> column in search)

 {

 if (++k > 1) query += " " + connector + " ";

 query += column.Key + " = '" + column.Value + "'";

 }

 }

 //Open connection

 if (this.OpenConnection() == true)

 {

 //Create Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Create a data reader and Execute the command

 MySqlDataReader dataReader = cmd.ExecuteReader();

143

 if (dataReader.HasRows)

 dbTable.Load(dataReader);

 //close Data Reader

 dataReader.Close();

 //close Connection

 this.CloseConnection();

 }

 return dbTable;

 }

 public DataTable Query(string query)

 {

 DataTable dbTable = new DataTable();

 //Open connection

 if (this.OpenConnection() == true)

 {

 //Create Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Create a data reader and Execute the command

 MySqlDataReader dataReader = cmd.ExecuteReader();

 if (dataReader.HasRows)

 dbTable.Load(dataReader);

 //close Data Reader

 dataReader.Close();

 //close Connection

 this.CloseConnection();

 }

 return dbTable;

 }

 //Count statement

 public int Count(string table)

 {

 string query = "SELECT Count(*) FROM " + table;

 int count = -1;

 //Open Connection

 if (this.OpenConnection() == true)

 {

 //Create Mysql Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //ExecuteScalar will return one value

 count = int.Parse(cmd.ExecuteScalar() + "");

 //close Connection

144

 this.CloseConnection();

 }

 return count;

 }

 }

}

Office.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace tabu_osap

{

 class Office

 {

 public int id { get; set; }

 public int capacity { get; set; }

 public string proximity;

 public string properties { get; set; }

 public string type { get; set; }

 public int toilet { get; set; }

 public int resources { get; set; }

 public string Display()

 {

 Console.Write("Capacity: " + capacity + "Room: " + id + "; Properties: " + properties +

"; TypeID: " + type + "; Capacity:" + capacity);

 return "Room: " + id + "; Properties: " + properties + "; TypeID: " + type + ";

Capacity:" + capacity + "\r\n";

 }

 public void Copy(Office other)

 {

 this.capacity = other.capacity;

 this.properties = other.properties;

 this.type = other.type;

 this.id = other.id;

 this.proximity = other.proximity;

 this.toilet = other.toilet;

 this.resources = other.resources;

 }

 }

}

Program.cs

using System;

using System.Diagnostics;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

145

namespace tabu_osap

{

 class Program

 {

 //upper bounds

 static int staff_ub, office_ub;

 public static int[] tmp = new int[100];

 public static int[] officeCapacity = new int[100];

 public static string[] officeWhoIsThere = new string[100];

 public static Random r = new Random();

 static void Main(string[] args)

 {

 Stopwatch stpWatch = new Stopwatch();

 stpWatch.Start();

 MySQLDatabase myDb = new MySQLDatabase();

 int maxCycle = 2;

 int no_of_runs = 1; /*The number of cycles for foraging {a stopping criteria}*/

 //use inputset class to handle input

 InputSet.Load(); //loading inputs

 //setting upper bounds

 staff_ub = InputSet.staffList.Count - 1;

 office_ub = InputSet.officesList.Count - 1;

 List<Solution> candidateSols = new List<Solution>();

 List<Solution> tabuSolutions = new List<Solution>();

 using (System.IO.StreamWriter file = new

System.IO.StreamWriter(@"C:\Users\Public\tabu_results.txt"))

 {

 for (int iter = 0; iter < no_of_runs; iter++)

 {

 stpWatch.Reset();

 stpWatch.Start();

 Console.WriteLine("Run: " + (iter + 1));

 file.WriteLine("Run: " + (iter + 1));

 InputSet.loadOfficeCapacity();

 Solution initialSol = GetInitialSolution();

 Solution fittest = new Solution(initialSol);

 for (int i = 0; i < maxCycle; i++)

 {

 Console.WriteLine("iteration: " + (i + 1));

 file.WriteLine("iteration: " + (i + 1));

 for (int k = 0; k < initialSol.allocs.Count(); k++)

 {

 Solution initialSolCopy = new Solution(initialSol);

146

 //for each then pick an office to randomly change

 int randOffice = 0;//Convert.ToInt16(r.NextDouble() * office_ub);

InputSet.DeclareArray(InputSet.officeGroups[InputSet.staffList[k].typeId].Count);

 randOffice = InputSet.getOfficeByTypeName(InputSet.staffList[k].typeId,

InputSet.staffList[k].dept);

 tmp[k] = randOffice;

 officeWhoIsThere[randOffice] = InputSet.staffList[k].dept;

 officeCapacity[randOffice] -= 1;

 initialSolCopy.allocs[k].officeID = randOffice;

 initialSolCopy.calcPenalty();

 if (!tabuSolutions.Contains(initialSolCopy) && fittest.penalty >=

initialSolCopy.penalty)

 {

 fittest.Copy(initialSolCopy);

 tabuSolutions.Add(initialSolCopy);

 }

 else if (!tabuSolutions.Contains(initialSolCopy))

 {

 tabuSolutions.Add(initialSolCopy);

 }

 }

 Array.Clear(tmp, 0, tmp.Length);

 InputSet.loadOfficeCapacity();

 candidateSols.Add(fittest);

 }

 Console.WriteLine("Best Allocation:");

 file.WriteLine("Best Allocation:");

 Dictionary<string, string> solsToInsert = new Dictionary<string, string>();

 string fit_sol = fittest.Print();

 file.WriteLine(fit_sol);

 stpWatch.Stop();

 TimeSpan ts = stpWatch.Elapsed;

 String elapsedTime = String.Format("{0:00}:{1:00}:{2:00}.{3:00}", ts.Hours,

ts.Minutes, ts.Seconds, ts.Milliseconds / 10);

 Console.WriteLine("=========");

 file.WriteLine("=========");

 Console.WriteLine("RunTime: " + elapsedTime);

 file.WriteLine("RunTime: " + elapsedTime);

 long memory = GC.GetTotalMemory(true);

 double mem = memory / 1024;

 mem = Math.Round(mem, 2);

 Console.WriteLine("Memory Used: {0}KB", mem.ToString());

 file.WriteLine("Memory Used: {0}KB", mem.ToString());

 Console.WriteLine();

 file.WriteLine(" ");

147

 foreach (Allocation solAlloc in fittest.allocs)

 {

 solsToInsert.Add("run", iter.ToString());

 solsToInsert.Add("staff_id", solAlloc.staffID.ToString());

 solsToInsert.Add("office_id", solAlloc.officeID.ToString());

 solsToInsert.Add("penalty", fittest.penalty.ToString());

 solsToInsert.Add("alorithm_time", elapsedTime);

 solsToInsert.Add("memory_used", mem.ToString() + "KB");

 myDb.Insert(solsToInsert, "solutions");

 solsToInsert.Clear();

 }

 }

 }

 Console.Read();

 }

 static Solution GetInitialSolution()

 {

 Solution sol = new Solution(InputSet.staffList.Count);

 for (int k = 0; k < InputSet.staffList.Count; k++)

 {

 int randOffice = 0;//Convert.ToInt16(r.NextDouble() * (InputSet.officesList.Count()

- 1));

 InputSet.DeclareArray(InputSet.officeGroups[InputSet.staffList[k].typeId].Count);

 randOffice = InputSet.getOfficeByTypeName(InputSet.staffList[k].typeId,

InputSet.staffList[k].dept);

 tmp[k] = randOffice;

 officeWhoIsThere[randOffice] = InputSet.staffList[k].dept;

 officeCapacity[randOffice] -= 1;

 //Console.WriteLine(InputSet.staffList[k].cadre + "(" + InputSet.staffList[k].id +

")==" + randOffice + "(" + InputSet.GetOfficeById(randOffice).properties + ")");

 sol.allocs[k] = new Allocation(InputSet.staffList[k].id, randOffice);

 }

 sol.calcPenalty();

 Array.Clear(tmp, 0, tmp.Length);

 InputSet.loadOfficeCapacity();

 return sol;

 }

 static Solution GetFittest(List<Solution> solutions) {

 Solution fittest = new Solution(solutions.ElementAt(0));

 for (int i = 1; i < solutions.Count; i++)

 {

 if (fittest.penalty > solutions.ElementAt(i).penalty)

fittest.Copy(solutions.ElementAt(i));

 }

 return fittest;

 }

 }

148

}

Solution.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

namespace tabu_osap

{

 class Solution // AKA Food Source

 {

 public double penalty { get; set; } //inverse is the fitness; the nectar amount

 public double probability;

 public int trials;

 public Allocation[] allocs;

 public Solution(int numSol)

 {

 //numSol is the number of staff in the inputset

 allocs = new Allocation[numSol];

 }

 public Solution(Solution clone)

 {

 allocs = new Allocation[clone.allocs.Length];

 for (int i = 0; i < clone.allocs.Length; i++)

 {

 allocs[i] = new Allocation(clone.allocs[i].staffID, clone.allocs[i].officeID);

 }

 penalty = clone.penalty;

 probability = clone.probability;

 }

 public string Print()

 {

 string to_ret = "";

 for (int i = 0; i < allocs.Length; i++)

 {

 to_ret += allocs[i].Print();

 }

 Console.WriteLine("Penalty: " + penalty);

 to_ret += "Penalty: " + penalty;

 return to_ret;

 //return penalty.ToString();

 //file.WriteLine(penalty);

 }

 public void Copy(Solution clone)

 {

 allocs = new Allocation[clone.allocs.Length];

149

 for (int i = 0; i < clone.allocs.Length; i++)

 {

 allocs[i] = new Allocation(clone.allocs[i].staffID, clone.allocs[i].officeID);

 }

 penalty = clone.penalty;

 probability = clone.probability;

 }

 public double getFitness()

 {

 return 1 / penalty;

 }

 public void calcPenalty()

 {

 MySQLDatabase myDb = new MySQLDatabase();

 //selecting data from table

 DataTable records;

 penalty = 0;

 for (int i = 0; i < allocs.Length; i++)

 {

 try

 {

 //selecting office records

 records = myDb.Query("SELECT * FROM entity_constraints JOIN constraints

ON constraint_type LIKE type WHERE entity_kind LIKE 'staff' AND entity_id =

'"+Convert.ToString(allocs[i].staffID)+"'");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (DataRow row in records.Rows)

 penalty += Violates(Convert.ToString(row["constraint_type"]), allocs[i],

row);

 //penalty += Convert.ToDouble(row["weight"]);

 }

 records = myDb.Query("SELECT * FROM entity_constraints JOIN constraints

ON constraint_type LIKE type WHERE entity_kind LIKE 'office' AND entity_id = '" +

Convert.ToString(allocs[i].officeID) + "'");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (DataRow row in records.Rows)

 //penalty += Convert.ToDouble(row["weight"]);

 penalty += Violates(Convert.ToString(row["constraint_type"]), allocs[i],

row);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 }

 }

150

 int Violates(string constraintType, Allocation presentAlloc, DataRow constraintRow)

 {

 switch (constraintType)

 {

 case "allocation":

 if (presentAlloc.officeID !=

Convert.ToInt16(constraintRow["concerned_entity_id"]))

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "non-allocation":

 if (presentAlloc.officeID ==

Convert.ToInt16(constraintRow["concerned_entity_id"]))

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "same-room":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) == allocs[i].staffID

&& allocs[i].officeID != presentAlloc.officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "not-same-room":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) == allocs[i].staffID

&& allocs[i].officeID == presentAlloc.officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "not-sharing":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (presentAlloc.officeID == allocs[i].officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "capacity": //remember to put a counter such that for each solution, if the

constraint is capacity, it can only be called once

 int occupied = 0;

 for (int i = 0; i < allocs.Length; i++)

 {

 if (presentAlloc.officeID == allocs[i].officeID)

 occupied++;

 }

 if (occupied > InputSet.GetOfficeById(presentAlloc.officeID).capacity)

 return Convert.ToInt16(constraintRow["weight"]);

 break;

151

 case "nearby": //proximity for offices should be defined in both ways, but nearby

constraint for staff should be define only in one way

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) ==

allocs[i].staffID) //this is the staff whom I should be near

 {//now check if both our offices are in close proximity. But what if we have the

same office?

 Office myOffice = InputSet.GetOfficeById(presentAlloc.officeID);

 Office yourOffice = InputSet.GetOfficeById(allocs[i].officeID);

 if (presentAlloc.officeID != allocs[i].officeID &&

myOffice.proximity.IndexOf("," + yourOffice.id + ",") < 0 &&

yourOffice.proximity.IndexOf("," + myOffice.id + ",") < 0)

 { //this means the constraint has been violated bcos the offices are not nearby

as expected

 return Convert.ToInt16(constraintRow["weight"]);

 } //else, they are in close proximity and the constraint is therefore not

violated

 else

 return 0;

 }

 }

 break;

 case "away-from": //proximity for offices should be defined in both ways, but nearby

constraint for staff should be define only in one way

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) ==

allocs[i].staffID) //this is the staff whom I should be near

 {//now check if both our offices are in close proximity. But what if we have the

same office?

 Office myOffice = InputSet.GetOfficeById(presentAlloc.officeID);

 Office yourOffice = InputSet.GetOfficeById(allocs[i].officeID);

 if (presentAlloc.officeID == allocs[i].officeID ||

myOffice.proximity.IndexOf("," + yourOffice.id + ",") >= 0 &&

yourOffice.proximity.IndexOf("," + myOffice.id + ",") >= 0)

 { //this means the constraint has been violated bcos the offices are nearby

 return Convert.ToInt16(constraintRow["weight"]);

 } //else, they are not in close proximity and the constraint is therefore not

violated

 else

 return 0;

 }

 }

 break;

 default:

 return 0;

 }

 return 0;

 }

152

 }

}

Staff.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace tabu_osap

{

 class Staff

 {

 public int id { get; set; }

 public string staffName { get; set; }

 public string cadre { get; set; }

 public string typeId { get; set; }

 public string dept { get; set; }

 public string Display()

 {

 Console.Write("Staff: " + id + "; Dept: " + dept + "; Cadre: " + cadre + "; TypeID: " +

typeId);

 return "Staff: " + id + "; Dept: " + dept + "; Cadre: " + cadre + "; TypeID: " + typeId +

"\r\n";

 }

 public void Copy(Staff other)

 {

 this.staffName = other.staffName;

 this.cadre = other.cadre;

 this.typeId = other.typeId;

 }

 }

}

GENETIC SOURCE CODE ICS

Allocation.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Genetic

{

 class Allocation

 {

 public int staffID { get; set; }

153

 public int officeID { get; set; }

 public Allocation (int staff, int office)

 {

 staffID = staff;

 officeID = office;

 }

 public string Print()

 {

 string to_ret = "";

 string staff_rec = InputSet.GetStaffById(staffID).Display();

 to_ret += staff_rec + "\n";

 Console.Write(" ---- Allocated to: ");

 to_ret += " ---- Allocated to: " + "\r\n";

 string office_rec = InputSet.GetOfficeById(officeID).Display();

 to_ret += office_rec + "\r\n";

 Console.Write("\n");

 return to_ret;

 }

 }

}

InputSet.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

namespace Genetic

{

 class InputSet

 {

 static Office[] offices;

 public static List<Office> officesList = new List<Office>();

 public static Dictionary<string, List<Office>> officeGroups = new

Dictionary<string,List<Office>>();

 static Staff[] staff;

 static int[] officeGrp;

 public static List<Staff> staffList = new List<Staff>();

 public static Dictionary<string, List<Staff>> staffGroups = new Dictionary<string,

List<Staff>>();

 public static void DeclareArray(int numOff)

 {

 //numSol is the number of office in the inputset

 officeGrp = new int[numOff];

 }

 public static void Load()

 {

154

 int i;

 MySQLDatabase myDb = new MySQLDatabase();

 //selecting data from table

 DataTable records;

 try

 {

 //selecting office records

 //Console.WriteLine("1");

 records = myDb.Select(null, "offices");//null means to fetch all data from the table

 //Console.WriteLine("2");

 if (records != null && records.Rows.Count > 0)

 {

 offices = new Office[records.Rows.Count];

 i = 0;

 foreach (DataRow row in records.Rows)

 {

 //Console.WriteLine(row["id"].GetType());

 //string d = row["type"].ToString();

 offices[i] = new Office();

 offices[i].id = (int)row["id"];

 offices[i].type = row["type"].ToString();

 offices[i].properties = row["properties"].ToString();

 offices[i].capacity = (int)row["capacity"];

 offices[i].toilet = row["toilet"].ToString() == "" ? 0 : (int)row["toilet"];

 offices[i].resources = (int)row["resources"];

 offices[i].proximity = row["proximity"].ToString();

 officesList.Add(offices[i]);

 if (!officeGroups.ContainsKey(offices[i].type))

 officeGroups[offices[i].type] = new List<Office>();

 officeGroups[offices[i].type].Add(offices[i]);

 }

 }

 else

 Console.WriteLine("No office record found!");

 //System.Threading.Thread.Sleep(1000000);

 //selecting staff records

 //Console.WriteLine("3");

 records = myDb.Select(null, "staff");//null means to fetch all data from the table

 //Console.WriteLine("4");

 if (records != null && records.Rows.Count > 0)

 {

 staff = new Staff[records.Rows.Count];

 i = 0;

 foreach (DataRow row in records.Rows)

 {

 staff[i] = new Staff();

 staff[i].id = Convert.ToInt16(row["id"]);

155

 staff[i].typeId = Convert.ToString(row["type_id"]);

 staff[i].cadre = Convert.ToString(row["cadre"]);

 staff[i].staffName = Convert.ToString(row["staff_name"]);

 staff[i].dept = Convert.ToString(row["dept"]);

 staffList.Add(staff[i]);

 //this part might not be needed

 if (!staffGroups.ContainsKey(staff[i].typeId))

 staffGroups[staff[i].typeId] = new List<Staff>();

 staffGroups[staff[i].typeId].Add(staff[i]);

 //this part might not be needed

 }

 }

 else

 Console.WriteLine("No staff record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 System.Threading.Thread.Sleep(1000000);

 }

 }

 public static Office GetOfficeById(int id)

 {

 foreach (Office office in officesList)

 {

 if (office.id == id) return office;

 }

 return null;

 }

 public static void loadOfficeCapacity()

 {

 foreach (Office office in officesList)

 {

 Program.officeCapacity[office.id] = office.capacity;

 }

 }

 public static int GetOfficeIndexById(int id)

 {

 for (int i = 0; i < officesList.Count(); i++)

 {

 if (officesList[i].id == id) return i;

 }

 return -1;

 }

 public static Staff GetStaffById(int id)

 {

156

 foreach (Staff staff in staffList)

 {

 if (staff.id == id) return staff;

 }

 return null;

 }

 public static int getOfficeByTypeName(string typey, string dept)

 {

 Found:

 int k = 0;

 foreach (Office office in officesList)

 {

 if (office.type == typey)

 {

 if (office.resources == 1)

 {

 if (crossCheck(office.id) && checkCapacity(office.id) > 0 &&

checkWhoIsInTheOffice(office.id, dept) && isItProfSuit(typey, office.toilet))

 {

 officeGrp[k] = office.id;

 k += 1;

 }

 }

 }

 }

 //Console.WriteLine(ox + " T:" + typey);

 if (k == 0)

 {

 //Console.WriteLine(k);

 ClearTypeRoom(typey);

 goto Found;

 }

 //System.Threading.Thread.Sleep(600);

 int rnd = Program.r.Next(0, k - 1);

 return officeGrp[rnd];

 }

 static void ClearTypeRoom(string typey)

 {

 for (int numTmp = 0; numTmp < Program.tmp.Length; numTmp++)

 {

 Office xx = GetOfficeById(Program.tmp[numTmp]);

 if (xx != null)

 {

 if (xx.type == typey)

 {

 Program.tmp[numTmp] = 0;

 }

 }

 }

 }

157

 static bool crossCheck(int officeid)

 {

 for (int numTmp = 0; numTmp < Program.tmp.Length; numTmp++)

 {

 if (officeid == Program.tmp[numTmp])

 {

 return false;

 }

 }

 return true;

 }

 static int checkCapacity(int officeid)

 {

 return Program.officeCapacity[officeid];

 }

 static bool checkWhoIsInTheOffice(int officeid, string dept)

 {

 if (Program.officeWhoIsThere[officeid] == dept || Program.officeWhoIsThere[officeid]

== null)

 {

 return true;

 }

 return false;

 }

 static bool isItProfSuit(string typed, int toilet)

 {

 if (typed == "A" && toilet == 0)

 {

 return false;

 }

 return true;

 }

 static int[] ShuffleArray(int[] array)

 {

 Random r = new Random();

 for (int i = array.Length; i > 0; i--)

 {

 int j = r.Next(i);

 int k = array[j];

 array[j] = array[i - 1];

 array[i - 1] = k;

 }

 return array;

 }

 }

}

158

/*

 //THIS PART IS TO TEST THE DATABASE CLASS

 string db = "vp_validation_system";

 string dbuid = "root";

 string dbpwd = "";

 //instantiating the db class

 MySQLDatabase myDb = new MySQLDatabase(dbuid, dbpwd, db);

 //selecting data from table - there shouldn't be any records for now

 System.Data.DataTable records;

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 // You could just add a statement 'using System.Data;' at the beginning and then use

'System.Data.DataTable' just as 'DataTable'

 Console.WriteLine("All records inserted:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //insert record to table 'sample_codes'

 Dictionary<string, string>[] insertData = new Dictionary<string, string>[3]; //An array

of dictionaries, each dictionary represents a row to be inserted

 insertData[0] = new Dictionary<string, string>();

 insertData[0].Add("code", "563443y3uh87grr"); //column name, value in table

'sample_codes'

 insertData[0].Add("used", "0"); //another column name, value in table 'sample_codes'

 insertData[1] = new Dictionary<string, string>();

 insertData[1].Add("code", "fhbeiurhg34u23434");

 insertData[1].Add("used", "0");

 insertData[2] = new Dictionary<string, string>();

 insertData[2].Add("code", "fdhrbru3u9rwei9jcks");

 insertData[2].Add("used", "0");

159

 try

 {

 myDb.Insert(insertData[0], "sample_codes");

 myDb.Insert(insertData[1], "sample_codes");

 myDb.Insert(insertData[2], "sample_codes");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error inserting: " + e.Message);

 }

 //selecting data from table

 Console.WriteLine();

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 // You could just add a statement 'using System.Data;' at the beginning and then use

'System.Data.DataTable' just as 'DataTable'

 Console.WriteLine("All records inserted:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //another select

 Console.WriteLine();

 Dictionary<string, string> search = new Dictionary<string, string>();

 search.Add("id", "1");

 search.Add("used", "0"); //this is not necessary, but just to indicate that u could have

multiple search conditions

 try

 {

 records = myDb.Select(search, "sample_codes");

 Console.WriteLine("Record with id=1 and used=0 (should be only one record):");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

160

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //update

 Dictionary<string, string> updateData = new Dictionary<string, string>();

 updateData.Add("code", "5555555555555555");

 updateData.Add("id", "2"); //this will be only used in the WHERE clause and not to

update bcos I will instruct the function so via its parameter

 try

 {

 myDb.Update(updateData, "id", "sample_codes");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error updating: " + e.Message);

 }

 //delete

 try

 {

 myDb.Delete("id", "3", "sample_codes"); //deleting record with id=3

 }

 catch (Exception e)

 {

 Console.WriteLine("Error deleting: " + e.Message);

 }

 //selecting everything again to see changes made with uodate and delete

 Console.WriteLine();

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 Console.WriteLine("All records after modifications:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

161

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //Using the function 'Count'

 Console.WriteLine();

 Console.WriteLine("Number of all records left in table 'sample_codes': " +

myDb.Count("sample_codes"));

 Console.Read();

 }*/

MySQLDatabase.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

using MySql.Data.MySqlClient;

namespace Genetic

{

 class MySQLDatabase

 {

 private MySqlConnection connection;

 private string server = "localhost";

 private string database = "abc_osap";

 private string uid = "root";

 private string password = "";

 //Constructor

 //public MySQLDatabase(string uname, string pwd, string db)

 public MySQLDatabase()

 {

 Initialize();

 //Initialize(uname, pwd, db);

 //In case there any other thing one would like to have done on instantiation aside from

just initializing

 }

 //Initialize values

 //private void Initialize(string uname, string pwd, string db)

 private void Initialize()

 {

 //server = "localhost";

 //database = db;

 //uid = uname;

 //password = pwd;

162

 string connectionString;

 connectionString = "SERVER=" + server + ";" + "DATABASE=" +

 database + ";" + "UID=" + uid + ";" + "PASSWORD=" + password + ";";

 connection = new MySqlConnection(connectionString);

 }

 //open connection to database

 private bool OpenConnection()

 {

 try

 {

 connection.Open();

 return true;

 }

 catch (MySqlException ex)

 {

 //The two most common error numbers when connecting are as follows:

 //0: Cannot connect to server.

 //1045: Invalid user name and/or password.

 switch (ex.Number)

 {

 case 0:

 throw new System.Exception("0 - Cannot connect to server");

 case 1045:

 throw new System.Exception("1045 - Invalid username/password");

 }

 return false;

 }

 }

 //Close connection

 private bool CloseConnection()

 {

 try

 {

 connection.Close();

 return true;

 }

 catch (MySqlException ex)

 {

 throw new System.Exception(ex.Message);

 }

 }

 //Insert statement

 public void Insert(Dictionary<string, string> ins, string table) //a dictionary data structure

is used to easily accomodate any number of columns in insert

 {

 int k=0;

 string query = "INSERT INTO "+table+" SET ";

 foreach (KeyValuePair<string, string> column in ins) {

163

 if (++k > 1) query += ", ";

 query += column.Key+" = '"+column.Value+"'";

 }

 //open connection

 if (this.OpenConnection() == true)

 {

 //create command and assign the query and connection from the constructor

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Execute command

 cmd.ExecuteNonQuery();

 //close connection

 this.CloseConnection();

 }

 }

 //Update statement

 public void Update(Dictionary<string, string> ins, string updateKey, string table)

 {

 int k = 0;

 string query = "UPDATE " + table + " SET ";

 foreach (KeyValuePair<string, string> column in ins)

 {

 if (column.Key != updateKey) {

 if (++k > 1) query += ", ";

 query += column.Key + " = '" + column.Value + "'";

 }

 }

 query += "WHERE "+updateKey+" = '"+ins[updateKey]+"'";

 //Open connection

 if (this.OpenConnection() == true)

 {

 //create mysql command

 MySqlCommand cmd = new MySqlCommand();

 //Assign the query using CommandText

 cmd.CommandText = query;

 //Assign the connection using Connection

 cmd.Connection = connection;

 //Execute query

 cmd.ExecuteNonQuery();

 //close connection

 this.CloseConnection();

 }

 }

 //Delete statement

 public void Delete(string key, string value, string table)

 {

164

 string query = "DELETE FROM " + table + " WHERE "+key+" = '"+value+"'";

 if (this.OpenConnection() == true)

 {

 MySqlCommand cmd = new MySqlCommand(query, connection);

 cmd.ExecuteNonQuery();

 this.CloseConnection();

 }

 }

 //Select statement

 public DataTable Select(Dictionary<string, string> search, string table, string connector =

"AND")

 {

 int k = 0;

 DataTable dbTable = new DataTable();

 string query = "SELECT * FROM " + table;

 if (search != null)

 {

 query += " WHERE ";

 foreach (KeyValuePair<string, string> column in search)

 {

 if (++k > 1) query += " " + connector + " ";

 query += column.Key + " = '" + column.Value + "'";

 }

 }

 //Open connection

 if (this.OpenConnection() == true)

 {

 //Create Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Create a data reader and Execute the command

 MySqlDataReader dataReader = cmd.ExecuteReader();

 if (dataReader.HasRows)

 dbTable.Load(dataReader);

 //close Data Reader

 dataReader.Close();

 //close Connection

 this.CloseConnection();

 }

 return dbTable;

 }

 public DataTable Query(string query)

 {

 DataTable dbTable = new DataTable();

 //Open connection

 if (this.OpenConnection() == true)

165

 {

 //Create Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Create a data reader and Execute the command

 MySqlDataReader dataReader = cmd.ExecuteReader();

 if (dataReader.HasRows)

 dbTable.Load(dataReader);

 //close Data Reader

 dataReader.Close();

 //close Connection

 this.CloseConnection();

 }

 return dbTable;

 }

 //Count statement

 public int Count(string table)

 {

 string query = "SELECT Count(*) FROM "+table;

 int count = -1;

 //Open Connection

 if (this.OpenConnection() == true)

 {

 //Create Mysql Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //ExecuteScalar will return one value

 count = int.Parse(cmd.ExecuteScalar() + "");

 //close Connection

 this.CloseConnection();

 }

 return count;

 }

 }

}

Office.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Genetic

{

 class Office

 {

 public int id { get; set; }

166

 public int capacity { get; set; }

 public string proximity { get; set; }

 public string properties { get; set; }

 public string type { get; set; }

 public int toilet { get; set; }

 public int resources { get; set; }

 public string Display()

 {

 Console.Write("Room: " + id + "; Properties: " + properties + "; TypeID: " + type + ";

Capacity:" + capacity);

 return "Room: " + id + "; Properties: " + properties + "; TypeID: " + type + ";

Capacity:" + capacity + "\r\n";

 }

 public void Copy(Office other)

 {

 this.capacity = other.capacity;

 this.properties = other.properties;

 this.type = other.type;

 this.id = other.id;

 this.proximity = other.proximity;

 this.toilet = other.toilet;

 this.resources = other.resources;

 }

 }

}

Program.cs

using System;

using System.Diagnostics;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Genetic

{

 class Program

 {

 static int np = 20; /* The size of the problem (new breed+new generation)*/

 static int Population = np / 2; //ie. number of solutions, equal to num of new breed

 static int crossOver = 100;

 static Solution[] problems = new Solution[Population]; //problems - initial solution

 static int chromosomeSearchLimit = 5;

 public static int[] tmp = new int[100];

 public static int[] officeCapacity = new int[100];

 public static string[] officeWhoIsThere = new string[100];

 //upper bounds

 static int staff_ub, office_ub;

 public static Random r = new Random();

 static void Main(string[] args)

167

 {

 Stopwatch stpWatch = new Stopwatch();

 stpWatch.Start();

 MySQLDatabase myDb = new MySQLDatabase();

 //int maxGene = 2000; /*The number of genes for generation {a stopping criteria}*/

 int maxGene = 2; /*The number of genes for generation {a stopping criteria}*/

 //int runtime = 30; /*Algorithm can be run many times in order to see its robustness*/

 int runtime = 1; /*Algorithm can be run many times in order to see its robustness*/

 //use inputset class to handle input

 InputSet.Load(); //loading inputs

 //setting upper bounds

 staff_ub = InputSet.staffList.Count - 1;

 office_ub = InputSet.officesList.Count - 1;

 Solution fittest = new Solution(InputSet.staffList.Count);

 //continue here after writing other functions

 //double mean=0;

 using (System.IO.StreamWriter file = new

System.IO.StreamWriter(@"C:\Users\Public\gen_results.txt"))

 {

 for (int run = 0; run < runtime; run++)

 {

 stpWatch.Reset();

 stpWatch.Start();

 Console.WriteLine("Run: " + (run + 1));

 file.WriteLine("Run: " + (run + 1));

 InputSet.loadOfficeCapacity();

 InitPopulation();

 //fittest = GetFittest();

 for (int iter = 0; iter < maxGene; iter++)

 {

 Console.WriteLine("iteration: " + (iter + 1));

 file.WriteLine("iteration: " + (iter + 1));

 SelectionOperation();

 System.Threading.Thread.Sleep(31000);

 CalcSelections();

 CrossOverOperator();

 fittest = GetFittest();

 MutationOperator();

 }

 Console.WriteLine((run + 1).ToString() + ":");

 file.WriteLine((run + 1).ToString() + ":");

 Console.WriteLine("Best Allocation:");

 file.WriteLine("Best Allocation:");

 Array.Clear(tmp, 0, tmp.Length);

 Dictionary<string, string> solsToInsert = new Dictionary<string, string>();

168

 string fit_sol = fittest.Print();

 file.WriteLine(fit_sol);

 stpWatch.Stop();

 TimeSpan ts = stpWatch.Elapsed;

 String elapsedTime = String.Format("{0:00}:{1:00}:{2:00}.{3:00}", ts.Hours,

ts.Minutes, ts.Seconds, ts.Milliseconds / 10);

 Console.WriteLine("=========");

 file.WriteLine("=========");

 Console.WriteLine("RunTime: " + elapsedTime);

 file.WriteLine("RunTime: " + elapsedTime);

 long memory = GC.GetTotalMemory(true);

 double mem = memory / 1024;

 mem = Math.Round(mem, 2);

 Console.WriteLine("Memory Used: {0}KB", mem.ToString());

 file.WriteLine("Memory Used: {0}KB", mem.ToString());

 Console.WriteLine();

 file.WriteLine(" ");

 foreach (Allocation solAlloc in fittest.allocs)

 {

 solsToInsert.Add("run", run.ToString());

 solsToInsert.Add("staff_id", solAlloc.staffID.ToString());

 solsToInsert.Add("office_id", solAlloc.officeID.ToString());

 solsToInsert.Add("penalty", fittest.penalty.ToString());

 solsToInsert.Add("alorithm_time", elapsedTime);

 solsToInsert.Add("memory_used", mem.ToString() + "KB");

 myDb.Insert(solsToInsert, "solutions");

 solsToInsert.Clear();

 }

 }

 }

 Console.Read();

 }

 static void InitPopulation()

 {

 for (int i = 0; i < Population; i++)

 {

 problems[i] = new Solution(InputSet.staffList.Count);

 for (int k = 0; k < InputSet.staffList.Count; k++)

 {

 int randOffice = 0;

InputSet.DeclareArray(InputSet.officeGroups[InputSet.staffList[k].typeId].Count);

 randOffice = InputSet.getOfficeByTypeName(InputSet.staffList[k].typeId,

InputSet.staffList[k].dept);

 tmp[k] = randOffice;

 officeWhoIsThere[randOffice] = InputSet.staffList[k].dept;

 officeCapacity[randOffice] -= 1;

 problems[i].allocs[k] = new Allocation(InputSet.staffList[k].id, randOffice);

169

 }

 problems[i].calcPenalty();

 Array.Clear(tmp, 0, tmp.Length);

 InputSet.loadOfficeCapacity();

 }

 }

 static void ReInitPopulation(int i)

 {

 for (int k = 0; k < InputSet.staffList.Count; k++)

 {

 int randOffice = Convert.ToInt16(0 + r.NextDouble() *

(InputSet.officeGroups[InputSet.staffList[k].typeId].Count()-1));

 problems[i].allocs[k] = new Allocation(InputSet.staffList[k].id,

InputSet.officesList[randOffice].id);

 }

 problems[i].calcPenalty();

 }

 static Solution GetFittest() {

 Solution fittest = problems[0];

 for (int i = 1; i < problems.Length; i++)

 {

 if (fittest.penalty > problems[i].penalty) fittest = problems[i];

 }

 return fittest;

 }

 static double SumFitness()

 {

 double fitSum = 0;

 for (int i = 1; i < problems.Length; i++)

 {

 fitSum += problems[i].getFitness();

 }

 return fitSum;

 }

 static void SelectionOperation()

 {

 for (int i = 0; i < Population; i++)

 {

 for (int q = 0; q < chromosomeSearchLimit; q++)

 {

 int d = InputSet.staffList.Count - 1;

 Solution newSol = new Solution(InputSet.staffList.Count);

 newSol.Copy(problems[i]);

 /*The parameter to be changed is determined randomly*/

 int param2change = Convert.ToInt16(r.NextDouble() * d);

 /*A randomly chosen neighbour solution*/

 int neighbour = Convert.ToInt16(r.NextDouble() * (Population - 1));

170

 /*Randomly selected solution must be different from the solution i*/

 while (neighbour == i)

 neighbour = Convert.ToInt16(r.NextDouble() * (Population - 1));

 newSol.allocs[param2change].officeID =

problems[neighbour].allocs[param2change].officeID;

 newSol.calcPenalty();

 if (newSol.penalty < problems[i].penalty)

 problems[i].Copy(newSol);

 else

 problems[i].offsprings++; /*if the solution i can not be improved, increase its

trial counter*/

 }

 }

 }

 static void CalcSelections()

 {

 for (int i = 1; i < problems.Length; i++)

 {

 problems[i].selection = problems[i].getFitness() / SumFitness();

 }

 }

 static void CrossOverOperator()

 {

 int i = 0, t = 0;

 while (t < Population)

 {

 if (r.NextDouble() < problems[i].selection)

 {

 t++;

 int d = InputSet.staffList.Count - 1;

 Solution newSol = new Solution(InputSet.staffList.Count);

 newSol.Copy(problems[i]);

 /*The parameter to be changed is determined randomly*/

 int param2change = Convert.ToInt16(r.NextDouble() * d);

 /*A randomly chosen neighbour solution*/

 int neighbour = Convert.ToInt16(r.NextDouble() * (Population - 1));

 /*Randomly selected solution must be different from the solution i*/

 while (neighbour == i)

 neighbour = Convert.ToInt16(r.NextDouble() * (Population - 1));

 newSol.allocs[param2change].officeID =

problems[neighbour].allocs[param2change].officeID;

 newSol.calcPenalty();

171

 if (newSol.penalty < problems[i].penalty)

 problems[i].Copy(newSol);

 else

 problems[i].offsprings++; /*if the solution i can not be improved, increase its

trial counter*/

 }

 i++;

 if (i == Population)

 i = 0;

 }

 }

 /*determine the food sources whose trial counter exceeds the "trialsLimit" value. In Basic

ABC, only one scout is allowed to occur in each cycle*/

 static void MutationOperator()

 {

 int maxChromeIndex, i;

 maxChromeIndex = 0;

 for (i = 1; i < Population; i++)

 {

 if (problems[i].offsprings > problems[maxChromeIndex].offsprings)

 maxChromeIndex = i;

 }

 if (problems[maxChromeIndex].offsprings >= crossOver)

 {

 ReInitPopulation(maxChromeIndex);

 }

 }

 }

}

Solution.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

namespace Genetic

{

 class Solution // AKA Population Source

 {

 public double penalty { get; set; } //inverse is the fitness; the breed value

 public double selection;

 public int offsprings;

 public Allocation[] allocs;

 public Solution(int numSol)

 {

 //numSol is the number of staff in the inputset

 allocs = new Allocation[numSol];

172

 }

 public Solution(Solution mutation)

 {

 allocs = new Allocation[mutation.allocs.Length];

 for (int i = 0; i < mutation.allocs.Length; i++)

 {

 allocs[i] = new Allocation(mutation.allocs[i].staffID, mutation.allocs[i].officeID);

 }

 penalty = mutation.penalty;

 selection = mutation.selection;

 }

 public string Print()

 {

 string to_ret = "";

 for (int i = 0; i < allocs.Length; i++)

 {

 to_ret += allocs[i].Print();

 }

 Console.WriteLine("Penalty: " + penalty);

 to_ret += "Penalty: " + penalty;

 return to_ret;

 }

 public void Copy(Solution mutation)

 {

 allocs = new Allocation[mutation.allocs.Length];

 for (int i = 0; i < mutation.allocs.Length; i++)

 {

 allocs[i] = new Allocation(mutation.allocs[i].staffID, mutation.allocs[i].officeID);

 }

 penalty = mutation.penalty;

 selection = mutation.selection;

 }

 public double getFitness()

 {

 return 1 / penalty;

 }

 public void calcPenalty()

 {

 MySQLDatabase myDb = new MySQLDatabase();

 //selecting data from table

 DataTable records;

 penalty = 0;

 for (int i = 0; i < allocs.Length; i++)

 {

 try

 {

 //selecting office records

173

 records = myDb.Query("SELECT * FROM entity_constraints JOIN constraints

ON constraint_type LIKE type WHERE entity_kind LIKE 'staff' AND entity_id =

'"+Convert.ToString(allocs[i].staffID)+"'");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (DataRow row in records.Rows)

 penalty += Violates(Convert.ToString(row["constraint_type"]), allocs[i],

row);

 //penalty += Convert.ToDouble(row["weight"]);

 }

 records = myDb.Query("SELECT * FROM entity_constraints JOIN constraints

ON constraint_type LIKE type WHERE entity_kind LIKE 'office' AND entity_id = '" +

Convert.ToString(allocs[i].officeID) + "'");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (DataRow row in records.Rows)

 //penalty += Convert.ToDouble(row["weight"]);

 penalty += Violates(Convert.ToString(row["constraint_type"]), allocs[i],

row);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 }

 //Console.WriteLine("Penalty: " + penalty);

 }

 int Violates(string constraintType, Allocation presentAlloc, DataRow constraintRow)

 {

 switch (constraintType)

 {

 case "allocation":

 if (presentAlloc.officeID !=

Convert.ToInt16(constraintRow["concerned_entity_id"]))

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "non-allocation":

 if (presentAlloc.officeID ==

Convert.ToInt16(constraintRow["concerned_entity_id"]))

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "same-room":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) == allocs[i].staffID

&& allocs[i].officeID != presentAlloc.officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

174

 break;

 case "not-same-room":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) == allocs[i].staffID

&& allocs[i].officeID == presentAlloc.officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "not-sharing":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (presentAlloc.officeID == allocs[i].officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "capacity": //remember to put a counter such that for each solution, if the

constraint is capacity, it can only be called once

 int occupied = 0;

 for (int i = 0; i < allocs.Length; i++)

 {

 if (presentAlloc.officeID == allocs[i].officeID)

 occupied++;

 }

 if (occupied > InputSet.GetOfficeById(presentAlloc.officeID).capacity)

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "nearby": //proximity for offices should be defined in both ways, but nearby

constraint for staff should be defined only in one way

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) ==

allocs[i].staffID) //this is the staff whom I should be near

 {//now check if both our offices are in close proximity. But what if we have the

same office?

 Office myOffice = InputSet.GetOfficeById(presentAlloc.officeID);

 Office yourOffice = InputSet.GetOfficeById(allocs[i].officeID);

 if (presentAlloc.officeID != allocs[i].officeID &&

myOffice.proximity.IndexOf("," + yourOffice.id + ",") < 0 &&

yourOffice.proximity.IndexOf("," + myOffice.id + ",") < 0)

 { //this means the constraint has been violated bcos the offices are not nearby

as expected

 return Convert.ToInt16(constraintRow["weight"]);

 } //else, they are in close proximity and the constraint is therefore not

violated

 else

 return 0;

 }

 }

175

 break;

 case "away-from": //proximity for offices should be defined in both ways, but nearby

constraint for staff should be define only in one way

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) ==

allocs[i].staffID) //this is the staff whom I should be near

 {//now check if both our offices are in close proximity. But what if we have the

same office?

 Office myOffice = InputSet.GetOfficeById(presentAlloc.officeID);

 Office yourOffice = InputSet.GetOfficeById(allocs[i].officeID);

 if (presentAlloc.officeID == allocs[i].officeID ||

myOffice.proximity.IndexOf("," + yourOffice.id + ",") >= 0 &&

yourOffice.proximity.IndexOf("," + myOffice.id + ",") >= 0)

 { //this means the constraint has been violated bcos the offices are nearby

 return Convert.ToInt16(constraintRow["weight"]);

 } //else, they are not in close proximity and the constraint is therefore not

violated

 else

 return 0;

 }

 }

 break;

 default:

 return 0;

 }

 return 0;

 }

 }

}

Staff.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Genetic

{

 class Staff

 {

 public string[] cadarA = new string[3];

 public string[] cadarB = new string[3];

 public string[] cadarC = new string[5];

 public int id { get; set; }

 public string staffName { get; set; }

 public string cadre { get; set; }

 public string typeId { get; set; }

 public string dept { get; set; }

 public string Display()

 {

176

 Console.Write("Staff: " + id + "; Dept: " + dept + "; Cadre: " + cadre + "; TypeID: " +

typeId);

 return "Staff: " + id + "; Dept: " + dept + "; Cadre: " + cadre + "; TypeID: " + typeId +

"\r\n";

 }

 public void Copy(Staff other)

 {

 this.staffName = other.staffName;

 this.cadre = other.cadre;

 this.typeId = other.typeId;

 }

 public void initCadre()

 {

 //Type A

 this.cadarA[0] = "HOD";

 this.cadarA[1] = "PROF";

 //Type B

 this.cadarB[0] = "SL";

 this.cadarB[1] = "READER";

 //Type C

 this.cadarC[0] = "AL";

 this.cadarC[1] = "L1";

 this.cadarC[2] = "L2";

 this.cadarC[3] = "GA";

 }

 }

}

HYBRID SOURCE CODE ICS

Allocation.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace tabu_abc_osap

{

 class Allocation

 {

 public int staffID { get; set; }

 public int officeID { get; set; }

 public Allocation (int staff, int office)

177

 {

 staffID = staff;

 officeID = office;

 }

 public string Print()

 {

 string to_ret = "";

 string staff_rec = InputSet.GetStaffById(staffID).Display();

 to_ret += staff_rec+"\n";

 Console.Write(" ---- Allocated to: ");

 to_ret += " ---- Allocated to: " + "\n";

 string office_rec = InputSet.GetOfficeById(officeID).Display();

 to_ret += office_rec + "\r\n";

 Console.Write("\n");

 return to_ret;

 }

 }

}

InputSet.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

namespace tabu_abc_osap

{

 class InputSet

 {

 static Office[] offices;

 public static List<Office> officesList = new List<Office>();

 public static Dictionary<string, List<Office>> officeGroups = new

Dictionary<string,List<Office>>();

 static Staff[] staff;

 public static List<Staff> staffList = new List<Staff>();

 public static Dictionary<string, List<Staff>> staffGroups = new Dictionary<string,

List<Staff>>();

 static int[] officeGrp;

 public static void DeclareArray(int numOff)

 {

 //numSol is the number of office in the inputset

 officeGrp = new int[numOff];

 }

 public static void Load()

 {

 int i;

 MySQLDatabase myDb = new MySQLDatabase();

178

 //selecting data from table

 DataTable records;

 try

 {

 //selecting office records

 //Console.WriteLine("1");

 records = myDb.Select(null, "offices");//null means to fetch all data from the table

 //Console.WriteLine("2");

 if (records != null && records.Rows.Count > 0)

 {

 offices = new Office[records.Rows.Count];

 i = 0;

 foreach (DataRow row in records.Rows)

 {

 //Console.WriteLine(row["id"].GetType());

 //string d = row["type"].ToString();

 offices[i] = new Office();

 offices[i].id = (int)row["id"];

 offices[i].type = row["type"].ToString();

 offices[i].properties = row["properties"].ToString();

 offices[i].capacity = (int)row["capacity"];

 offices[i].toilet = row["toilet"].ToString() == "" ? 0 : (int)row["toilet"];

 offices[i].resources = (int)row["resources"];

 offices[i].proximity = row["proximity"].ToString();

 officesList.Add(offices[i]);

 if (!officeGroups.ContainsKey(offices[i].type))

 officeGroups[offices[i].type] = new List<Office>();

 officeGroups[offices[i].type].Add(offices[i]);

 }

 }

 else

 Console.WriteLine("No office record found!");

 //System.Threading.Thread.Sleep(1000000);

 //selecting staff records

 //Console.WriteLine("3");

 records = myDb.Select(null, "staff");//null means to fetch all data from the table

 //Console.WriteLine("4");

 if (records != null && records.Rows.Count > 0)

 {

 staff = new Staff[records.Rows.Count];

 i = 0;

 foreach (DataRow row in records.Rows)

 {

 staff[i] = new Staff();

 staff[i].id = Convert.ToInt16(row["id"]);

 staff[i].typeId = Convert.ToString(row["type_id"]);

 staff[i].cadre = Convert.ToString(row["cadre"]);

 staff[i].staffName = Convert.ToString(row["staff_name"]);

179

 staff[i].dept = Convert.ToString(row["dept"]);

 staffList.Add(staff[i]);

 //this part might not be needed

 if (!staffGroups.ContainsKey(staff[i].typeId))

 staffGroups[staff[i].typeId] = new List<Staff>();

 staffGroups[staff[i].typeId].Add(staff[i]);

 //this part might not be needed

 }

 }

 else

 Console.WriteLine("No staff record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 System.Threading.Thread.Sleep(1000000);

 }

 }

 public static void loadOfficeCapacity()

 {

 foreach (Office office in officesList)

 {

 Program.officeCapacity[office.id] = office.capacity;

 }

 }

 public static Office GetOfficeById(int id)

 {

 foreach (Office office in officesList)

 {

 if (office.id == id) return office;

 }

 return null;

 }

 public static int GetOfficeIndexById(int id)

 {

 for (int i = 0; i < officesList.Count(); i++)

 {

 if (officesList[i].id == id) return i;

 }

 return -1;

 }

 public static Staff GetStaffById(int id)

 {

 foreach (Staff staff in staffList)

 {

 if (staff.id == id) return staff;

180

 }

 return null;

 }

 public static int getOfficeByTypeName(string typey, string dept)

 {

 Found:

 int k = 0;

 foreach (Office office in officesList)

 {

 if (office.type == typey)

 {

 if (office.resources == 1)

 {

 if (crossCheck(office.id) && checkCapacity(office.id) > 0 &&

checkWhoIsInTheOffice(office.id, dept) && isItProfSuit(typey, office.toilet))

 {

 officeGrp[k] = office.id;

 k += 1;

 }

 }

 }

 }

 //Console.WriteLine(ox + " T:" + typey);

 if (k == 0)

 {

 //Console.WriteLine(k);

 ClearTypeRoom(typey);

 goto Found;

 }

 //System.Threading.Thread.Sleep(600);

 int rnd = Program.r.Next(0, k - 1);

 return officeGrp[rnd];

 }

 static void ClearTypeRoom(string typey)

 {

 for (int numTmp = 0; numTmp < Program.tmp.Length; numTmp++)

 {

 Office xx = GetOfficeById(Program.tmp[numTmp]);

 if (xx != null)

 {

 if (xx.type == typey)

 {

 Program.tmp[numTmp] = 0;

 }

 }

 }

 }

 static bool crossCheck(int officeid)

 {

 for (int numTmp = 0; numTmp < Program.tmp.Length; numTmp++)

181

 {

 if (officeid == Program.tmp[numTmp])

 {

 return false;

 }

 }

 return true;

 }

 static int checkCapacity(int officeid)

 {

 return Program.officeCapacity[officeid];

 }

 static bool checkWhoIsInTheOffice(int officeid, string dept)

 {

 if (Program.officeWhoIsThere[officeid] == dept || Program.officeWhoIsThere[officeid]

== null)

 {

 return true;

 }

 return false;

 }

 static bool isItProfSuit(string typed, int toilet)

 {

 if (typed == "A" && toilet == 0)

 {

 return false;

 }

 return true;

 }

 static int[] ShuffleArray(int[] array)

 {

 Random r = new Random();

 for (int i = array.Length; i > 0; i--)

 {

 int j = r.Next(i);

 int k = array[j];

 array[j] = array[i - 1];

 array[i - 1] = k;

 }

 return array;

 }

 }

}

/*

182

 //THIS PART IS TO TEST THE DATABASE CLASS

 string db = "vp_validation_system";

 string dbuid = "root";

 string dbpwd = "";

 //instantiating the db class

 MySQLDatabase myDb = new MySQLDatabase(dbuid, dbpwd, db);

 //selecting data from table - there shouldn't be any records for now

 System.Data.DataTable records;

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 // You could just add a statement 'using System.Data;' at the beginning and then use

'System.Data.DataTable' just as 'DataTable'

 Console.WriteLine("All records inserted:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //insert record to table 'sample_codes'

 Dictionary<string, string>[] insertData = new Dictionary<string, string>[3]; //An array

of dictionaries, each dictionary represents a row to be inserted

 insertData[0] = new Dictionary<string, string>();

 insertData[0].Add("code", "563443y3uh87grr"); //column name, value in table

'sample_codes'

 insertData[0].Add("used", "0"); //another column name, value in table 'sample_codes'

 insertData[1] = new Dictionary<string, string>();

 insertData[1].Add("code", "fhbeiurhg34u23434");

 insertData[1].Add("used", "0");

 insertData[2] = new Dictionary<string, string>();

 insertData[2].Add("code", "fdhrbru3u9rwei9jcks");

 insertData[2].Add("used", "0");

 try

183

 {

 myDb.Insert(insertData[0], "sample_codes");

 myDb.Insert(insertData[1], "sample_codes");

 myDb.Insert(insertData[2], "sample_codes");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error inserting: " + e.Message);

 }

 //selecting data from table

 Console.WriteLine();

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 // You could just add a statement 'using System.Data;' at the beginning and then use

'System.Data.DataTable' just as 'DataTable'

 Console.WriteLine("All records inserted:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //another select

 Console.WriteLine();

 Dictionary<string, string> search = new Dictionary<string, string>();

 search.Add("id", "1");

 search.Add("used", "0"); //this is not necessary, but just to indicate that u could have

multiple search conditions

 try

 {

 records = myDb.Select(search, "sample_codes");

 Console.WriteLine("Record with id=1 and used=0 (should be only one record):");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

184

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //update

 Dictionary<string, string> updateData = new Dictionary<string, string>();

 updateData.Add("code", "5555555555555555");

 updateData.Add("id", "2"); //this will be only used in the WHERE clause and not to

update bcos I will instruct the function so via its parameter

 try

 {

 myDb.Update(updateData, "id", "sample_codes");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error updating: " + e.Message);

 }

 //delete

 try

 {

 myDb.Delete("id", "3", "sample_codes"); //deleting record with id=3

 }

 catch (Exception e)

 {

 Console.WriteLine("Error deleting: " + e.Message);

 }

 //selecting everything again to see changes made with uodate and delete

 Console.WriteLine();

 try

 {

 records = myDb.Select(null, "sample_codes");//null means to fetch all data from the

table

 Console.WriteLine("All records after modifications:");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (System.Data.DataRow row in records.Rows)

 {

 Console.Write(row["id"] + " || "); //use double quotes

 Console.Write(row["code"] + " || ");

 Console.WriteLine(row["used"].ToString());

 }

 }

 else

185

 Console.WriteLine("No record found!");

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 //Using the function 'Count'

 Console.WriteLine();

 Console.WriteLine("Number of all records left in table 'sample_codes': " +

myDb.Count("sample_codes"));

 Console.Read();

 }*/

MySQLDatabase.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

using MySql.Data.MySqlClient;

namespace tabu_abc_osap

{

 class MySQLDatabase

 {

 private MySqlConnection connection;

 private string server = "localhost";

 private string database = "abc_osap";

 private string uid = "root";

 private string password = "";

 //Constructor

 //public MySQLDatabase(string uname, string pwd, string db)

 public MySQLDatabase()

 {

 Initialize();

 //Initialize(uname, pwd, db);

 //In case there any other thing one would like to have done on instantiation aside from

just initializing

 }

 //Initialize values

 //private void Initialize(string uname, string pwd, string db)

 private void Initialize()

 {

 //server = "localhost";

 //database = db;

 //uid = uname;

 //password = pwd;

 string connectionString;

186

 connectionString = "SERVER=" + server + ";" + "DATABASE=" +

 database + ";" + "UID=" + uid + ";" + "PASSWORD=" + password + ";";

 connection = new MySqlConnection(connectionString);

 }

 //open connection to database

 private bool OpenConnection()

 {

 try

 {

 connection.Open();

 return true;

 }

 catch (MySqlException ex)

 {

 //The two most common error numbers when connecting are as follows:

 //0: Cannot connect to server.

 //1045: Invalid user name and/or password.

 switch (ex.Number)

 {

 case 0:

 throw new System.Exception("0 - Cannot connect to server");

 case 1045:

 throw new System.Exception("1045 - Invalid username/password");

 }

 return false;

 }

 }

 //Close connection

 private bool CloseConnection()

 {

 try

 {

 connection.Close();

 return true;

 }

 catch (MySqlException ex)

 {

 throw new System.Exception(ex.Message);

 }

 }

 //Insert statement

 public void Insert(Dictionary<string, string> ins, string table) //a dictionary data structure

is used to easily accomodate any number of columns in insert

 {

 int k=0;

 string query = "INSERT INTO "+table+" SET ";

 foreach (KeyValuePair<string, string> column in ins) {

 if (++k > 1) query += ", ";

187

 query += column.Key+" = '"+column.Value+"'";

 }

 //open connection

 if (this.OpenConnection() == true)

 {

 //create command and assign the query and connection from the constructor

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Execute command

 cmd.ExecuteNonQuery();

 //close connection

 this.CloseConnection();

 }

 }

 //Update statement

 public void Update(Dictionary<string, string> ins, string updateKey, string table)

 {

 int k = 0;

 string query = "UPDATE " + table + " SET ";

 foreach (KeyValuePair<string, string> column in ins)

 {

 if (column.Key != updateKey) {

 if (++k > 1) query += ", ";

 query += column.Key + " = '" + column.Value + "'";

 }

 }

 query += "WHERE "+updateKey+" = '"+ins[updateKey]+"'";

 //Open connection

 if (this.OpenConnection() == true)

 {

 //create mysql command

 MySqlCommand cmd = new MySqlCommand();

 //Assign the query using CommandText

 cmd.CommandText = query;

 //Assign the connection using Connection

 cmd.Connection = connection;

 //Execute query

 cmd.ExecuteNonQuery();

 //close connection

 this.CloseConnection();

 }

 }

 //Delete statement

 public void Delete(string key, string value, string table)

 {

 string query = "DELETE FROM " + table + " WHERE "+key+" = '"+value+"'";

188

 if (this.OpenConnection() == true)

 {

 MySqlCommand cmd = new MySqlCommand(query, connection);

 cmd.ExecuteNonQuery();

 this.CloseConnection();

 }

 }

 //Select statement

 public DataTable Select(Dictionary<string, string> search, string table, string connector =

"AND")

 {

 int k = 0;

 DataTable dbTable = new DataTable();

 string query = "SELECT * FROM " + table;

 if (search != null)

 {

 query += " WHERE ";

 foreach (KeyValuePair<string, string> column in search)

 {

 if (++k > 1) query += " " + connector + " ";

 query += column.Key + " = '" + column.Value + "'";

 }

 }

 //Open connection

 if (this.OpenConnection() == true)

 {

 //Create Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Create a data reader and Execute the command

 MySqlDataReader dataReader = cmd.ExecuteReader();

 if (dataReader.HasRows)

 dbTable.Load(dataReader);

 //close Data Reader

 dataReader.Close();

 //close Connection

 this.CloseConnection();

 }

 return dbTable;

 }

 public DataTable Query(string query)

 {

 DataTable dbTable = new DataTable();

 //Open connection

 if (this.OpenConnection() == true)

 {

189

 //Create Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //Create a data reader and Execute the command

 MySqlDataReader dataReader = cmd.ExecuteReader();

 if (dataReader.HasRows)

 dbTable.Load(dataReader);

 //close Data Reader

 dataReader.Close();

 //close Connection

 this.CloseConnection();

 }

 return dbTable;

 }

 //Count statement

 public int Count(string table)

 {

 string query = "SELECT Count(*) FROM "+table;

 int count = -1;

 //Open Connection

 if (this.OpenConnection() == true)

 {

 //Create Mysql Command

 MySqlCommand cmd = new MySqlCommand(query, connection);

 //ExecuteScalar will return one value

 count = int.Parse(cmd.ExecuteScalar() + "");

 //close Connection

 this.CloseConnection();

 }

 return count;

 }

 }

}

Office.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace tabu_abc_osap

{

 class Office

 {

 public int id { get; set; }

 public int capacity { get; set; }

190

 public string proximity { get; set; }

 public string properties { get; set; }

 public string type { get; set; }

 public int toilet { get; set; }

 public int resources { get; set; }

 public string Display()

 {

 Console.Write("Room: " + id + "; Properties: " + properties + "; TypeID: " + type + ";

Capacity:" + capacity);

 return "Room: " + id + "; Properties: " + properties + "; TypeID: " + type + ";

Capacity:" + capacity + "\r\n";

 }

 public void Copy(Office other)

 {

 this.capacity = other.capacity;

 this.properties = other.properties;

 this.type = other.type;

 this.id = other.id;

 this.proximity = other.proximity;

 this.toilet = other.toilet;

 this.resources = other.resources;

 }

 }

}

Program.cs

using System;

using System.Diagnostics;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace tabu_abc_osap

{

 class Program

 {

 static int np = 20; /* The number of colony size (employed bees+onlooker bees)*/

 static int foodNumber = np/2; //ie. number of solutions, equal to num of employed bees

 static int trials = 5;

 static int trialsLimit = 100; /*A food source which could not be improved through

"trialsLimit" trials is abandoned by its employed bee*/

 static Solution[] foods = new Solution[foodNumber]; //foods - initial solution

 public static int[] tmp = new int[100];

 public static int[] officeCapacity = new int[100];

 public static string[] officeWhoIsThere = new string[100];

 //Tabu Memory structures

 static List<int> tabuOffice = new List<int>();

 static List<int> tabuOfficeIds = new List<int>();

 //upper bounds

191

 static int staff_ub, office_ub;

 public static Random r = new Random();

 static void Main(string[] args)

 {

 Stopwatch stpWatch = new Stopwatch();

 stpWatch.Start();

 MySQLDatabase myDb = new MySQLDatabase();

 //int maxCycle = 2500; /*The number of cycles for foraging {a stopping criteria}*/

 int maxCycle = 2; /*The number of cycles for foraging {a stopping criteria}*/

 //int runtime = 30; /*Algorithm can be run many times in order to see its robustness*/

 int runtime = 1; /*Algorithm can be run many times in order to see its robustness*/

 //use inputset class to handle input

 InputSet.Load(); //loading inputs

 //setting upper bounds

 staff_ub = InputSet.staffList.Count - 1;

 office_ub = InputSet.officesList.Count - 1;

 Solution fittest = new Solution(InputSet.staffList.Count);

 //continue here after writing other functions

 //double mean=0;

 //string[] lines = new string[3];

 using (System.IO.StreamWriter file = new

System.IO.StreamWriter(@"C:\Users\Public\tabu_abc_results.txt"))

 {

 for (int run = 0; run < runtime; run++)

 {

 stpWatch.Reset();

 stpWatch.Start();

 Console.WriteLine("Run: " + (run + 1));

 file.WriteLine("Run: " + (run + 1));

 InputSet.loadOfficeCapacity();

 Init();

 //fittest = GetFittest();

 for (int iter = 0; iter < maxCycle; iter++)

 {

 //lines[0]

 Console.WriteLine("iteration: " + (iter + 1));

 file.WriteLine("iteration: " + (iter + 1));

 //fittest.Print();

 SendEmployedBees();

 System.Threading.Thread.Sleep(2000);

 CalcProbabilities();

 SendOnlookerBees();

 fittest = GetFittest();

 SendScoutBees();

 }

 Console.WriteLine((run + 1).ToString() + ":");

192

 file.WriteLine((run + 1).ToString() + ":");

 Console.WriteLine("Best Allocation:");

 file.WriteLine("Best Allocation:");

 Dictionary<string, string> solsToInsert = new Dictionary<string, string>();

 string fit_sol = fittest.Print();

 file.WriteLine(fit_sol);

 /*//System.out.println("%d. run: %e \n",run+1,GlobalMin);

 System.out.println((run+1)+".run:"+bee.GlobalMin);

 bee.GlobalMins[run]=bee.GlobalMin;

 mean=mean+bee.GlobalMin;*/

 stpWatch.Stop();

 TimeSpan ts = stpWatch.Elapsed;

 String elapsedTime = String.Format("{0:00}:{1:00}:{2:00}.{3:00}", ts.Hours,

ts.Minutes, ts.Seconds, ts.Milliseconds / 10);

 Console.WriteLine("=========");

 file.WriteLine("=========");

 Console.WriteLine("RunTime: " + elapsedTime);

 file.WriteLine("RunTime: " + elapsedTime);

 long memory = GC.GetTotalMemory(true);

 double mem = memory / 1024;

 mem = Math.Round(mem, 2);

 Console.WriteLine("Memory Used: {0}KB", mem.ToString());

 file.WriteLine("Memory Used: {0}KB", mem.ToString());

 Console.WriteLine();

 file.WriteLine(" ");

 foreach (Allocation solAlloc in fittest.allocs)

 {

 solsToInsert.Add("run", run.ToString());

 solsToInsert.Add("staff_id", solAlloc.staffID.ToString());

 solsToInsert.Add("office_id", solAlloc.officeID.ToString());

 solsToInsert.Add("penalty", fittest.penalty.ToString());

 solsToInsert.Add("alorithm_time", elapsedTime);

 solsToInsert.Add("memory_used", mem.ToString() + "KB");

 myDb.Insert(solsToInsert, "solutions");

 solsToInsert.Clear();

 }

 }

 /*mean=mean/bee.runtime;

 //System.out.println("Means of %d runs: %e\n",runtime,mean);

 System.out.println("Means of "+bee.runtime+"runs: "+mean);*/

 }

 Console.Read();

 }

 static void Init()

 {

 for (int i = 0; i < foodNumber; i++)

 {

193

 foods[i] = new Solution(InputSet.staffList.Count);

 //Console.WriteLine("Staff Count: "+InputSet.staffList.Count);

 for (int k = 0; k < InputSet.staffList.Count; k++)

 {

 int randOffice = 0;//Convert.ToInt16(r.NextDouble() *

(InputSet.officesList.Count() - 1));

InputSet.DeclareArray(InputSet.officeGroups[InputSet.staffList[k].typeId].Count);

 randOffice = InputSet.getOfficeByTypeName(InputSet.staffList[k].typeId,

InputSet.staffList[k].dept);

 tmp[k] = randOffice;

 officeWhoIsThere[randOffice] = InputSet.staffList[k].dept;

 officeCapacity[randOffice] -= 1;

 //Console.WriteLine(InputSet.staffList[k].cadre + "(" + InputSet.staffList[k].id +

")==" + randOffice + "(" + InputSet.GetOfficeById(randOffice).properties + ")");

 foods[i].allocs[k] = new Allocation(InputSet.staffList[k].id, randOffice);

 }

 foods[i].calcPenalty();

 Array.Clear(tmp, 0, tmp.Length);

 InputSet.loadOfficeCapacity();

 }

 //Console.Read();

 }

 static void ReInit(int i)

 {

 //foods[i] = new Solution(InputSet.staffList.Count);

 for (int k = 0; k < InputSet.staffList.Count; k++)

 {

 int randOffice = Convert.ToInt16(0 + r.NextDouble() *

(InputSet.officeGroups[InputSet.staffList[k].typeId].Count()-1));

 int x = 0;

 while

(tabuOfficeIds.Contains(InputSet.officeGroups[InputSet.staffList[k].typeId].ElementAt(randO

ffice).id) && InputSet.staffList[k].typeId !=

InputSet.officeGroups[InputSet.staffList[k].typeId].ElementAt(randOffice).type && ++x <

trials)

 randOffice = Convert.ToInt16(0 + r.NextDouble() *

InputSet.officeGroups[InputSet.staffList[k].typeId].Count());

 if

(tabuOfficeIds.Contains(InputSet.officeGroups[InputSet.staffList[k].typeId].ElementAt(randO

ffice).id) || InputSet.staffList[k].typeId !=

InputSet.officeGroups[InputSet.staffList[k].typeId].ElementAt(randOffice).type)

 {

 randOffice = Convert.ToInt16(0 + r.NextDouble() * office_ub);

 foods[i].allocs[k] = new Allocation(InputSet.staffList[k].id,

InputSet.officesList[randOffice].id);

 if (--InputSet.officesList[randOffice].capacity < 0)

 {

 tabuOffice.Add(randOffice);

 tabuOfficeIds.Add(InputSet.officesList[randOffice].id);

 }

194

 }

 else

 {

 foods[i].allocs[k] = new Allocation(InputSet.staffList[k].id,

InputSet.officeGroups[InputSet.staffList[k].typeId].ElementAt(randOffice).id);

 //find a way to get the index of

InputSet.officeGroups[InputSet.staffList[k].typeId].ElementAt(randOffice) in officesList, the

replace randOffice with it below

 int tabuOfficeIndex =

InputSet.GetOfficeIndexById(InputSet.officeGroups[InputSet.staffList[k].typeId].ElementAt(r

andOffice).id);

 if (--InputSet.officesList[randOffice].capacity < 0)

 {

 tabuOffice.Add(tabuOfficeIndex);

 tabuOfficeIds.Add(InputSet.officesList[tabuOfficeIndex].id);

 }

 }

 }

 foods[i].calcPenalty();

 }

 static Solution GetFittest() {

 Solution fittest = foods[0];

 for (int i = 1; i < foods.Length; i++) {

 if (fittest.penalty > foods[i].penalty) fittest = foods[i];

 }

 return fittest;

 }

 static double SumFitness()

 {

 double fitSum = 0;

 for (int i = 1; i < foods.Length; i++)

 {

 fitSum += foods[i].getFitness();

 }

 return fitSum;

 }

 static void SendEmployedBees()

 {

 for (int i=0; i<foodNumber; i++)

 {

 int d = InputSet.staffList.Count-1;

 Solution newSol = new Solution(InputSet.staffList.Count);

 newSol.Copy(foods[i]);

 /*The parameter to be changed is determined randomly*/

 int param2change = Convert.ToInt16(r.NextDouble() * d);

 /*A randomly chosen neighbour solution*/

195

 int neighbour = Convert.ToInt16(r.NextDouble() * (foodNumber-1));

 /*Randomly selected solution must be different from the solution i*/

 while (neighbour == i)

 neighbour = Convert.ToInt16(r.NextDouble() * (foodNumber-1));

 newSol.allocs[param2change].officeID =

foods[neighbour].allocs[param2change].officeID;

 newSol.calcPenalty();

 if (newSol.penalty < foods[i].penalty)

 foods[i].Copy(newSol);

 else

 foods[i].trials++; /*if the solution i can not be improved, increase its trial

counter*/

 }

 }

 static void CalcProbabilities()

 {

 for (int i = 1; i < foods.Length; i++)

 {

 foods[i].probability = foods[i].getFitness() / SumFitness();

 }

 }

 static void SendOnlookerBees()

 {

 int i = 0, t = 0;

 while (t < foodNumber)

 {

 if (r.NextDouble() < foods[i].probability)

 {

 t++;

 int d = InputSet.staffList.Count - 1;

 Solution newSol = new Solution(InputSet.staffList.Count);

 newSol.Copy(foods[i]);

 /*The parameter to be changed is determined randomly*/

 int param2change = Convert.ToInt16(r.NextDouble() * d);

 /*A randomly chosen neighbour solution*/

 int neighbour = Convert.ToInt16(r.NextDouble() * (foodNumber-1));

 /*Randomly selected solution must be different from the solution i*/

 while (neighbour == i)

 neighbour = Convert.ToInt16(r.NextDouble() * (foodNumber-1));

 newSol.allocs[param2change].officeID =

foods[neighbour].allocs[param2change].officeID;

 newSol.calcPenalty();

196

 if (newSol.penalty < foods[i].penalty)

 foods[i].Copy(newSol);

 else

 foods[i].trials++; /*if the solution i can not be improved, increase its trial

counter*/

 }

 i++;

 if (i == foodNumber)

 i = 0;

 }

 }

 /*determine the food sources whose trial counter exceeds the "trialsLimit" value. In Basic

ABC, only one scout is allowed to occur in each cycle*/

 static void SendScoutBees()

 {

 int maxTrialIndex, i;

 maxTrialIndex = 0;

 for (i = 1; i < foodNumber; i++)

 {

 if (foods[i].trials > foods[maxTrialIndex].trials)

 maxTrialIndex = i;

 }

 if (foods[maxTrialIndex].trials >= trialsLimit)

 {

 ReInit(maxTrialIndex);

 }

 }

 }

}

Solution.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Data;

namespace tabu_abc_osap

{

 class Solution // AKA Food Source

 {

 public double penalty { get; set; } //inverse is the fitness; the nectar amount

 public double probability;

 public int trials;

 public Allocation[] allocs;

 public Solution(int numSol)

 {

 //numSol is the number of staff in the inputset

 allocs = new Allocation[numSol];

197

 }

 public Solution(Solution clone)

 {

 allocs = new Allocation[clone.allocs.Length];

 for (int i = 0; i < clone.allocs.Length; i++)

 {

 allocs[i] = new Allocation(clone.allocs[i].staffID, clone.allocs[i].officeID);

 }

 penalty = clone.penalty;

 probability = clone.probability;

 }

 public string Print()

 {

 string to_ret = "";

 for (int i = 0; i < allocs.Length; i++)

 {

 to_ret += allocs[i].Print();

 }

 Console.WriteLine("Penalty: "+penalty);

 to_ret += "Penalty: " + penalty;

 return to_ret;

 //return penalty.ToString();

 //file.WriteLine(penalty);

 }

 public void Copy(Solution clone)

 {

 allocs = new Allocation[clone.allocs.Length];

 for (int i = 0; i < clone.allocs.Length; i++)

 {

 allocs[i] = new Allocation(clone.allocs[i].staffID, clone.allocs[i].officeID);

 }

 penalty = clone.penalty;

 probability = clone.probability;

 }

 public double getFitness()

 {

 return 1 / penalty;

 }

 public void calcPenalty()

 {

 MySQLDatabase myDb = new MySQLDatabase();

 //selecting data from table

 DataTable records;

 penalty = 0;

 for (int i = 0; i < allocs.Length; i++)

 {

 try

 {

198

 //selecting office records

 records = myDb.Query("SELECT * FROM entity_constraints JOIN constraints

ON constraint_type LIKE type WHERE entity_kind LIKE 'staff' AND entity_id =

'"+Convert.ToString(allocs[i].staffID)+"'");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (DataRow row in records.Rows)

 penalty += Violates(Convert.ToString(row["constraint_type"]), allocs[i],

row);

 //penalty += Convert.ToDouble(row["weight"]);

 }

 records = myDb.Query("SELECT * FROM entity_constraints JOIN constraints

ON constraint_type LIKE type WHERE entity_kind LIKE 'office' AND entity_id = '" +

Convert.ToString(allocs[i].officeID) + "'");

 if (records != null && records.Rows.Count > 0)

 {

 foreach (DataRow row in records.Rows)

 //penalty += Convert.ToDouble(row["weight"]);

 penalty += Violates(Convert.ToString(row["constraint_type"]), allocs[i],

row);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("Error selecting: " + e.Message);

 }

 }

 }

 int Violates(string constraintType, Allocation presentAlloc, DataRow constraintRow)

 {

 switch (constraintType)

 {

 case "allocation":

 if (presentAlloc.officeID !=

Convert.ToInt16(constraintRow["concerned_entity_id"]))

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "non-allocation":

 if (presentAlloc.officeID ==

Convert.ToInt16(constraintRow["concerned_entity_id"]))

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "same-room":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) == allocs[i].staffID

&& allocs[i].officeID != presentAlloc.officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

199

 break;

 case "not-same-room":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) == allocs[i].staffID

&& allocs[i].officeID == presentAlloc.officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "not-sharing":

 for (int i = 0; i < allocs.Length; i++)

 {

 if (presentAlloc.officeID == allocs[i].officeID)

 return Convert.ToInt16(constraintRow["weight"]);

 }

 break;

 case "capacity": //remember to put a counter such that for each solution, if the

constraint is capacity, it can only be called once

 int occupied = 0;

 for (int i = 0; i < allocs.Length; i++)

 {

 if (presentAlloc.officeID == allocs[i].officeID)

 occupied++;

 }

 if (occupied > InputSet.GetOfficeById(presentAlloc.officeID).capacity)

 return Convert.ToInt16(constraintRow["weight"]);

 break;

 case "nearby": //proximity for offices should be defined in both ways, but nearby

constraint for staff should be defined only in one way

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) ==

allocs[i].staffID) //this is the staff whom I should be near

 {//now check if both our offices are in close proximity. But what if we have the

same office?

 Office myOffice = InputSet.GetOfficeById(presentAlloc.officeID);

 Office yourOffice = InputSet.GetOfficeById(allocs[i].officeID);

 if (presentAlloc.officeID != allocs[i].officeID &&

myOffice.proximity.IndexOf("," + yourOffice.id + ",") < 0 &&

yourOffice.proximity.IndexOf("," + myOffice.id + ",") < 0)

 { //this means the constraint has been violated bcos the offices are not nearby

as expected

 return Convert.ToInt16(constraintRow["weight"]);

 } //else, they are in close proximity and the constraint is therefore not

violated

 else

 return 0;

 }

 }

200

 break;

 case "away-from": //proximity for offices should be defined in both ways, but nearby

constraint for staff should be define only in one way

 for (int i = 0; i < allocs.Length; i++)

 {

 if (Convert.ToInt16(constraintRow["concerned_entity_id"]) ==

allocs[i].staffID) //this is the staff whom I should be near

 {//now check if both our offices are in close proximity. But what if we have the

same office?

 Office myOffice = InputSet.GetOfficeById(presentAlloc.officeID);

 Office yourOffice = InputSet.GetOfficeById(allocs[i].officeID);

 if (presentAlloc.officeID == allocs[i].officeID ||

myOffice.proximity.IndexOf("," + yourOffice.id + ",") >= 0 &&

yourOffice.proximity.IndexOf("," + myOffice.id + ",") >= 0)

 { //this means the constraint has been violated bcos the offices are nearby

 return Convert.ToInt16(constraintRow["weight"]);

 } //else, they are not in close proximity and the constraint is therefore not

violated

 else

 return 0;

 }

 }

 break;

 default:

 return 0;

 }

 return 0;

 }

 }

}

Staff.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace tabu_abc_osap

{

 class Staff

 {

 public int id { get; set; }

 public string staffName { get; set; }

 public string cadre { get; set; }

 public string typeId { get; set; }

 public string dept { get; set; }

 public string Display()

 {

201

 Console.Write("Staff: " + id + "; Dept: " + dept + "; Cadre: " + cadre + "; TypeID: " +

typeId);

 return "Staff: " + id + "; Dept: " + dept + "; Cadre: " + cadre + "; TypeID: " + typeId +

"\r\n";

 }

 public void Copy(Staff other)

 {

 this.staffName = other.staffName;

 this.cadre = other.cadre;

 this.typeId = other.typeId;

 }

 }

}

202

APPENDIX D

TABU SEARCH

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

iteration: 8

iteration: 9

iteration: 10

iteration: 11

iteration: 12

iteration: 13

iteration: 14

iteration: 15

iteration: 16

iteration: 17

iteration: 18

iteration: 19

iteration: 20

iteration: 21

iteration: 22

iteration: 23

iteration: 24

203

iteration: 25

iteration: 26

iteration: 27

iteration: 28

iteration: 29

iteration: 30

iteration: 31

iteration: 32

iteration: 33

iteration: 34

iteration: 35

iteration: 36

iteration: 37

iteration: 38

iteration: 39

iteration: 40

iteration: 41

iteration: 42

iteration: 43

iteration: 44

iteration: 45

iteration: 46

iteration: 47

iteration: 48

iteration: 49

iteration: 50

iteration: 51

204

iteration: 52

iteration: 53

iteration: 54

iteration: 55

iteration: 56

iteration: 57

iteration: 58

iteration: 59

iteration: 60

iteration: 61

iteration: 62

iteration: 63

iteration: 64

iteration: 65

iteration: 66

iteration: 67

iteration: 68

iteration: 69

iteration: 70

iteration: 71

iteration: 72

iteration: 73

iteration: 74

iteration: 75

iteration: 76

iteration: 77

iteration: 78

205

iteration: 79

iteration: 80

iteration: 81

iteration: 82

iteration: 83

iteration: 84

iteration: 85

iteration: 86

iteration: 87

iteration: 88

iteration: 89

iteration: 90

iteration: 91

iteration: 92

iteration: 93

iteration: 94

iteration: 95

iteration: 96

iteration: 97

iteration: 98

iteration: 99

iteration: 100

Best Allocation:

Staff: 1; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 63; Properties: space:

13.38, tables: 1, chairs: 4, fans: 2, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C;

Capacity:2

206

Staff: 2; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 57; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C;

Capacity:2

Staff: 3; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 28; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 4; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 34; Properties: space: 8.56,

tables: 1, chairs: 2, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 5; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 6; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 7; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to:Room: 65; Properties: space:

7.7, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: C; Capacity:1

Staff: 8; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to:Room: 26; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 9; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 18; Properties: space:

7.7, tables: 1, chairs: 4, fans: -, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 10; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 33; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 11; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 16; Properties:

space: 9.34, tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

207

Staff: 12; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 8; Properties:

space: 13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 13; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 21; Properties: space: 13.38,

tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 14; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 15; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 15; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 24; Properties:

space: 13.38, tables: 1, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 16; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 35; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 17; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 39; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 18; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 19; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 30; Properties: space:

13.38, tables: 1, chairs: 2, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 20; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 47; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: C; Capacity:2

Staff: 21; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 29; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 22; Dept: LIB; Cadre: L1; TypeID: C Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

208

Staff: 23; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 24; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 7; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 25; Dept: TELCOM; Cadre: L1; TypeID: C, Allocated to: Room: 1; Properties: space:

17.69, tables: 2, chairs: 7, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 26; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 6; Properties:

space: 13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 27; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 11; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 28; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 60; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C;

Capacity:2

Staff: 29; Dept: ICS; Cadre: L1; TypeID: C, Allocated to: Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 30; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 54; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: C; Capacity:2

Staff: 31; Dept: LIB; Cadre: L1; TypeID: C, Allocated to:Room: 23; Properties: space: 8.56,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 32; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 37; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 33; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 43; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C; Capacity:2

209

Staff: 34; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 66; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: , TV: ; TypeID: C; Capacity:2

Staff: 35; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 33; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 36; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 39; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 37; Dept: ICS; Cadre: L2; TypeID: C, Allocated to:Room: 35; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2,

Staff: 38; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 29; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 39; Dept: TELCOM; Cadre: L2; TypeID: C, Allocated to: Room: 15; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 40; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 6; Properties:

space: 13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 41; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 19; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 42; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 11; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 43; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to:Room: 24; Properties:

space: 13.38, tables: 1, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

210

Staff: 44; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 8; Properties:

space: 13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 45; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 46; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to: Room: 62; Properties:

space: 26.76, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:1,

Staff: 47; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 64; Properties: space:

26.76, tables: 2, chairs: 5, fans: 1, AC: 1, cabinet: 2, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:1

Staff: 48; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 55; Properties: space:

13.38, tables: 1, chairs: 5, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:1

Staff: 49; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to:Room: 71; Properties:

space: 26.76, tables: 2, chairs: 3, fans: 5, AC: 1, cabinet: 1, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:1

Staff: 50; Dept: COM SC; Cadre:READER; TypeID: B, Allocated to: Room: 14; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -,TV: -; TypeID: B;

Capacity:1

Staff: 51; Dept: ICS; Cadre: READER; TypeID: B, Allocated to: Room: 41; Properties: space:

27.69, tables: 2, chairs: 5, fans:1, AC: ,cabinet: 1, fridge: , toilet: , TV: ; TypeID: B; Capacity:1

Staff: 52;Dept: TELCOM; Cadre: READER; TypeID:B,Allocated to:Room:36;Properties:

space: 17.69, tables:1, chairs:3, fans:1, AC: 1, cabinet: 2, fridge: -,toilet: -,TV:-;TypeID: B;

Capacity:1

Staff: 53; Dept: LIB; Cadre: READER; TypeID: B, Allocated to: Room: 42; Properties: space:

26.76, tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:1

211

Staff: 54; Dept: LIB; Cadre: SL; TypeID: B, Allocated to:Room: 51; Properties: space: 26.76,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: B; Capacity:1

Staff: 55; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 46; Properties: space: 26.76,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:1

Staff: 56; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 52; Properties: space:

21.08, tables: 1, chairs: 3, fans: , AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:1

Staff: 57; Dept: COM SC; Cadre: SL; TypeID: B , Allocated to: Room: 45; Properties: space:

26.76, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: B;

Capacity:1

Staff: 58; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to:Room: 17; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 59; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 31; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 60; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to:Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 61; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to:Room: 22; Properties: space:

17.69, tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 62; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 27; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 63; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 61; Properties: space:

26.76, tables: 2, chairs: 4, fans: 2, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: B;

Capacity:1

212

Staff: 64; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to:Room: 70; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 4, fridge: , toilet: , TV: ; TypeID: B;

Capacity:1

Penalty: 4030

RunTime: 00:18:26.40

Memory Used: 8951KB

 Run: 6

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

iteration: 8

iteration: 9

iteration: 10

iteration: 11

iteration: 12

iteration: 13

iteration: 14

iteration: 15

iteration: 16

iteration: 17

iteration: 18

iteration: 19

iteration: 20

213

iteration: 21

iteration: 22

iteration: 23

iteration: 24

iteration: 25

iteration: 26

iteration: 27

iteration: 28

iteration: 29

iteration: 30

iteration: 31

iteration: 32

iteration: 33

iteration: 34

iteration: 35

iteration: 36

iteration: 37

iteration: 38

iteration: 39

iteration: 40

iteration: 41

iteration: 42

iteration: 43

iteration: 44

iteration: 45

iteration: 46

iteration: 47

214

iteration: 48

iteration: 49

iteration: 50

iteration: 51

iteration: 52

iteration: 53

iteration: 54

iteration: 55

iteration: 56

iteration: 57

iteration: 58

iteration: 59

iteration: 60

iteration: 61

iteration: 62

iteration: 63

iteration: 64

iteration: 65

iteration: 66

iteration: 67

iteration: 68

iteration: 69

iteration: 70

iteration: 71

iteration: 72

iteration: 73

iteration: 74

215

iteration: 75

iteration: 76

iteration: 77

iteration: 78

iteration: 79

iteration: 80

iteration: 81

iteration: 82

iteration: 83

iteration: 84

iteration: 85

iteration: 86

iteration: 87

iteration: 88

iteration: 89

iteration: 90

iteration: 91

iteration: 92

iteration: 93

iteration: 94

iteration: 95

iteration: 96

iteration: 97

iteration: 98

iteration: 99

iteration: 100

Best Allocation:

216

Staff: 1; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 1; Properties: space:

17.69, tables: 2, chairs: 7, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 2; Dept: TELCOM; Cadre: AL; TypeID: C , Allocated to: Room: 15; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 3; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 34; Properties: space: 8.56,

tables: 1, chairs: 2, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1,

Staff: 4; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 21; Properties: space: 13.38,

tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 5; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 35; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 6; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 28; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 7; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 26; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 8; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 60; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C;

Capacity:2

Staff: 9; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 18; Properties: space:

7.7, tables: 1, chairs: 4, fans: -, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 10; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 33; Properties: space:

13.38, tables: 1,chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2,

217

Staff: 11; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 8; Properties:

space: 13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 12; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 6; Properties:

space: 13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 13; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 30; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 14; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 57; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C;

Capacity:2

Staff: 15; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 24; Properties:

space: 13.38, tables: 1, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 16; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 39; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 17; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1,

Staff: 18; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 38; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 19; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 20; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 47; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: C; Capacity:2

Staff: 21; Dept: LIB; Cadre: L1; TypeID: C , Allocated to: Room: 23; Properties: space: 8.56,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

218

Staff: 22; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 7; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 23; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 24; Dept: LIB; Cadre: L1; TypeID: C , Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 25; Dept: TELCOM; Cadre: L1; TypeID: C, Allocated to: Room: 63; Properties: space:

13.38, tables: 1, chairs: 4, fans: 2, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C;

Capacity:2

Staff: 26; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 16; Properties:

space: 9.34, tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 27; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 11; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 28; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 65; Properties: space:

7.7, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: C; Capacity:1

Staff: 29; Dept: ICS; Cadre: L1; TypeID: C, Allocated to: Room: 19; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 30; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 43; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C; Capacity:2

Staff: 31; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 29; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

,Staff: 32; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 37; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

219

Staff: 33; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 54; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: C; Capacity:2

Staff: 34; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 66; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: , TV: ; TypeID: C; Capacity:2

Staff: 35; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 26; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 36; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 21; Properties: space: 13.38,

tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 37; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 35; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 38; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 29; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 39; Dept: TELCOM; Cadre: L2; TypeID: C, Allocated to:Room: 15; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 40; Dept: MASS COM; Cadre: L2; TypeID: C , Allocated to: Room: 8; Properties:

space: 13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 41; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 28; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 42; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to:Room: 11; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 43; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 6; Properties:

space: 13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

220

Staff: 44; Dept: MASS COM; Cadre: L2; TypeID: C , Allocated to: Room: 24; Properties:

space: 13.38, tables: 1, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 45; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 47; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: C; Capacity:2

Staff: 46; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to:Room: 62; Properties:

space: 26.76, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:1

Staff: 47; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 55; Properties: space:

13.38, tables: 1, chairs: 5, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:1

Staff: 48; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 64; Properties: space:

26.76, tables: 2, chairs: 5, fans: 1, AC: 1, cabinet: 2, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:1

Staff: 49; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to: Room: 71; Properties:

space: 26.76, tables: 2, chairs: 3, fans: 5, AC: 1, cabinet: 1, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:1

Staff: 50; Dept: COM SC; Cadre: READER; TypeID: B, Allocated to: Room: 27; Properties:

space: 13.38,tables:1,chairs:3,fans:1,AC:1,cabinet:2, fridge:-, toilet:-, TV:-; TypeID:B;

Capacity:1

Staff: 51; Dept: ICS; Cadre: READER; TypeID: B, Allocated to: Room: 41; Properties: space:

27.69, tables: 2, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: B;

Capacity:1

Staff: 52; Dept: TELCOM; Cadre: READER; TypeID: B,Allocated to:Room:36;Properties:

space: 17.69,tables: 1, chairs:3, fans:1, AC:1, cabinet:2, fridge:-, toilet:-, TV:-; TypeID:B;

Capacity:1

221

Staff: 53; Dept: LIB; Cadre: READER; TypeID: B, Allocated to: Room: 42; Properties: space:

26.76, tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:1

Staff: 54; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 46; Properties: space: 26.76,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:1

Staff: 55; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 51; Properties: space: 26.76,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: B; Capacity:1

Staff: 56; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 45; Properties: space:

26.76, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: B;

Capacity:1

Staff: 57; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 61; Properties: space:

26.76, tables: 2, chairs: 4, fans: 2, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: B;

Capacity:1

Staff: 58; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 17; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 59; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 31; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 60; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 22; Properties: space:

17.69, tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 61; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 62; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 52; Properties: space:

21.08, tables: 1, chairs: 3, fans: , AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:1

222

Staff: 63; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 14; Properties: space:

17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 64; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 70; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 4, fridge: , toilet: , TV: ; TypeID: B;

Capacity:1

Penalty: 4120

=========

RunTime: 00:25:32.64

Memory Used: 50612KB

ABC RESULT

ABC Run: 1

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

iteration: 8

iteration: 9

iteration: 10

iteration: 11

223

iteration: 12

iteration: 13

iteration: 14

iteration: 15

iteration: 16

iteration: 17

iteration: 18

iteration: 19

iteration: 20

iteration: 21

iteration: 22

iteration: 23

iteration: 24

iteration: 25

iteration: 26

iteration: 27

iteration: 28

iteration: 29

iteration: 30

iteration: 31

iteration: 32

iteration: 33

iteration: 34

iteration: 35

iteration: 36

iteration: 37

iteration: 38

224

iteration: 39

iteration: 40

iteration: 41

iteration: 42

iteration: 43

iteration: 44

iteration: 45

iteration: 46

iteration: 47

iteration: 48

iteration: 49

iteration: 50

iteration: 51

iteration: 52

iteration: 53

iteration: 54

iteration: 55

iteration: 56

iteration: 57

iteration: 58

iteration: 59

iteration: 60

iteration: 61

iteration: 62

iteration: 63

iteration: 64

iteration: 65

225

iteration: 66

iteration: 67

iteration: 68

iteration: 69

iteration: 70

iteration: 71

iteration: 72

iteration: 73

iteration: 74

iteration: 75

iteration: 76

iteration: 77

iteration: 78

iteration: 79

iteration: 80

iteration: 81

iteration: 82

iteration: 83

iteration: 84

iteration: 85

iteration: 86

iteration: 87

iteration: 88

iteration: 89

iteration: 90

iteration: 91

iteration: 92

226

iteration: 93

iteration: 94

iteration: 95

iteration: 96

iteration: 97

iteration: 98

iteration: 99

iteration: 100

1:

Best Allocation:

Staff: 1; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 26; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 2; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 1; Properties: space:

17.69, tables: 2, chairs: 7, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 3; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 4; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 5; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 6; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 7; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 32; Properties: space:

13.72, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C ;

Capacity:2

227

Staff: 8; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 9; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 12; Properties: space:

13.38, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 10; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 17; Properties: space:

17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 11; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 38; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 12; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 5; Properties:

space: 17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 13; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 14; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 39; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 15; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 11; Properties:

space: 13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 16; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 6; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 17; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 35; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 18; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

228

Staff: 19; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 20; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 21; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 5; Properties: space: 17.85,

tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 22; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 23; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 24; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 25; Dept: TELCOM; Cadre: L1; TypeID: C, Allocated to: Room: 39; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 26; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 28; Properties:

space: 13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 27; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 2; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 28; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 2; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 29; Dept: ICS; Cadre: L1; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

229

Staff: 30; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 31; Dept: LIB; Cadre: L1; TypeID: C, --- Allocated to: Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 32; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 7; Properties:

space: 13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 33; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 34; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 35; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 8; Properties: space:

13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 36; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: - , cabinet:- , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 37; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 35; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 38; Dept: LIB; Cadre: L2; TypeID: C, Allocated to:Room: 32; Properties: space: 13.72,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C ; Capacity:2

Staff: 39; Dept: TELCOM; Cadre: L2; TypeID: C, Allocated to: Room: 40; Properties: space:

7.7, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 40; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 32; Properties:

space: 13.72, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C ;

Capacity:2

230

Staff: 41; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 42; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to:Room: 6; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 43; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 8; Properties:

space: 13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 44; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 11; Properties:

space: 13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 45; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 46; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to: Room: 5; Properties:

space: 17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 47; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 2; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 48; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 49; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to: Room: 3; Properties:

space: 10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

231

Staff: 50; Dept: COM SC; Cadre: READER; TypeID: B, Allocated to: Room: 5; Properties:

space: 17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 51; Dept: ICS; Cadre: READER; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 52; Dept: TELCOM; Cadre: READER; TypeID: B, Allocated to: Room: 3; Properties:

space: 10.35, tables: , chairs: , fans: , AC: , cabinet: ,fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 53; Dept: LIB; Cadre: READER; TypeID: B, Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 54; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 55; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 7; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 56; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 57; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 18; Properties: space:

7.7, tables: 1, chairs: 4, fans: -, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 58; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 36; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 59; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 14; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

232

Staff: 60; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to:Room: 2; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 61; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 62; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 63; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 64; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 2; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Penalty: 1640

=========

RunTime: 00:50:39.25

Memory Used: 664KB

Run: 6

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

233

iteration: 8

iteration: 9

iteration: 10

iteration: 11

iteration: 12

iteration: 13

iteration: 14

iteration: 15

iteration: 16

iteration: 17

iteration: 18

iteration: 19

iteration: 20

iteration: 21

iteration: 22

iteration: 23

iteration: 24

iteration: 25

iteration: 26

iteration: 27

iteration: 28

iteration: 29

iteration: 30

iteration: 31

iteration: 32

iteration: 33

iteration: 34

234

iteration: 35

iteration: 36

iteration: 37

iteration: 38

iteration: 39

iteration: 40

iteration: 41

iteration: 42

iteration: 43

iteration: 44

iteration: 45

iteration: 46

iteration: 47

iteration: 48

iteration: 49

iteration: 50

iteration: 51

iteration: 52

iteration: 53

iteration: 54

iteration: 55

iteration: 56

iteration: 57

iteration: 58

iteration: 59

iteration: 60

iteration: 61

235

iteration: 62

iteration: 63

iteration: 64

iteration: 65

iteration: 66

iteration: 67

iteration: 68

iteration: 69

iteration: 70

iteration: 71

iteration: 72

iteration: 73

iteration: 74

iteration: 75

iteration: 76

iteration: 77

iteration: 78

iteration: 79

iteration: 80

iteration: 81

iteration: 82

iteration: 83

iteration: 84

iteration: 85

iteration: 86

iteration: 87

iteration: 88

236

iteration: 89

iteration: 90

iteration: 91

iteration: 92

iteration: 93

iteration: 94

iteration: 95

iteration: 96

iteration: 97

iteration: 98

iteration: 99

iteration: 100

6:

Best Allocation:

Staff: 1; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 31; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 2; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 22; Properties: space:

17.69, tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 3; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 4; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 46; Properties: space: 26.76,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:1

Staff: 5; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 30; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

237

Staff: 6; Dept: ICS; Cadre: AL; TypeID: C, Allocated to:Room: 17; Properties: space: 17.69,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 7; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 33; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 8; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to:Room: 21; Properties: space:

13.38, tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 9; Dept: COM SC; Cadre: AL; TypeID: C, - Allocated to: Room: 16; Properties: space:

9.34, tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 10; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 11; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to:Room: 21; Properties:

space: 13.38, tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID:

C; Capacity:2

Staff: 12; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to:Room: 12; Properties:

space: 13.38, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 13; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 16; Properties: space: 9.34,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 14; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to:Room: 28; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 15; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 35; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID:

C; Capacity:2

238

Staff: 16; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 17; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 18; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 10; Properties: space: 7.7,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 19; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 27; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 20; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 27; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 21; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: , Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 22; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 23; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 24; Dept: LIB; Cadre: L1; TypeID: C,Allocated to: Room: 34; Properties: space: 8.56,

tables: 1, chairs: 2, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 25; Dept: TELCOM; Cadre: L1; TypeID: C, Allocated to:Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 26; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 40; Properties:

space: 7.7, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 27; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 39; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

239

Staff: 28; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 17; Properties: space:

17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 29; Dept: ICS; Cadre: L1; TypeID: C, Allocated to: Room: 7; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 30; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 33; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 31; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 27; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 32; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 34; Properties:

space: 8.56, tables: 1, chairs: 2, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 33; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 14; Properties: space: 17.69,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 34; Dept: ICS; Cadre: L2; TypeID: C, Allocated to:Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 35; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to:Room: 27; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 36; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 16; Properties: space: 9.34,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 37; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 38; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

240

Staff: 39; Dept: TELCOM; Cadre: L2; TypeID: C, Allocated to: Room: 12; Properties: space:

13.38, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 40; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 5; Properties:

space: 17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 41; Dept: ICS; Cadre: L2; TypeID: C, Allocated to:Room: 16; Properties: space: 9.34,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 42; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 37; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 43; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 24; Properties:

space: 13.38, tables: 1, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 44; Dept: MASS COM; Cadre: L2; TypeID: C ,Allocated to: Room: 17; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 45; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 6; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 46; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to: Room: 2; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 47; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 48; Dept: LIB; Cadre: PROF; TypeID: A , Allocated to:Room: 4; Properties: space:

10.35, tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

241

Staff: 49; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to:Room: 4; Properties: space:

10.35, tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 50; Dept: COM SC; Cadre: READER; TypeID: B, Allocated to: Room: 3; Properties:

space: 10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 51; Dept: ICS; Cadre: READER; TypeID: B,, Allocated to:Room: 18; Properties: space:

7.7, tables: 1, chairs: 4, fans: -, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 52; Dept: TELCOM; Cadre: READER; TypeID: B, Allocated to: Room: 15; Properties:

space:13.38,tables:1,chairs:3, fans:1, AC:, cabinet:1, fridge:-, toilet:-, TV:-; TypeID:C;

Capacity:2

Staff: 53; Dept: LIB; Cadre: READER; TypeID: B, Allocated to: Room: 13; Properties: space:

13.38, tables: -, chairs: -, fans: -, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 54; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space: 17.85,

tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 55; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 17; Properties: space: 17.69,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 56; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 4; Properties: space:

10.35, tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 57; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 23; Properties: space:

8.56, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

242

Staff: 58; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 14; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 59; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 12; Properties:

space: 13.38, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 60; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 61; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to:Room: 6; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 62; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 24; Properties: space:

13.38, tables: 1, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 63; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to:Room: 8; Properties: space:

13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 64; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 7; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Penalty: 2490

RunTime: 00:52:47.15

Memory Used: 666KB

GENETIC RESULT

243

Run: 1

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

iteration: 8

iteration: 9

iteration: 10

iteration: 11

iteration: 12

iteration: 13

iteration: 14

iteration: 15

iteration: 16

iteration: 17

iteration: 18

iteration: 19

iteration: 20

iteration: 21

iteration: 22

iteration: 23

iteration: 24

iteration: 25

iteration: 26

244

iteration: 27

iteration: 28

iteration: 29

iteration: 30

iteration: 31

iteration: 32

iteration: 33

iteration: 34

iteration: 35

iteration: 36

iteration: 37

iteration: 38

iteration: 39

iteration: 40

iteration: 41

iteration: 42

iteration: 43

iteration: 44

iteration: 45

iteration: 46

iteration: 47

iteration: 48

iteration: 49

iteration: 50

iteration: 51

iteration: 52

iteration: 53

245

iteration: 54

iteration: 55

iteration: 56

iteration: 57

iteration: 58

iteration: 59

iteration: 60

iteration: 61

iteration: 62

iteration: 63

iteration: 64

iteration: 65

iteration: 66

iteration: 67

iteration: 68

iteration: 69

iteration: 70

iteration: 71

iteration: 72

iteration: 73

iteration: 74

iteration: 75

iteration: 76

iteration: 77

iteration: 78

iteration: 79

iteration: 80

246

iteration: 81

iteration: 82

iteration: 83

iteration: 84

iteration: 85

iteration: 86

iteration: 87

iteration: 88

iteration: 89

iteration: 90

iteration: 91

iteration: 92

iteration: 93

iteration: 94

iteration: 95

iteration: 96

iteration: 97

iteration: 98

iteration: 99

iteration: 100

1:

Best Allocation:

Staff: 1; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 30; Properties: space:

13.38, tables: 1, chairs: 2, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

247

Staff: 2; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 11; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 3; Dept: ICS; Cadre: AL; TypeID: C ,Allocated to: Room: 16; Properties: space: 9.34,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 4; Dept: ICS; Cadre: AL; TypeID: C , Allocated to: Room: 33; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 5; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 6; Dept: ICS; Cadre: AL; TypeID: C,Allocated to: Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 7; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 35; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 8; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 6; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 9; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 10; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 6; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 11; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 6; Properties:

space: 13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

248

Staff: 12; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 3; Properties:

space: 10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 13; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 1; Properties: space: 17.69,

tables: 2, chairs: 7, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 14; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 40; Properties: space:

7.7, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 15; Dept: MASS COM; Cadre: AL; TypeID: C , Allocated to: Room: 3; Properties:

space: 10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 16; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 36; Properties: space: 17.69,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 17; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 39; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 18; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 3; Properties: space: 10.35,

tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 19; Dept: ICS; Cadre: GA; TypeID: C , Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 20; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 21; Dept: LIB; Cadre: L1; TypeID: C , Allocated to: Room: 28; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 22; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 23; Properties: space: 8.56,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 23; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 28; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

249

Staff: 24; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 29; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 25; Dept: TELCOM; Cadre: L1; TypeID: C , Allocated to: Room: 34; Properties: space:

8.56, tables: 1, chairs: 2, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 26; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 7; Properties:

space: 13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 27; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 28; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 39; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 29; Dept: ICS; Cadre: L1; TypeID: C, Allocated to: Room: 18; Properties: space: 7.7,

tables: 1, chairs: 4, fans: -, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 30; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 31; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 23; Properties: space: 8.56,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 32; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 38; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

,Staff: 33; Dept: LIB; Cadre: L1; TypeID: C,Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 34; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 29; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

250

Staff: 35; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 36; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 6; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 37; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 38; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 39; Dept: TELCOM; Cadre: L2; TypeID: C, Allocated to: Room: 26; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 40; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 7; Properties:

space: 13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 41; Dept: ICS; Cadre: L2; TypeID: C , Allocated to: Room: 33; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 42; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 35; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 43; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 12; Properties:

space: 13.38, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 44; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 37; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

251

Staff: 45; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 36; Properties: space: 17.69,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 46; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to: Room: 5; Properties:

space: 17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 47; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 48; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 49; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to: Room: 4; Properties:

space: 10.35, tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 50; Dept: COM SC; Cadre: READER; TypeID: B, Allocated to: Room: 5; Properties:

space: 17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 51; Dept: ICS; Cadre: READER; TypeID: B, Allocated to:Room: 14; Properties: space:

17.69, tables: 1, chairs: 3, fans:1, AC:, cabinet: 1, fridge:-, toilet: -, TV:-; TypeID: B;

Capacity:1

Staff: 52; Dept: TELCOM; Cadre:READER; TypeID: B, Allocated to: Room: 2; Properties:

space: 13.38, tables:1, chairs:3, fans: 1,AC: -, cabinet: 1, fridge:-, toilet:-,TV:-; TypeID: C;

Capacity:2

Staff: 53; Dept: LIB; Cadre: READER; TypeID: B, Allocated to: Room: 4; Properties: space:

10.35, tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 54; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 24; Properties: space: 13.38,

tables: 1, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

252

Staff: 55; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 23; Properties: space: 8.56,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 56; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 27; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 57; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 2; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 58; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 17; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 59; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 12; Properties:

space: 13.38, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 60; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 61; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 6; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 62; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 63; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

253

Staff: 64; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 8; Properties: space:

13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Penalty: 1760

RunTime: 01:12:45.06

Memory Used: 648KB

Run: 6

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

iteration: 8

iteration: 9

iteration: 10

iteration: 11

iteration: 12

iteration: 13

iteration: 14

iteration: 15

iteration: 16

iteration: 17

iteration: 18

254

iteration: 19

iteration: 20

iteration: 21

iteration: 22

iteration: 23

iteration: 24

iteration: 25

iteration: 26

iteration: 27

iteration: 28

iteration: 29

iteration: 30

iteration: 31

iteration: 32

iteration: 33

iteration: 34

iteration: 35

iteration: 36

iteration: 37

iteration: 38

iteration: 39

iteration: 40

iteration: 41

iteration: 42

iteration: 43

iteration: 44

iteration: 45

255

iteration: 46

iteration: 47

iteration: 48

iteration: 49

iteration: 50

iteration: 51

iteration: 52

iteration: 53

iteration: 54

iteration: 55

iteration: 56

iteration: 57

iteration: 58

iteration: 59

iteration: 60

iteration: 61

iteration: 62

iteration: 63

iteration: 64

iteration: 65

iteration: 66

iteration: 67

iteration: 68

iteration: 69

iteration: 70

iteration: 71

iteration: 72

256

iteration: 73

iteration: 74

iteration: 75

iteration: 76

iteration: 77

iteration: 78

iteration: 79

iteration: 80

iteration: 81

iteration: 82

iteration: 83

iteration: 84

iteration: 85

iteration: 86

iteration: 87

iteration: 88

iteration: 89

iteration: 90

iteration: 91

iteration: 92

iteration: 93

iteration: 94

iteration: 95

iteration: 96

iteration: 97

iteration: 98

iteration: 99

257

iteration: 100

6:

Best Allocation:

Staff: 1; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to:Room: 21; Properties: space:

13.38, tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 2; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 17; Properties: space:

17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 3; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 14; Properties: space: 17.69,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 4; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 5; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 30; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 6; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 33; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 7; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 35; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 8; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 6; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 9; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 11; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

258

Staff: 10; Dept: COM SC; Cadre: AL; TypeID: C , Allocated to: Room: 6; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 11; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 2; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 12; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 5; Properties:

space: 17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID:

B; Capacity:1

Staff: 13; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 5; Properties: space: 17.85,

tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 14; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 36; Properties: space:

17.69, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 15; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 17; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 16; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 8; Properties: space: 13.38,

tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 17; Dept: ICS; Cadre: AL; TypeID: C ,Allocated to: Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 18; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 16; Properties: space: 9.34,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 19; Dept: ICS; Cadre: GA; TypeID: C, Allocated to:Room: 33; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 20; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 39; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

259

Staff: 21; Dept: LIB; Cadre: L1; TypeID: C , Allocated to:Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 22; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 28; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 23; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 24; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 39; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 25; Dept: TELCOM; Cadre: L1; TypeID: C, Allocated to: Room: 34; Properties: space:

8.56, tables: 1, chairs: 2, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 26; Dept: MASS COM; Cadre: L1; TypeID: C ,Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 27; Dept: COM SC; Cadre: L1; TypeID: C , Allocated to: Room: 2; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 28; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 12; Properties: space:

13.38, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 29; Dept: ICS; Cadre: L1; TypeID: C, Allocated to: Room: 6; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 30; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 29; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 31; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 32; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 3; Properties:

space: 10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

260

Staff: 33; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 17; Properties: space: 17.69,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 34; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 5; Properties: space: 17.85,

tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 35; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to:Room: 37; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 36; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 4; Properties: space: 10.35,

tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 37; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 38; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 32; Properties: space: 13.72,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C ; Capacity:2

Staff: 39; Dept: TELCOM; Cadre: L2; TypeID: C, Allocated to:Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 40; Dept: MASS COM; Cadre: L2; TypeID: C , Allocated to: Room: 15; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 41; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 18; Properties: space: 7.7,

tables: 1, chairs: 4, fans: -, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 42; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 35; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 43; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 3; Properties:

space: 10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

261

Staff: 44; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to:Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 45; Dept: LIB; Cadre: L2; TypeID: C ,Allocated to: Room: 6; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 46; Dept: COM SC; Cadre: PROF; TypeID: A , Allocated to: Room: 2; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 47; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 6; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 48; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 4; Properties: space:

10.35, tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 49; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to:Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 50; Dept: COM SC; Cadre: READER; TypeID: B, Allocated to: Room: 17; Properties:

space:17.69, tables:1, chairs:3, fans:1, AC:,cabinet:1, fridge:-,toilet:-, TV:-;TypeID: B;

Capacity:1

Staff: 51; Dept: ICS; Cadre: READER; TypeID: B, Allocated to: Room: 4; Properties: space:

10.35, tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:1

Staff: 52; Dept: TELCOM; Cadre: READER; TypeID: B , Allocated to: Room: 25; Properties:

space: 17.69, tables: , chairs: , fans: , AC:, cabinet: , fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

262

Staff: 53; Dept: LIB; Cadre: READER; TypeID: B, Allocated to: Room: 12; Properties: space:

13.38, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:2

Staff: 54; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space: 17.85,

tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:1

Staff: 55; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 16; Properties: space: 9.34,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:1

Staff: 56; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 2; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 57; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 58; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 6; Properties:

space: 13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 59; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 8; Properties:

space: 13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:2

Staff: 60; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 17; Properties: space:

17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 61; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 17; Properties: space:

17.69, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 62; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

263

Staff: 63; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:1

Staff: 64; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to:Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet:3, fridge:-, toilet:-, TV:-;TypeID: B;

Capacity:1

Penalty: 1730

RunTime: 01:09:50.71

Memory Used: 650KB

HYBRID RESULT

Run: 1

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

iteration: 8

iteration: 9

iteration: 10

iteration: 11

iteration: 12

264

iteration: 13

iteration: 14

iteration: 15

iteration: 16

iteration: 17

iteration: 18

iteration: 19

iteration: 20

iteration: 21

iteration: 22

iteration: 23

iteration: 24

iteration: 25

iteration: 26

iteration: 27

iteration: 28

iteration: 29

iteration: 30

iteration: 31

iteration: 32

iteration: 33

iteration: 34

iteration: 35

iteration: 36

iteration: 37

iteration: 38

iteration: 39

265

iteration: 40

iteration: 41

iteration: 42

iteration: 43

iteration: 44

iteration: 45

iteration: 46

iteration: 47

iteration: 48

iteration: 49

iteration: 50

iteration: 51

iteration: 52

iteration: 53

iteration: 54

iteration: 55

iteration: 56

iteration: 57

iteration: 58

iteration: 59

iteration: 60

iteration: 61

iteration: 62

iteration: 63

iteration: 64

iteration: 65

iteration: 66

266

iteration: 67

iteration: 68

iteration: 69

iteration: 70

iteration: 71

iteration: 72

iteration: 73

iteration: 74

iteration: 75

iteration: 76

iteration: 77

iteration: 78

iteration: 79

iteration: 80

iteration: 81

iteration: 82

iteration: 83

iteration: 84

iteration: 85

iteration: 86

iteration: 87

iteration: 88

iteration: 89

iteration: 90

iteration: 91

iteration: 92

iteration: 93

267

iteration: 94

iteration: 95

iteration: 96

iteration: 97

iteration: 98

iteration: 99

iteration: 100

1:

Best Allocation:

Staff: 1; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 8; Properties: space:

13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-31

Staff: 2; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to:Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

40

Staff: 3; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 6; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-35

Staff: 4; Dept: ICS; Cadre: AL; TypeID: C , Allocated to: Room: 1; Properties: space: 17.69,

tables: 2, chairs: 7, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-20

Staff: 5; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 11; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-47

Staff: 6; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 6; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-35

Staff: 7; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 39; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-36

268

Staff: 8; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 15; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-46

Staff: 9; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 57; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C;

Capacity:-26

Staff: 10; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to:Room: 7; Properties: space:

13.38, tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-43

Staff: 11; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 2; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC: -, cabinet:1, fridge:-, toilet:-,TV:-;TypeID: C;

Capacity:-54

Staff: 12; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 2; Properties:

space: 13.38, tables: 1, chairs: 3, fans:1, AC:-, cabinet:1, fridge:-, toilet:-, TV:-; TypeID: C;

Capacity:-54

Staff: 13; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 35; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

34

Staff: 14; Dept: TELCOM; Cadre: AL; TypeID: C , Allocated to: Room: 4; Properties: space:

10.35, tables:1, chairs:4, fans:2, AC:-, cabinet:2, fridge:-, toilet: -, TV: -; TypeID: C;

Capacity:-42

Staff: 15; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 2; Properties:

space: 13.38, tables: 1, chairs:3, fans:1, AC:-, cabinet:1, fridge:-, toilet:-, TV -; TypeID:C;

Capacity:-54

Staff: 16; Dept: ICS; Cadre: AL; TypeID: C , Allocated to: Room: 34; Properties: space: 8.56,

tables: 1, chairs: 2, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

35

269

Staff: 17; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-39

Staff: 18; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 6; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-35

Staff: 19; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-39

Staff: 20; Dept: LIB; Cadre: L1; TypeID: C, Allocated to:Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-37

Staff: 21; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 47; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: C; Capacity:-43

Staff: 22; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 33; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

36

Staff: 23; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 16; Properties: space: 9.34,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-44

Staff: 24; Dept: LIB; Cadre: L1; TypeID: C, Allocated to:, Room: 40; Properties: space: 7.7,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-37

Staff: 25; Dept: TELCOM; Cadre: L1; TypeID: C, Allocated to: Room: 38; Properties: space:

13.38, tables: 1, chairs:3, fans:1, AC:, cabinet:2, fridge:-, toilet: -, TV: -; TypeID: C;

Capacity:-46

Staff: 26; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 26; Properties:

space: 13.38, tables: 1, chairs: 2, fans: 1, AC:, cabinet: , fridge:-, toilet:-, TV:-; TypeID:C;

Capacity:-42,

Staff: 27; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 28; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC:, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-38

270

Staff: 28; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 23; Properties: space:

8.56, tables: 1, chairs: 3, fans: 1, AC:, cabinet: 2, fridge:-, toilet:-, TV:-; TypeID: C; Capacity:-

52

Staff: 29; Dept: ICS; Cadre: L1; TypeID: C, Allocated to: Room: 18; Properties: space: 7.7,

tables: 1, chairs: 4, fans: -, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-36

Staff: 30; Dept: LIB; Cadre: L1; TypeID: C, Allocated to:Room: 65; Properties: space: 7.7,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: C; Capacity:-38

Staff: 31; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 63; Properties: space: 13.38,

tables: 1, chairs: 4, fans: 2, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C; Capacity:-36

Staff: 32; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 29; Properties:

space: 13.38, tables: 1, chairs:3, fans:1, AC:-, cabinet:1, fridge:-, toilet:-, TV: -; TypeID: C;

Capacity:-43

Staff: 33; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 43; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C; Capacity:-51

Staff: 34; Dept: ICS; Cadre: L2; TypeID: C, Allocated to:Room: 66; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: , TV: ; TypeID: C; Capacity:-40

Staff: 35; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 15; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-46

Staff: 36; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 1; Properties: space: 17.69,

tables: 2, chairs: 7, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-20

Staff: 37; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 6; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-35

Staff: 38; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 43; Properties: space: 13.38,

tables: 2, chairs: 4, fans: 1, AC: , cabinet: 2, fridge: , toilet: , TV: ; TypeID: C; Capacity:-51

271

Staff: 39; Dept: TELCOM; Cadre: L2; TypeID: C, Allocated to:Room: 8; Properties: space:

13.38, tables: 2, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-31

Staff: 40; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 26; Properties:

space: 13.38, tables: 1, chairs:2, fans:1, AC:, cabinet:, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-42

Staff: 41; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-39

Staff: 42; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 28; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet:2, fridge:-, toilet:-, TV:-; TypeID:C;

Capacity:-38

Staff: 43; Dept: MASS COM; Cadre:L2; TypeID: C, Allocated to: Room: 29; Properties:

space: 13.38, tables: 1, chairs: 3, fans: 1, AC:-, cabinet:1, fridge:-,toilet:-, TV:-; TypeID: C;

Capacity:-43

Staff: 44; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to:Room: 2; Properties: space:

13.38, tables: 1, chairs: 3, fans:1, AC:-, cabinet:1, fridge:-, toilet:-, TV:-; TypeID: C;

Capacity:-54

Staff: 45; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 19; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-33

Staff: 46; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to: Room: 55; Properties:

space: 13.38, tables: 1, chairs: 5, fans:1, AC:1, cabinet:1, fridge:, toilet: 1,TV: ; TypeID: A;

Capacity:-37

Staff: 47; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 64; Properties: space:

26.76, tables: 2, chairs: 5, fans: 1, AC: 1, cabinet: 2, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:-34

272

Staff: 48; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 62; Properties: space:

26.76, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge:, toilet: 1, TV: ; TypeID: A;

Capacity:-37

Staff: 49; Dept: COM SC; Cadre: PROF;TypeID: A, Allocated to:Room:71;Properties: space:

26.76, tables: 2, chairs: 3, fans:5, AC:1,cabinet: 1, fridge: , toilet: 1, TV:;TypeID: A;

Capacity:-37

Staff: 50; Dept: COM SC; Cadre: READER; TypeID: B, Allocated to: Room:27; Properties:

space: 13.38, tables:1, chairs:3, fans:1, AC:1, cabinet:2, fridge: -, toilet:-, TV:-; TypeID: B;

Capacity:-40

Staff: 51; Dept: ICS; Cadre: READER; TypeID: B, Allocated to: Room: 31; Properties: space:

13.38, tables:1, chairs:3, fans:1, AC:1, cabinet:1, fridge:-, toilet:-, TV: -; TypeID: B;

Capacity:-40

Staff:52;Dept:TELCOM;Cadre:READER;TypeID: B, Allocated to: Room:46; Properties:

space:26.76, tables:1,chairs:3,fans:1, AC:1, cabinet:,fridge:, toilet:, TV:; TypeID: B;

Capacity:-47

Staff: 53; Dept: LIB; Cadre: READER; TypeID: B, Allocated to: Room: 61; Properties: space:

26.76, tables: 2, chairs: 4, fans: 2, AC: , cabinet: 1, fridge: , toilet: ,TV:; TypeID: B; Capacity:-

39

Staff: 54; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 17; Properties: space: 17.69,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:-36

Staff: 55; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 17; Properties: space: 17.69,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:-36

Staff: 56; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 42; Properties: space:

26.76, tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:-

44

273

Staff: 57; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:-49

Staff: 58; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 52; Properties:

space: 21.08, tables: 1, chairs: 3, fans: , AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: B;

Capacity:-28,

Staff:59; Dept: MASS COM; Cadre:SL; TypeID:B, Allocated to:Room: 36;Properties:space:

17.69, tables:1, chairs:3, fans:1, AC:1, cabinet: 2, fridge:-, toilet: -,TV:-; TypeID: B;

Capacity:-43

Staff: 60; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 51; Properties: space:

26.76, tables:1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: B;

Capacity:-37

Staff: 61; Dept: COM SC; Cadre: SL;TypeID: B, Allocated to:Room: 22; Properties: space:

17.69, tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet:-, TV: -; TypeID: B;

Capacity:-41,

Staff: 62; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet:3, fridge: -, toilet:-, TV: -; TypeID:

B;Capacity:-49

Staff: 63; Dept: COM SC; Cadre: SL;TypeID:B, Allocated to: Room:14; Properties: space:

17.69, tables:1, chairs:3, fans: 1, AC:, cabinet: 1, fridge:-, toilet: -, TV:-; TypeID: B;

Capacity:-32

Staff:64; Dept:COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 70; Properties: space:

13.38, tables:1, chairs:3, fans:1, AC:1, cabinet: 4, fridge: , toilet: , TV: ; TypeID: B; Capacity:-

40

Penalty: 3960

RunTime: 00:09:15.04

Memory Used: 688KB

274

Run: 6

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

iteration: 8

iteration: 9

iteration: 10

iteration: 11

iteration: 12

iteration: 13

iteration: 14

iteration: 15

iteration: 16

iteration: 17

iteration: 18

iteration: 19

iteration: 20

iteration: 21

iteration: 22

iteration: 23

iteration: 24

iteration: 25

275

iteration: 26

iteration: 27

iteration: 28

iteration: 29

iteration: 30

iteration: 31

iteration: 32

iteration: 33

iteration: 34

iteration: 35

iteration: 36

iteration: 37

iteration: 38

iteration: 39

iteration: 40

iteration: 41

iteration: 42

iteration: 43

iteration: 44

iteration: 45

iteration: 46

iteration: 47

iteration: 48

iteration: 49

iteration: 50

iteration: 51

iteration: 52

276

iteration: 53

iteration: 54

iteration: 55

iteration: 56

iteration: 57

iteration: 58

iteration: 59

iteration: 60

iteration: 61

iteration: 62

iteration: 63

iteration: 64

iteration: 65

iteration: 66

iteration: 67

iteration: 68

iteration: 69

iteration: 70

iteration: 71

iteration: 72

iteration: 73

iteration: 74

iteration: 75

iteration: 76

iteration: 77

iteration: 78

iteration: 79

277

iteration: 80

iteration: 81

iteration: 82

iteration: 83

iteration: 84

iteration: 85

iteration: 86

iteration: 87

iteration: 88

iteration: 89

iteration: 90

iteration: 91

iteration: 92

iteration: 93

iteration: 94

iteration: 95

iteration: 96

iteration: 97

iteration: 98

iteration: 99

iteration: 100

6:

Best Allocation:

Staff: 1; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 57; Properties: space:

13.38, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2,fridge: , toilet: , TV: ; TypeID: C;

Capacity:-35

278

Staff: 2; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to:Room: 60; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 2,fridge: , toilet: , TV: ; TypeID: C;

Capacity:-51

Staff: 3; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 24; Properties: space: 13.38,

tables: 1, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-42

Staff: 4; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 15; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-36,

Staff: 5; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 29; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-39

Staff: 6; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 35; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

32

Staff: 7; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 4; Properties: space:

10.35, tables: 1, chairs: 4, fans: 2, AC: -, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-40

Staff: 8; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 47; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: C; Capacity:-

35

Staff: 9; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 1; Properties: space:

17.69, tables: 2, chairs: 7, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-18

Staff: 10; Dept: COM SC; Cadre: AL; TypeID: C, Allocated to: Room: 26; Properties: space:

13.38, tables: 1, chairs:2, fans: 1, AC:, cabinet:, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-49

Staff: 11; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 65; Properties:

space: 7.7, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: C;

Capacity:-31

279

Staff: 12; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 11; Properties:

space: 13.38, tables: 2, chairs: 4, fans:1, AC:, cabinet:1, fridge:-, toilet:-, TV: -; TypeID: C;

Capacity:-44

Staff: 13; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 28; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-39

Staff: 14; Dept: TELCOM; Cadre: AL; TypeID: C, Allocated to: Room: 18; Properties: space:

7.7, tables: 1, chairs: 4, fans: -, AC: -, cabinet: 1, fridge -, toilet:-, TV:-; TypeID: C; Capacity:-

39

Staff: 15; Dept: MASS COM; Cadre: AL; TypeID: C, Allocated to: Room: 6; Properties:

space: 13.38, tables:1, chairs:1, fans: 1, AC:-, cabinet:-, fridge:-, toilet:-, TV:-; TypeID: C;

Capacity:-46

Staff: 16; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 35; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

32

Staff: 17; Dept: ICS; Cadre: AL; TypeID: C, Allocated to: Room: 23; Properties: space: 8.56,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-43

Staff: 18; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 39; Properties: space:

13.38, tables: 2, chairs: 4, fans: 1, AC: , cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-51

Staff: 19; Dept: ICS; Cadre: GA; TypeID: C, Allocated to: Room: 7; Properties: space: 13.38,

tables: 1, chairs: 1, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-44

Staff: 20; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 33; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

44

Staff: 21; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 2; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-42

280

Staff: 22; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 30; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-42

Staff: 23; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-39

Staff: 24; Dept: LIB; Cadre: L1; TypeID: C, Allocated to:Room: 16; Properties: space: 9.34,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-42

Staff: 25; Dept: TELCOM; Cadre: L1; TypeID: C, Allocated to: Room: 3; Properties: space:

10.35, tables: , chairs: , fans: , AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

38

Staff: 26; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to: Room: 34; Properties:

space: 8.56, tables: 1, chairs: 2, fans:1, AC:1, cabinet:1, fridge:-, toilet:-, TV: -; TypeID: C;

Capacity:-38

Staff: 27; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 40; Properties: space:

7.7, tables: 2, chairs: 4, fans:1, AC:, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

44

Staff: 28; Dept: COM SC; Cadre: L1; TypeID: C, Allocated to: Room: 47; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: C; Capacity:-

35

Staff: 29; Dept: ICS; Cadre: L1; TypeID: C, Allocated to: Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-45

Staff: 30; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 33; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

44

Staff: 31; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 21; Properties: space: 13.38,

tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-

37

281

Staff: 32; Dept: MASS COM; Cadre: L1; TypeID: C, Allocated to:Room: 8; Properties: space:

13.38, tables: 2, chairs: 1, fans:1, AC:-, cabinet:1, fridge:-, toilet:-, TV:-; TypeID: C;

Capacity:-48

Staff: 33; Dept: LIB; Cadre: L1; TypeID: C, Allocated to: Room: 19; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: -, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-30

Staff: 34; Dept: ICS; Cadre: L2; TypeID: C, Allocated to:Room: 66; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: , TV: ; TypeID: C; Capacity:-33

Staff: 35; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 26; Properties: space:

13.38, tables: 1, chairs: 2, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-49

Staff: 36; Dept: ICS; Cadre: L2; TypeID: C, Allocated to: Room: 38; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-45

Staff: 37; Dept: ICS; Cadre: L2; TypeID: C, Allocated to:Room: 28; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 1, AC: , cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-39

Staff: 38; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 37; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-39

Staff: 39; Dept: TELCOM; Cadre: L2; TypeID: C, Allocated to: Room: 57; Properties: space:

13.38, tables: 1, chairs: 3, fans:1, AC:, cabinet: 2, fridge: , toilet: , TV: ; TypeID: C; Capacity:-

35

Staff: 40; Dept: MASS COM; Cadre: L2; TypeID: C , Allocated to: Room: 8; Properties:

space: 13.38, tables:2, chairs:1, fans:1, AC:-, cabinet:1, fridge:-, toilet:-, TV:-; TypeID: C;

Capacity:-48

Staff: 41; Dept: ICS; Cadre: L2; TypeID: C, Allocated to:Room: 15; Properties: space: 13.38,

tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-36

Staff: 42; Dept: COM SC; Cadre: L2; TypeID: C, Allocated to: Room: 1; Properties: space:

17.69, tables: 2, chairs: 7, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-18

282

Staff: 43; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 6; Properties:

space: 13.38, tables: 1, chairs:1, fans:1, AC:-, cabinet:-, fridge:-, toilet:-, TV:-; TypeID: C;

Capacity:-46

Staff: 44; Dept: MASS COM; Cadre: L2; TypeID: C, Allocated to: Room: 11; Properties:

space: 13.38, tables:2, chairs:4, fans:1, AC:, cabinet:, fridge: -, toilet: -, TV: -; TypeID: C;

Capacity:-44

Staff: 45; Dept: LIB; Cadre: L2; TypeID: C, Allocated to: Room: 30; Properties: space: 13.38,

tables: 1, chairs: 2, fans: 2, AC: -, cabinet: -, fridge: -, toilet: -, TV: -; TypeID: C; Capacity:-42

Staff: 46; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to: Room: 64; Properties:

space: 26.76, tables:2, chairs:5, fans:1, AC:1, cabinet: 2, fridge:, toilet: 1, TV: ; TypeID: A;

Capacity:-48

Staff: 47; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 62; Properties: space:

26.76, tables: 2, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:-39

Staff: 48; Dept: LIB; Cadre: PROF; TypeID: A, Allocated to: Room: 55; Properties: space:

13.38, tables: 1, chairs: 5, fans: 1, AC: 1, cabinet: 1, fridge: , toilet: 1, TV: ; TypeID: A;

Capacity:-41

Staff: 49; Dept: COM SC; Cadre: PROF; TypeID: A, Allocated to:Room:71; Properties:

space: 26.76, tables: 2, chairs: 3, fans: 5, AC: 1, cabinet:1, fridge:, toilet:1, TV:; TypeID:A;

Capacity:-44

Staff: 50; Dept: COM SC; Cadre: READER; TypeID: B, Allocated to: Room:14; Properties:

space: 17.69, tables: 1, chairs: 3, fans: 1, AC:, cabinet:1, fridge:-, toilet:-, TV:-; TypeID: B;

Capacity:-43

Staff: 51; Dept: ICS; Cadre: READER; TypeID: B, Allocated to: Room: 17; Properties: space:

17.69, tables: 1, chairs: 3, fans: 1, AC:, cabinet:1, fridge:-, toilet:-, TV:-; TypeID: B;

Capacity:-36

283

Staff: 52; Dept: TELCOM; Cadre: READER; TypeID: B, Allocated to: Room: 36; Properties:

space:17.69,tables:1,chairs:3,fans:1, AC:1,cabinet:2,fridge:-,toilet:-,TV:-;TypeID:B;Capacity:-

39

Staff: 53; Dept: LIB; Cadre: READER; TypeID: B, Allocated to:Room: 45; Properties: space:

26.76, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 2, fridge: , toilet:, TV:; TypeID:B;Capacity:-

35

Staff: 54; Dept: LIB; Cadre: SL; TypeID: B, Allocated to: Room: 52; Properties: space: 21.08,

tables: 1, chairs: 3, fans: , AC: , cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:-30

Staff: 55; Dept: LIB; Cadre: SL; TypeID: B , Allocated to: Room: 22; Properties: space: 17.69,

tables: 1, chairs: 4, fans: 1, AC: 1, cabinet: 1, fridge: -, toilet: -, TV: -; TypeID: B; Capacity:-

49

Staff:56; Dept:COM SC;Cadre:SL; TypeID: B, Allocated to: Room: 41; Properties:

space:27.69, tables: 2, chairs: 5, fans: 1, AC: , cabinet: 1, fridge: , toilet: , TV: ; TypeID: B;

Capacity:-40

Staff: 57; Dept: COM SC; Cadre: SL;TypeID: B, Allocated to: Room: 27; Properties: space:

13.38, tables:1, chairs:3, fans:1, AC:1, cabinet: 2, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:-43

Staff:58; Dept:MASS COM; Cadre:SL; TypeID: B, Allocated to: Room: 31; Properties:

space: 13.38, tables:1, chairs:3, fans:1, AC:1, cabinet:1, fridge:-, toilet:-, TV:-; TypeID: B;

Capacity:-36

Staff: 59; Dept: MASS COM; Cadre: SL; TypeID: B, Allocated to: Room: 42; Properties:

space: 26.76, tables: 1, chairs: 3, fans: 1, AC: , cabinet: , fridge: , toilet:, TV: ; TypeID: B;

Capacity:-38

Staff: 60; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room:61; Properties: space:

26.76, tables: 2, chairs: 4, fans: 2, AC:, cabinet:1, fridge:, toilet:, TV:; TypeID: B; Capacity:-

29

284

Staff: 61;Dept:COM SC;Cadre:SL; TypeID: B, Allocated to:Room: 51; Properties: space:

26.76, tables: 1, chairs: 3, fans: 1, AC: , cabinet: 1, fridge: , toilet: ,TV: ; TypeID: B;

Capacity:-40

Staff: 62; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 5; Properties: space:

17.85, tables: 2, chairs:4, fans:1, AC: 1, cabinet: 3, fridge: -, toilet: -, TV: -; TypeID: B;

Capacity:-45

Staff: 63;Dept:COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 46; Properties: space:

26.76, tables:1, chairs: 3, fans:1, AC: 1, cabinet: , fridge: , toilet: , TV: ; TypeID: B; Capacity:-

43

Staff: 64; Dept: COM SC; Cadre: SL; TypeID: B, Allocated to: Room: 70; Properties: space:

13.38, tables: 1, chairs: 3, fans:1, AC:1, cabinet:4, fridge:, toilet: , TV: ; TypeID: B; Capacity:-

34

Penalty: 3980

RunTime: 00:11:01.32

Memory Used: 697KB

285

APPENDIX E

286

ROOM

NO

TYPE NO. OF

TYPE

STAFF

 CLOSE BY (1) cadre of

staff

space

capacity

dept table(s) chair(s) fan(s) AC cabinet fridge toilet TV

1 C 2 (c) OR/W 1

(1)

(1) 2,4,5,6,11,12,32,33,34,35,36,37,38,39,40 L1 17.69 LIB 2 7 2 - - - - -

2 C 2 (c) 1 (B) W (2) 1,3,4,5,6,7,8,11,12,14,15,32,33,34,35,36,37,38,39,40 L1 13.38 LIB 1 3 1 - 1 - - -

3 C 1 (c) (3) 4,5,6,7,8,11,12,14,15,2,1,32,33,34,35,36,37,38,39,40 L1 10.35 LIB - - -

4 C 1 (c) (4) 5,6,7,8,11,12,14,15,16,17,1,2,3,40,39,38,37,36,35, SL 10.35 LIB 1 4 2 - 2 - - -

5 B 1 (B) (5) 6,7,8,11,12,14,15,16,17,18,21,4,3,2,1,40,39,38,37,36,35 SL 17.85 LIB 2 4 1 1 3 - - -

6 C 2 (c) OR 1 (B) (6) 7,8,11,12,14,15,16,17,18,21,5,4,3,2,1,40,39,38,37,37,36,35 L2 13.38 LIB 1 1 1 - - - - -

7 C 2 (c) L1 13.38 LIB 1 1 1 - 1 - - -

8 C 2 © L1 13.38 LIB 2 1 1 - 1 - - -

9 C 2 © - 13.38 - - - - - - - - -

10 C 1 © - 7.7 - - -

11 C 2 © OR 1 (B)

W

 2(AL) 13.38 TELCOM 2 4 1 1 - - -

12 C 2 © - 13.38 - - -

13 C 2 © - 13.38 - - - - - - - - -

14 B 1 (B) W (14) 15,16,17,18,21,22,23,24,25,12,11,8,7,6,5,4,3,2,1 SL 17.69 COM SC 1 3 1 1 - - -

15 C 2 © L2 13.38 TELCOM 1 3 1 1 - - -

16 C 1 © (16) 17,18,21,22,23,24,25,12,11,8,7,6,5,4,3,2,1 L1 9.34 TELCOM 1 3 1 - - - -

17 B (17) 18,21,22,23,24,25,16,15,14,12,11,8,7,6,5,4,3,2,1 SL 17.69 COM SC 1 3 1 1 - - -

18 C 1 © (18) 21,22,23,24,25,17,16,15,14,12,11,8,7,6, AL 7.7 MASS

COM

1 4 - - 1 - - -

19 C 2© AL 13.38 MASS

COM

1 2 1 - 1 - - -

20 C 2 © - 13.38 - - - - - - - - -

21 C 2 © SL 13.38 MASS 1 4 1 1 1 - - -

287

COM

22 B 1 (B) SL 17.69 MASS

COM

1 4 1 1 1 - - -

23 C 1 © (23) 24,25,26,27,28,29,30,31,22,21,18,17,16,14, L2 8.56 MASS

COM

1 3 1 2 - - -

24 C 2 © OR 1 (B)

W

(24) 25,26,27,28,29,30,31,23,22,21,18,17,16,15,14 L1 13.38 MASS

COM

1 5 1 1 - - -

25 B 1 (B) - 17.69 - - -

26 C 2 © OR 1 (B)

W

(26) 27,28,29,30,31,32,33,34,35,36,25,24,23,22,21 SL 13.38 COM SC 1 2 1 - - -

27 B 1 (B) (27) 28,29,30,31,32,33,34,35,36,26,25,24,23,22,21 READER 13.38 COM SC 1 3 1 1 2 - - -

28 C 2 © OR 1 (B)

W

(28) 29,30,31,32,33,34,35,36,37,38,27,26,25,24,23,22,21 SL 13.38 COM SC 1 2 1 2 - - -

29 C 2 © OR 1 (B)

W

(29) 30,31,32,33,34,35,36,37,38,28,27,26,25,24,23,22 L1 13.38 COM SC 1 3 1 - 1 - - -

30 C 2 © OR 1 (B)

W

(30) 31,32,33,34,35,36,37,38,29,28,27,26,25,24,23,22 L1 13.38 COM SC 1 2 2 - - - - -

31 B 1 (B) (31) 32,33,34,35,36,37,38,39,40,30,29,28,27,26,25,24,23, SL 13.38 COM SC 1 3 1 1 1 - - -

32 C 2 © OR 1 (B)

W

(32) 33,34,35,36,37,38,39,40,1,31,30,29,28,27,26,25,24 2(AL) 13.72 ICS 2 4 1 1 - - -

33 C 2 © OR 1 (B)

W

(33) 34,35,36,37,38,39,40,1,32,31,30,29,28,27,26 L1 13.38 ICS 1 3 1 1 1 - - -

34 C 1 © (34) 35,36,37,38,39,40,1,2,3,4,5,33,32,31,29,28,27,26 L2 8.56 ICS 1 2 1 1 1 - - -

35 C 2 © READER 13.38 ICS 1 3 1 1 1 - - -

36 B 1 (B) (36) 37,38,39,40,1,2,3,4,5,6,35,34,33,32,31,30,29,28,27,26 SL 17.69 COM SC 1 3 1 1 2 - - -

37 C 2 © OR 1 (B)

W

(37) 38,39,40,1,2,3,4,5,6,7,8,36,35,34,33,32,31,30,29,28,27,26 L2 13.38 COM SC 1 3 1 - - -

288

38 C 2 © OR 1 (B)

W

(38) 39,40,1,2,3,4,5,6,7,8,37,36,35,34,33,32,31 L1 13.38 LIB 1 3 1 2 - - -

39 C 2 © OR 1 (B)

W

(39) 40,1,2,3,4,5,6,7,8,11,12,38,37,36,35,34,33,32,31 GA/L2/AL 13.38 ICS 2 4 1 3 - - -

40 C 1 © (40) 1,2,3,4,5,6,7,8,11,12,39,38,37,366,35,34,33,32,31 AL/GA 7.7 ICS 2 4 1 1 - - -

41 B 1 (B) w (41) 42, ics, c5, 43, 45 2(L2) 27.69 ICS 2 5 1 1

42 B 1 (B) 1 (A) W (42) ICS, CS, 43, 45, 46, 41 AL 26.76 ICS 1 3 1

43 C 2 © 1 (B) (43), 45, 46, 47, Telcomm, Mass comm. 2(AL) 13.38 ICS 2 4 1 2

44 C 2 © - 13.38

45 B 1 (B) or (A) L1 26.76 LIB 1 3 1 2

46 B 1 (B) (46) 47,Telcomm, Mass Comm, 43, 42, 41, CS, ICS READER 26.76 TELCOM 1 3 1 1

47 C 2 © or 1 (B) w (47) 52, 53, 54, 55, 56, 57, 46, 43, 42, 41, CS, ICS AL 13.38 TELCOM 1 2 1

48 C 2 © or 1 (B) w 48 - 13.38

49 B 1 (B) or 1 (A) w 49 - 26.76

50 B 1 (B) or 1 (A) w 50 - 26.76

51 B 1 (B) or 1 (A) w (51), 52, 53, 54, 55, 56, 57, 60 L2 26.76 MASS

COM

1 3 1 1

52 B 1 (B) or 1 (A) w (52), 53,54,55,56,57,60 AL 21.08 MASS

COM

1 3

53 A 1 (A) (53), 54, 55, 56, 57, 60, 61, 52, 51 2(AL), L2 26.76 COM SC 3 8 2 1 1 1

54 C 2 © or 1 (B) w (54),55, 56, 56, 57, 60, 61, 53, 52, 51 L2 13.38 MASS

COM

1 2 1 1

55 A 1 (A) (55) 56, 57, 60, 61, 62, 63, 54, 53 ,52, 51 PROF 13.38 COM SC 1 5 1 1 1 1

56 A 1 (A) (56) 57, 60, 61, 62, 63, 64, 55, 54, 53, 52, 51 - 26.76 ICS

57 C 2 © or 1(B) w

penalty

(57) 60, 61, 62, 63 , 64, 56 ,55, 54, 53, 52, 51 L1 13.38 MASS

COM

1 3 1 2

58 B 1 (B) 58 - 26.76

289

DATA SET FOR FACULTY OF COMMUNICATION AND INFORMATION SCIENCES AS USED BY OSAP

59 C 1 © 59 - 7.7

60 C 2 © or 1(B) w

penalty

(60) 61, 62, 63, 64, 57, 56, 55, 54 2(AL) 13.38 COM SC 2 4 1 2

61 B 1 (B) (61) 62, 63, 64, 65, 60, 57, 56, 55 2(ST) 26.76 2 4 2 1

62 A 1 (A) (62) 63, 64, 61, 60, 57, 56, 55 PROF 26.76 LIB 2 4 1 1 1 1

63 C 2 © or 1(B) w

penalty

(63) 64, 62, 61, 60, 57, 56 L1 13.38 LIB 1 4 2 2

64 A 1 (A) (64) 63, 62, 61, 60, 57, 56 PROF 26.76 LIB 2 5 1 1 2 1

65 C 1© L2 7.7 LIB 1 3 1 1

66 C 2© or 1(B) w READER 13.38 LIB 1 3 1 1 1

67 C 2 © or 1(B) w 13.38

68 C 1 © 7.7

69 B 1 (B) 26.76 COM SC

70 B 1 (B) SL 13.38 COM SC 1 3 1 1 4

71 A 1 (A) PROF 26.76 COM SC 2 3 5 1 1 1

72 B 1 (B) 26.76

73 B 1 (B) 26.76

74 B 1 (B) 26.76

75 B 1 (B) 26.76

76 B 1 (B) 26.76

77 B 1 (B) 26.76

78 C 2 © or 1(B) w 13.38

79 B 1 (B) 26.76

80 C 2 © 13.38

81 A 1 (A) 40.14

290

