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ABSTRACT 

Climate change distorts agricultural production and impacts negatively on the welfare of 

farming households in Nigeria. The climate-smart adaptation (CSA) strategies have the 

potential to mitigate the effects of climate change while preserving the natural resource-

base. However, there is limited empirical knowledge on the impacts of usage of such 

strategies on the productivity and welfare of farmers. The study assessed the productivity 

and welfare effects of CSA practices on crop farming households in the savanna region 

of Nigeria. Theobjectives of the study were to: (i) identify crop specific CSA strategies; 

(ii) examine the factors that influence the choice of CSA strategies; (iii) assess the 

determinants of the use intensity of CSA; (iv) determine the productivity and welfare 

effects of the usage of CSA strategies; and (v) identify the constraints to the use of CSA 

strategies. 

A structured questionnaire was used to collect data for the study through a three-stage 

sampling technique involving the selection of 391 households from 33 Enumeration 

Areas (EAs) constituting about 6% of the rural-based EAs in Benue and Niger States. 

Descriptive statistics, tetrachoric correlation, multivariate probit regression, Ordinary 

Least Square (OLS) regression, heterogenous treatment effects (HTE), conditional 

recursive mixed process (CMP) for sequential joint estimations, and Garrett ranking 

score were used to analyse the data at 5% level of significance. 

The findings of the study were that: 

i. crop rotation and intercropping with legumes, green manure, and farmyard 

manure were the common CSA strategies used in the production of cereals, 

pulses as well as roots and tubers. In addition, minimum tillage and improved 

varieties of seeds were used for cereals; 

ii. tetrachoric correlation coefficients showed that 80% of the pairs of CSA 

strategies have between 17 and 74% relationships in the simultaneity of 

usage; 

iii. farmer’s age and education, group membership, credit constraint, risk 

perception, risk experience and household perception of effectiveness of 

strategiesare factors that influence the choice of the CSA strategies; 

iv. usage of the CSA strategies reduced with age of the farmers, but increased 

with farm size, soil fertility perception, market distance, number of livestock 

owned, and years of continuous use of farm;  

v. usage of fertilizer deep placement and cover cropping increased the yields of 

cerealsby 65% and 31% respectively, while improved crop varieties as well 

as crop rotation with legumes increased yield of pulses by 43%and 63% 

respectively. Mulching increased yield of roots and tubers by 43%;  

vi. Based on CMP estimate, a percentage increase in yields of cereals, pulses, 

and roots and tubers improved household welfare by 340%, 1.15% and 0.43% 

respectively; and  

vii. the use of CSA strategies is constrained by the initial establishment and 

labour costs, farm tenure security status,and market distance to purchase of 

relevant CSA inputs. 

The study concluded that CSA strategies had positive impacts on crop productivity and 

household welfare. The study recommended the use of farmer groups as platform for 

promotion of the use of CSA and provision of on-lending facilities for farmers. 
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CHAPTER ONE 

INTRODUCTION 

1.1.Background to the Study 

Poverty and climate change are two daunting challenges facing households in developing 

countries. While poverty, a manifestation of human deprivation, is attributable to several 

factors including social, economic, political, individual, community and historical factors 

(Leichenko &Silva, 2014), it is often exacerbated by increased climate variability and 

change.Like many other developing countries, Nigeria is contending with high levels of 

poverty alongside increasing negative effects of climate variability and change.  Reports 

on Nigeria by the United Nations Development Programme (UNDP-MDGs, 2013), the 

World Bank (2014) and the British risk consultancy, Maplecroft Report (2013; 2015), 

have shown that the country is faced by these twin challenges of poverty and climate 

change. The World Bank (2014) and the UNDP-MDGs Report (2013) show that the per 

capita poverty rate in Nigeria remained staggeringly high at about 62% in 2009/2010, 

just about 2% lower than the 2003/2004 figure. Similarly, Corral Rodas, Molini, 

andOseni (2019) indicates that around 60% of the Nigeria population live below the 

established poverty line of $2 per capita per day as at 2012/2013. More recently, Nigeria 

has the highestnumber of extreme, growing by six people every minute in 2018 (Kharas, 

Hamel & Hofer, 2018). Also, Ojewale andAppiah-Nyamekye (2018) argue that about 

half of Nigeria population live in poverty. The Oxford Poverty & Human Development 

Initiative and UNDP Report (2019)indicates that multidimensional poverty incidence and 

intensity in Nigeria is 51.4% and 56.6% respectively. These figures are indications that 

poverty is still a serious developmental problem in Nigeria. It makes households highly 

vulnerable to shocks, particularly those associated with changes in climate variables 

(Winsemius, Jongman, Veldkamp, Hallegatte, Bangalore & Ward, 2015).  

With respect to climate change, Nigeria ranks sixth among 193 most vulnerable countries 

on the 2013 climate change effect index report (Maplecroft Report, 2013). This situation 

has worsened in recent times as Nigeria ranks fourth out of 32 extreme risk countries in 

the Maplecroft’s Climate Change Vulnerability Index Report (2015). The vulnerability 

of Nigeria to shocks, especially to those that are related to climate change is due to the 

country’s tropical geographical location and long coastline, the dependence of its 

economy on agriculture, and households’ poor capacity to adapt to climate change 
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(Tambo & Abdoulaye, 2012). Maplecroft Report (2015) indicates that countries 

vulnerable to climate change depend heavily on agriculture; and according to the World 

Bank General Household Survey Report (2016), “agriculture is the most prevalent 

income-generating activity in many Nigerian households”. This, therefore, makes rural 

livelihoods highly vulnerable to climate change. Changing weather patterns in the forms 

of changesin temperature and rainfall patterns, and variations in frequency and intensity 

of climatic events such as floods and droughts are already impacting poverty, migration, 

social stability and food production, especially cereal production including rice, wheat, 

sorghum, and maize (McCarthy &Brubaker, 2014; Maplecroft Report, 2015; Khatri-

Chhetri, Aggarwal, Joshi, & Vyas, 2017). 

According to Khatri-Chhetri et al.(2017), climate change distorts agricultural production 

through changes in the suitability of crops cultivated and agricultural biodiversity. It also 

leads to a decrease in input use efficiency, and increased incidenceof pests and diseases. 

Further to these changes in agro-ecological conditions, climate change impacts on 

economics of food production by influencing income generation and distribution, and 

how agricultural produce are demanded (Schmidhuber &Tubiello, 2007). These impacts 

are however higher among the rural households, threatening their farm productivity and 

welfare. The poor are mostly located in the rural areas with less developed markets 

(Kapoor &Ojha, 2006) and are typically dependent on climate-sensitive, rainfed 

agriculture as a major source of livelihood, hence, they are more exposedto climate 

change-related shocks (Abdelhak, Sulaiman & Mohd, 2012; Below, Mutabazi, Kirschke, 

Franke, Sieber, Siebert, & Tscherning, 2012; Tesso, Emana & Ketema, 2012).  

Coping with the outcomesof climate change requires farmers to adopt strategies that use 

inputs efficiently, preserve the natural resource base, sustainably increase farm 

productivity while ameliorating the effects of climate change through resilience to risks, 

shocks and climate variability; and consequently, improving household welfare status. 

Agricultural production systems that integrate such strategies are known as climate-smart 

agriculture (CSA). Characteristically, climate-smart agriculture is built on three pillars: 

sustainable increase in farm productivity, enhanced resilience of agricultural and food 

security ecosystems to climate change at various levels, and reduced greenhouse gas 

emissions (Behnassi, Boussaid, & Gopichandran, 2014; Khatri-Chhetri et al., 2017; 

Rioux, Gomez San Juan, Neely, Seeberg-Elverfeldt, Karttunen, Rosenstock, Kirui, 

Massoro, Mpanda, Kimaro, Masoud, Mutoko, Mutabazi, Kuehne, Poultouchidou, 



3 
 

Avagyan, Tapio-Bistrom, & Bernoux,, 2016; Shirsath, Aggarwal, Thornton, & Dunnett, 

2017). Strategies capable of achieving these pillars either wholly or partly are therefore, 

known as; climate-smart agriculture strategies.  

And as Douxchamps, Van Wijk,Silvestri, Moussa, Quiros, Ndour, ...& Ouedraogo(2016) 

noted, most of the climate-smart agriculture strategies have been in existence and would 

continue to evolve from traditional/indigenous practices. The literature of (Magombo, 

Kanthiti, Phiri, Kachulu, & Kabuli, 2012;Yegbemey, Yabi, Tovignan, Gantoli, & 

Kokoye, 2013; Barnard, Manyire, Tambi &Bangali, 2015; Khatri-Chhetri et al., 2017) 

have identified various water, nutrient, energy, carbon, and knowledge-based climate-

smart adaptation strategies usedby farmers to respond to climate change variability. 

These include the use of new and improved crop varieties, irrigation, crop 

diversification, changeof planting dates for crops, livelihood diversification (especially 

from farm to non-farm activities), water and soil conservation techniques, tree planting, 

mulching, composting, intercropping, improved animal feeding, and climate-risk 

insurance among others.  

Adopting theforegoing identified strategies means that; households will benefit from 

increased farm productivity and cash income, and consequently, household welfare 

status will improve. However, the extent to which these benefits will accrue to the 

household depends on various conditions, including the types of climate-smart 

technologies adopted and the intensity of adoption. It is therefore argued that,theuseof 

CSA strategies will increase farm productivity and welfare of arable crop farmers.It will 

also depend on crop types and the intensity of the use of these strategies, with a higher 

intensity able to drive higher farm productivity and household welfare. 

1.2.Statement of theProblem 

Climate change poses a serious threat to agricultural development, household welfare, 

food and nutrition security outcomes and poverty reduction in Nigeria, where around 

70% of its active population are engagedin agriculture for their livelihood. However, 

several policies to address the impacts of climate change in Nigeriacontinue to emerge. 

In 2013, for instance, the Nigerian government developed its National Agricultural 

Resilience Framework (NARF) document. This was towards the implementation of 

climate-smart agriculture that is based on “innovative agricultural production strategies 

and risk management mechanisms” and bothare aimed at promoting resilience in the 
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agriculture sector. Similarly, the 2016 Nigeria agriculture policy roadmap (the 

Agriculture Promotion Policy) shows a renewed thrust “towards the promotion of 

climate-smart agriculture in Nigeria”. This is also aimed at boosting farmers’ 

productivity and increased agricultural earnings.  

On the research front, there are several empirical evidences of the impact of climate 

change on agriculture at various levels (Wood, Jina, Jain, Kristjanson, & DeFries,2014). 

Also, research evidences (Oparinde & Hodge, 2011; Nzeadibe, Egbule, Chukwuone, 

Agwu, & Agu, 2012; Ofuoku & Agbamu, 2012; Tambo &Abdoulaye, 2012; Arimi, 

2014) show that rural households adopt several strategies to cushion the effects of 

climate change and other shocks. In their case study on “State of knowledge on climate-

smart agriculture in Africa; Nigeria, Cameroon and Democratic Republic of Congo”, 

Nwajiuba, Emmanuel & Bangali (2015) identified and recommended for scale-up of 

several agroecology-specific but crop-generic agricultural practices in Nigeria that 

qualify as climate-smart adaptation practices.  

Despite the aforementioned policy and research outputs,knowledgebase is still thin on 

climate-smart adaptation strategies on several fronts. Of interest are those related to crop 

specific, intensity of usage, and effectiveness of these strategies in relation to farm 

productivity and the type of climate risks farmers face, in Nigeria. There seems to be 

limited information about the types of climate-smart adaptation strategies that 

smallholder staple farmers use, vis-à-vis the crops produced. Such information is critical 

for both farmers and policymakers for crop targeting, since the use of wrong strategies 

would have negative cost, yield and welfare implications for the farmer.  

Similarly, variations in quantity and method of use (solely or combinations) of climate-

smart adaptation strategies could have varying production implications. In the production 

of a given staple cropfor instance, the use of multiple strategies is likely to be more 

productive when compared with the use of single strategy. Staple crop yield under 

improved crop varieties, proper manure application, and efficient irrigation system is 

more likely to be higher than under single strategy application. It, therefore, implies that 

strategies or interventions which recognize and incorporate these variations are more 

likely to be effective for climate change management, yield and welfare improvement 

among smallholder staple farmers. However, empirical results quantifying these 

variations to guide farmers’ decisions seem non-existent.  
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Though several climate-smart adaptation strategies abound, the level of adoption by 

farmers seems low and unstable. This may not be unconnected with constraints 

associated with technology adoption. Where these strategies are used, choices vary by 

farmer and crop. The knowledge about what drives farmers’ usage of climate change 

adaptation strategies across available farmlandis limited. Poor understanding of these 

underlying factors, particularly farmers’ motivations or goals, which determine these 

choices and the extent of use of these strategies by farmers can hamper the design of 

appropriate interventions to increase farm productivity and consequently, household 

welfare outcomes.  

Findings in literature indicate that the use of climate-smart strategies among farmers is 

not new. However, empirical evidences of the impacts of these strategies on farm 

productivity and how this translates to improve farmer welfare remain scanty.  

Against the foregoing background, this study answers the following research questions: 

i. What type of climate-smart adaptation strategies do staple crop farmers use vis-à-vis 

the type of crops produced? 

ii. What factors are responsible for the choices of climate-smart adaptation strategies 

used by staple crop farmers? 

iii. What factors determine the use intensity of climate-smart strategies by farmers and 

the crops produced?  

iv. How does the use intensity of climate-smart adaptation strategies affect farmers’ 

welfare level via impacts on crop productivity? 

v. What constraints limit the use of available climate-smart adaptation strategies by 

farmers in the study area? 

1.3.Objectives of the Study 

The broad objective of this study is to examine how farm productivity and welfare of 

smallholder staple crop farmers in Savanna Agro-Ecological Zone of Nigeria vary with 

the heterogeneity of climate-smart adaptation strategies adopted. 

Specifically, the study objectives are to: 

i. describe the types of climate-smart adaptation (CSA)strategiesused by 

farmers vis-à-vis staple crops produced; 

ii. examine the factors influencing the choice(s) of CSA strategies of small-

holder arable crop farming households;  
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iii. analyse the determinants of use intensity of CSA strategies among staple crop 

farmers;   

iv. determine the productivity and welfare effects of usage of CSA strategies; 

and 

v. identify constraints on the use of CSA strategies among smallholder staple 

crop farmers in the study area. 

1.4.Justification for the Study 

Climate-smart agriculture is identified as a means towards achieving sustainable 

agricultural production, and improving household food and nutrition security outcomes, 

particularly under a changing climate. Currently, there is renewed interest in the 

promotion of climate-smart strategies by both government and international agencies 

with the aim of reducing poverty, increasing household resilience, and engendering 

economic prosperity. Therefore, information to guide government and international 

organizations in developing and implementing policies towards climate-smart agriculture 

in Nigeria is important. Findings from this study will provide such valuable information. 

In addition, understanding the productivity and welfare effects of farmers’ adaptation 

practices could provide stakeholders with the needed incentive to spur the adoption of 

adaptation strategies that can increase household farm productivity, profitability, and 

resilience in the most cost-effective (economic and environmental) ways. For instance, 

providing generic adaptation options to farmers may not usually be cost-effective and 

sustainable; and could hamper government and donor organizations’ efforts towards a 

hunger-free society. Findings of this study will be useful in this regard by providing 

tailored adaptation strategies, that are capable of increasing farm productivity alongside 

environmental benefits. 

This study adds to the limited knowledgebase on climate change adaptation and welfare. 

It adopts a more comprehensive view of poverty that is likely to be more informative of 

the experience of rural smallholders in many developing countries like Nigeria. It adopts 

a multidimensional approach to poverty which considers poverty to extend beyond 

income and expenditure which are the focus of traditional measures of poverty 

(Okunmadewa, Olaniyan, Yusuf, Bankole, Oyeranti, Omonona, Awoyemi & Olayiwola, 

2005; Adetola&Olufemi, 2012). Using a multi-dimensional poverty measure will inform 

how various socio-economic units suffering from deprivations other than income make 
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adaptation decisions. It will also encourage targeting of development interventions to 

aim at promoting resilient livelihood systems.  

Further, this is one of the few studies that specifically addresses households’ motivations 

in response to adaptation to climate change in Nigeria. Though several studies have 

analyzed household responses to climate change adaptation, there is very little 

information, at least in Nigeria that have addressed the motivations behind adaptation 

strategy usage among rural households. Motivation has been identified as a critical factor 

that explains why some individuals show adaptive behaviour while others do not 

(Grothmann &Patt, 2005; Patt &Schröter, 2008; Frank, Eakin &Lopez-Carr, 2011). 

Literature has identified four motivation perceptual processes – climate risk perception, 

perception of adaptive capacity, risk experience, and social identity – to explain 

individual adaptive behaviour. Empirical adaptation studies have often used one or two 

of these alternative motives to explain adaptive behaviours. For instance, Frank et al. 

(2011) used scenario analysis to evaluate risk perception and social identity effects on 

adaptive behaviour. In their work, Grothmann and Patt (2005) developed a socio-

cognitive model to understand private proactive adaptation to climate change, including 

risk perception and adaptive capacity to explain adaptation. However, these perceptual 

processes are not mutually exclusive when households make adaptation decision. Hence, 

this work constructed and empirically tested a model that contains these processes with a 

view to understanding the contributionof this variable in climate-smart adaptation 

decision and consequently, the welfare of households. 

Further, the choice of the savanna agro-ecological region of Nigeria as the study area is 

premised on fact that it covers the largest geographical area in Nigeria, with most people 

engaged in rain-fed farming. This makes the zone and its people especially, vulnerable to 

climate change. Generally, the zone is noted for intense staple crop production under 

inter-annual rainfall variability (Odekunle, Orinmoogunje, & Ayanlade, 2007), and the 

probabilities of adaptation to climate-related vagaries is high. In view of the importance 

of staple crops in rural household welfare, understanding crop specific and intensity of 

use of climate-smart adaptation strategies in addition to their productivity effects, 

remains of great interest to both researchers and policymakers. 

1.5.Plan of the Study 

The remaining part of this thesiscomprises chapter two, the conceptual and analytical 

frameworks in addition to the review of relevant empirical literature on climate change, 
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climate-smart strategies, farm input intensification and productivity. In addition, 

multidimensional poverty index isdiscussed. The methodology for the study is presented 

in chapter three and includes description of the study area, sampling procedure, and the 

analytical techniquesemployed for each of the objectives. In chapter four, the results 

based on the stated objectives of the study are presented and discussed. Chapter five 

presents the summary, main conclusions, and policy recommendations as well as 

suggestions on areas for further study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Concepts of climate change and climate-smart adaptation 

This section focuses on the review of the concepts of climate change and climate-smart 

adaptation as they relate to farm productivity and household welfare. 

Climate change resulting from both anthropogenic and natural climate cycle activities 

alters rainfall pattern (intensity and duration) and temperature levels causing increased 

intensity of such natural hazards as storms, floods and droughts. Several studies 

including Enete et al. (2011), Arimi (2014), Asafu-Adjaye (2014), Barnard et al. (2015) 

and Sanogo, Binam, Bayala, Villamor, Kalinganire and Dodiomon(2017)have identified 

climate change as a major threat to human socio-economic and environmental 

development, particularly in developing economies. According to Asafu-Adjaye (2014), 

and Abidoye and Odusola (2015), the economic landscape of most African countries 

exposes them to the vagaries of climate. These studies premised that the vulnerable 

countries in Africa have a significant proportion of their population employed in 

agriculture, water and forestry which are climate-sensitive; and account for the largest 

number of the world’s poor, who have weak climate change adaptive capacity. For 

instance, developing countries including Nigeria are adjudged to be at risk of climate 

change (Ayanlade, Odekunle & Orimoogunje, 2010; Tambo &Abdoulaye, 2012; 

Nwajiuba et al., 2015; Ayanlade, Radeny & Morton, 2017). In 2011, Nigeria is one of 

the five countries in the world where about 60% of the world poor live (UNDP-MDG 

Report, 2015). Its agriculture is mostly rain-fed and spatial analysis show that, the share 

of the poor remains higher in the rural than the urban areas (Nwalieji &Uzuegbunam, 

2012; World Bank, 2014). These characteristics indicate that, changes in climate 

variables drastically affects ecosystem services, human health, water supply, agricultural 

production and productivity, market dynamics, and by extension, the socio-economic 

status of the rural dwellers,particularly in Nigeria.  

Studies across sub-Sahara Africa have identified and assessedthe effect of climate 

change on agriculture using various approaches. For instance, a process-based crop 

model at a West Africa regional scale indicates that,without agricultural intensification 

for climate adaptation, crop yield in the long-term would significantly decrease and show 

inter-annual variability. This is because of increasedvariability in inter-annual growing 
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season temperature and/or precipitation in future climate scenarios (Ahmed, Wang, Yu, 

Koo &You, 2015). Nwalieji and Uzuegbunam (2012) in their study of impact of “effect 

of climate change on rice production in Anambra State, Nigeria” analysed the perception 

of 100 rice-based rural farmers and identified the impact of climate change to 

include,“reduction in crop yield, reduction in grain quality, destruction of farm land by 

flood, food unavailability, instability, inaccessibility and poor utilization, incident of 

pests and diseases, surge of infectious diseases such as malaria, cholera on farmers, 

decrease in soil fertility, incidence of droughts in rice field, and high incidence of weed”. 

A perception study of 400 farmers from southern Mali on the effects of climate change 

on ecosystem services of parklands shows that climate change in the forms of reduced 

rainfall (drought) and excessive wind impacts negatively, the ecosystem service delivery, 

particularly, the yield of trees (Sanogoet al., 2017). Furthermore, Asante, Acheampong, 

Kyereh and Kyereh (2017) explore the manifestations of climate impacts among cocoa 

farmers in Ghana and show that climate change has increased incidence of pests and 

diseases, wilting of cocoa leaves, high mortality of cocoa seedlings with impacts on farm 

expansion and rehabilitation, and wilting of young cocoa pods resulting in low yield. On 

the economic impacts of climate change on 1000 rural households in Ethiopia using a 

Ricardian approach, a time-dependent negative effects of cropping season rainfall and 

temperature on net revenue was also found (Deressa &Hassan, 2009).  

Regardless of the approach used, the consensus remains that climate change has strongly 

affected agriculture, and invariably, the livelihood outcomes of farmers. Adaptation is 

considered one of the options for reducing the negative impacts of climate change, 

particularly on agriculture (Watson, 2001; Adger,Huq, Brown, Conway, & Hulme, 2003; 

Smit &Wandel, 2006; Adger, Agrawala, Mirza, Conde, O’Brien, Pulhin, Pulwarty, Smit 

& Takahashi, 2007; Esham &Garforth, 2013; Tambo &Abdoulaye, 2012). This is 

because adaptation strategies have the potential to modify and ease the consequencesof 

climate change (Smit et al., 1999) while complementing climate change mitigation 

efforts to achieve the sustainable development goals (SDGs) (Watson, 2001). According 

to these scholars, the term adaptation has several dimensions ranging from 

ecology/environmental to social science/human dimension, but with the common 

denominator that adaptation is response-based. Accordingly, Smit, Burton, Klein 

andStreet, (1999) defined adaptation as “adjustments in ecological-social-economic 

systems in response to actual or expected climatic stimuli, their effects or impacts”. 
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Similarly, Smit and Wandel (2006) describe adaptation as a “process, action or outcome 

in a system (household, community, group, sector, region, country) in order for the 

system to better cope with, manage or adjust to some changing condition, stress, hazard, 

risk or opportunity”. In their work, Adger et al. (2007) refer to adaptation as “actual 

adjustments, or changes in decision environments, which might ultimately enhance 

resilience or reduce vulnerability to observed or expected change in climate”. In climate 

change adaptation context, Smit et al. (1999) defined adaptation to climate change 

variability as “the process by which stakeholders make adjustments aimed at reducing 

the actual and expected adverse effects of climate on their livelihood”. This nature of 

conceptualization of adaptation allows for a better understanding of the pathway through 

which households and communities use their adaptive capacities and various assets 

toreduce adverse impacts of climate change and variability on food systems and 

livelihoods (Antwi-Agyei et al., 2014).  

Variability in the frequency and magnitude of occurrence of climate variables is an age-

long phenomenon with farmers continuously adapting to the changes through several 

strategies (Tambo and Abdoulaye, 2012). Some of these strategies have been identified 

in several studies (Farauta, Egbule, Idrisa, & Agu, 2011; Magombo et al., 2012; Tambo 

& Abdoulaye, 2012; Baez et al., 2013; Falaki,Ajayi,Akangbe, & Akande 2013; 

Yegbemey et al., 2013; Jost,Kyazze, Naab, Neelormi, Kinyangi, Zougmore,  Aggarwal, 

Bhatta, Chaudhury, Tapio-Bistrom, Nelson, & Kristjanson,2016) toinclude; planting of 

trees to provide windbreaks and shades for livestock and crops, adjusting dates for land 

preparation, planting and harvesting, crop diversification, mulching, planting drought 

tolerant and early maturing crop varieties, using several cropping methods (mixed, relay, 

intercropping), adopting water conservation practices, changing from farming to non-

farming activities, migration to avoid floods or drought; and insuring against weather-

related asset losses. Others are small-scale irrigation farming, application of organic 

manure, inter and intra-household’s transfers, consumption smoothing, and reduction in 

social capital investment. These strategies are usually not taken to combat the immediate 

or short-term negative impacts of climate variability but are long-term strategies that are 

forward-looking (Antwi-Agyei et al., 2014).  

In addition to contributing to reduced vulnerability of farmers to the consequencesof 

climate change, each of these strategies has varying degrees of contribution to costs (or 

negative externalities) of the users. For instance, improper irrigation practices have the 
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potential of impacting negatively on the environment through depletion of ground and 

surface waters and improper application of fertilisers havenegative consequences on the 

environment even while increasing crop yield. Similarly, the reduction in social capital 

investment such as pulling of children out from school as climate change adaptation 

strategy portends socio-economic danger to human capital development. This follows 

that climate change responses alsohave negative consequences for food security and 

measures taken to increase food security can as well exacerbate climate change (CCAFS, 

2009). It is, therefore, crucial for farmers to adopt adaptation strategies that are 

environmentally friendly, sustainable, and economically viablewhile helping households 

and communities adapt to the impact of climate change within their locality (Sekaleli & 

Sebusi, 2013). The concept of climate-smart agriculture (CSA) provides a framework to 

describe types of adaptation strategies. 

Lipper, Mann, Meybeck and Sessa (2010) defined climate-smart agriculture (CSA) as 

“agriculture that sustainably increases productivity, enhances resilience (adaptation), 

reduces/removes greenhouse gases (GHGs) (mitigation) where possible, and enhances 

achievement of national food security and development goals”. Again, Gibbon (2012) 

considers CSA as an “ecosystem farming approach characterized by minimal disturbance 

of natural environment, plant nutrition from organic and non-organic sources, and the 

use of both natural and managed biodiversity to produce food, raw materials and other 

ecosystem services”. This farming system provides for improved farmland health and 

encourages the regeneration of already degraded soils, while ensuring that the pillars of 

climate-smart agriculture are achieved. Ideally, CSA aims at achieving these multi-

objective functions/goals simultaneously. However, Notenbaert, Pfeifer, Silvestri, & 

Herrero (2017) argued that this is rarely possible but that trade-offs between various 

goals can be observed.  Following this, adaptation options that aim to achieve any of the 

pillars (sustainable increase in productivity, resilience enhancement, reduction in 

greenhouse gases) of climate-smart agriculture are known as climate-smart adaptation 

strategies (Khatri-Chhetri, et al., 2017). These strategies are often location-or-context 

specific (Asfaw, Di Battista, & Lipper, 2016) and their implementation involves the 

integration of both traditional and innovative farm strategies that are capable of 

increasing productivity, efficiency, resilience, and mitigation potentials of the farm 

(Khatri-Chhetri et al., 2017).  
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Many agricultural practices and technologies used by farmers or promoted by national 

governments in Africa in response to climate change threats often qualify as climate-

smart adaption strategies (Nwajiubaet al., 2015). There is vast literature on the different 

climate-smart adaptation strategies, which Khatri-Chhetri et al. (2017) grouped as water, 

energy, nutrient, carbon, weather, and knowledge-smart technologies. Water-smart 

technologies are those with the goal of promoting water-use efficiency by addressing 

variability in rainfall patterns, managing water quality and water-related erosion and 

degradation. They include improved rainwater harvesting and retention technologies 

(Behnassi et al., 2014), precision irrigation and laser-assisted land-levelling (Gill, 2014), 

cover crops method (Khatri-Chhetri et al., 2017). Technologies that are considered 

energy-smart are those that ensure minimum soil disturbance like the zero or minimum 

tillage, direct sowing, permanent vegetative cover and crop rotation practices (Arslan, 

Jian, Lipper, & Tuong, 2014). Although zero tillage is noted to change the distribution of 

carbon in the soil profile significantly (Luo, Wang & Sun, 2010), reduce soil erosion and 

compaction, conserve soil moisture and provide a good habitat for soil fauna which build 

soil porosity and structure (Palombi & Sessa, 2013). Gattinger, Jawtusch, Müller and 

Mäder (2011) argue that it could lead to reduced or no-yield outcome, increased use of 

herbicide and poor contribution to carbon sequestration particularly in developing 

countries. This is because of its low ability to significantly contribute to soil organic 

carbon when compared with the conventional tillage practices (Luo et al., 2010; 

Martinsen, Shitumbanuma, Mulder, Ritz & Cornelissen, 2017). However, it contributes 

to a higher carbon sequestration, increased soil moisture and sustainable crop yield when 

combined with increased cropping frequency, residue retention, permanent crop cover, 

and elimination of agrochemicals (Witt et al., 2000; Luo et al., 2010; Palombi & Sessa, 

2013; Khatri-Chhetri, et al., 2017). This implies that benefits of zero or minimum tillage 

as energy-smart agricultural practice is heterogeneous. Crop rotation is “the practice of 

alternating the crops planted on land, ideally incorporating nitrogen-fixing plants in the 

crop cycle to increase soil fertility” (McCarthy & Brubaker, 2014). It is considered very 

effective for achieving controlled weed and soil-borne diseases (Al-Kaisi & Kwaw-

Mensah, 2016) and higher crop yields and reduced production risks (Azevedo, Landivar, 

Vieira & Moseley, 1999; Nel & Loubser, 2004), and increased resilience to crop 

production under climate variability and change (Debaeke, Pellerin & Scopel, 2017). 
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Furthermore, intercropping with legumes, green manuring, composting, and leaf colour 

chart are considered very effective nutrient-smart farming technologies under climate 

change (Palombi & Sessa, 2013; Arslan, McCarthy, Lipper, Asfaw, Cattaneo & Kokwe, 

2015; Khatri-Chhetri, et al., 2017). Intercropping with legumes, a cropping pattern that 

involves the cultivation of at least one legume crop with other crop genotypes together, 

in time and space, is a practice that controls insect vectors and weed (Gibbon, 2012), 

increases soil carbon sequestration (Steenwerth, Hodson, Bloom, Carter, Cattaneo, 

Chartres,…Jackson, 2014), improves soil health and saves labour demand (Nyasimi, 

Amwata, Hove, Kinyangi & Wamukoya, 2014), and allows farmers to maximize 

productivity per land area using only few external inputs (Himanen, Mäkinen, Rimhanen 

& Savikko, 2016). The useof compost particularly farm compost made of wood chips 

and bark, organic manure, straw, crop residues, mowed grass and soil contributes to 

increased soil organic carbon content, micro and macro-fauna population and crop yield 

in a sustainable manner (D’Hose,Cougnon, De Vliegher, Van Bockstaele, & Reheul, 

2012). On its part, green manuring plays significantadaptation and mitigation 

rolesinclimate change and crop productivity by improving soil moisture content, 

reducing water stress during dry season, improving soil physical and chemical 

characteristics, reducing nitrogen fertilizer needs, by fixing atmospheric nitrogen, and 

consequently, improving farm productivity.  

The carbon-smart climate change adaptation strategies constitute several options that 

facilitate carbon sink. Notably, options such as integrated pest management and 

sustainable land use management strategies like agroforestry and crop-livestock 

integration, fall into this category. According to FAO (2012), integrated pest 

management (IPM) is an “ecosystem approach to crop production and protection that 

combines different management strategies and practices to grow healthy crops and 

minimize the use of pesticides”. Gan, Liang, Chai, Lemke, Campbell, andZentner (2014) 

and FAO (2015) indicate that pesticides generate greenhouse gases (GHG) throughout 

their value chain: manufacturing, transportation and application. For instance, Heimpel, 

Yang, Hill, andRagsdale (2013) estimated the release into the environment of between 6 

– 40 million of CO2 equivalent GHGs because of pesticides used to treat soybean aphid 

infestation in the United States of America within a decade. However, the study 

concluded that the use of biological control (a component of IPM) to check soybean 

aphid infestation can reduce the annual GHG emission by about 200 million Kg of CO2 
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equivalent. Similarly, replacing chemical control with improved farm practices in wheat 

production reduces GHG emission by 256 kg CO2 equivalent per hectare per year (Gan et 

al., 2014). These highlight the potentials of integrated pest management (IPM) in climate 

change adaptation and mitigation. It is considered a means to sustainably increase 

agricultural productivity in Africa under reduced pesticide use (Hoeschle-Zeledon, 

Neuenschwander & Kumar, 2013) 

Sustainable land use management practices including agroforestry and crop-livestock 

integration have been predicted to contribute significantly to climate change adaptation 

and mitigation goals, particularly those that increase soil organic carbon content (Pender, 

Ringler, Magalhaes, & Place, 2012). For instance, agroforestry, the deliberate cultivation 

of woody perennials and annual crops on agricultural land (Gibbon, 2012), is a climate-

smart practice useful in smallholder agricultural production in many agroecological 

zones in Africa (Neufeldt, Kristjanson, Thorlakson, Gassner, Norton-Griffiths, Place, & 

Langford, 2011; Mbow, Smith, Skole, Duguma & Bustamante, 2014). As a good 

substitute for the slash-and-burn system prevalent in most developing countries, its 

potentials lie in the ability to increase climate resilience of agricultural production to 

such weather events such as; flooding, drought, and pest/disease, and to decrease GHG 

emissions (Palombi & Sessa, 2013). The benefits of agroforestry also includes; 

improvement of soil fertility, enhancement of local climate conditions, contribution to 

ecosystem services, reduction of human impacts on natural forests, promotion of carbon 

sequestration, improvement of agricultural productivity, and reduction in yield variability 

(Mbow et al., 2014; Sanogo et al., 2017). According to World Bank (2012) and Khatri-

Chhetri et al. (2017), those interventions such as livelihood diversification, crop and 

weather index insurance whichprovide income security and weather advisories to farmers 

constitute weather-smart strategies. The knowledge-smart technologies are those that 

combine science and local knowledge to combat the impacts of climate change. They 

include the use of improved crop varieties tolerant to weather extremes like drought, 

flood, heat and cold stresses, and input-intensification such as the use of urea deep 

placement technology. 

2.2. Theoretical and conceptual frameworks 

In this section, the maximum utility theory as it relates to agricultural household’s 

decision-making processes is discussed. This theory highlights the behaviours of farming 

households towards the use of production inputs. Furthermore, the linkages between 
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farmers’ adaptation decisions and the outcomes of the decisions are illustrated under the 

conceptual framework sub-section (Fig. 1), and the need to account for the influence of 

farmers’ decisions on production outcomes was identified and discussed. 

Generally, farmers either purchase or provide their production inputs and produce for 

sale or for own consumption. Therefore, agricultural households would make separate or 

joint decisions on these activities particularly as they relate to their well-being. The 

agricultural household model provides the theoretical framework to assess the 

behaviours of farming households towards production, consumption, and labour 

allocation decisions. As Findeis, Swaminathan & Jayaraman (2003) argue, the core of 

this model is that household’s decisions are not separable, including production and 

consumption decisions particularly under the existence of imperfect market and risks 

situations prevalent in developing countries. Hence, household decisions involving 

production and consumption need to be jointly or simultaneously determined either 

through the reduced-form or systems approach since farm enterprise activities contribute 

to household income, and therefore affect household consumption (Singh, Squire & 

Strauss, 1986; Findeis et al., 2003). However, Singh, et al. (1986) opined that under the 

situation where income is the main linkage between the household’s production and 

consumption activities, the production activities can be analyzed separately from the 

consumption activities: production as a profit maximizing activity and consumption as 

utility maximisingcomponent, following the assumption that the household is a price 

taker for every commodity, including family labour, which is both consumed and 

produced, and that commodities are homogenous. Furthermore, Singh et al. (1986) noted 

that if the production and consumption side errors are correlated, joint estimation of both 

sides is needed to account for endogeneity issues. Estimation can be done, using a 

system of equations, involving structural and reduced forms or single equations. 

Climate change adaptation decisions of households can be considered utility maximizing 

decisions,in the form ofreduction in downside risk or yield stability, in addition to 

increased yield derived from adopting a climate-smart practice (Mulwa, Marenya & 

Kassie, 2017). Hence, decisions to adapt and the choice of adaptation strategies (input 

variables) made by farmers would indicate that, the net benefit/utility from such 

decisions/choices is significantly greater than the situationwithout it (Deressa & Hassan, 

2009). Following Train (2009), the outcome of the farmer’s decision denoted as 𝐴, 

indicating the chosen climate-smart adaptation option or sequence of options, and if the 
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outcome variable is discrete, the observed factors 𝑥 and the unobserved factors 𝜀 which 

influence the choice(s) made by the farmer can be represented through a function: 

𝐴 = 𝑓(𝑥, 𝜀) ……………………………………….………………………...……………1 

Since ε constitute several unobserved factors in the model, the farmer’s choice cannot be 

predicted exactly;instead, the outcome of the farmer’s decision can be derived based on 

probability. The unobserved factorsare considered random with density f(ε). The 

likelihoodthat the farmer choosesan outcome from the set of all possible outcomes is the 

probabilitythat the unobserved factors in the behavioural process results in that outcome: 

𝑃𝑟𝑜𝑏(𝐴|𝑥) = 𝑃𝑟𝑜𝑏(𝜀 𝑠. 𝑡. 𝑓(𝑥, 𝜀) = 𝐴) …………………………………………….......2 

Given an indicator function 𝐼[𝑓(𝑥, 𝜀) = 𝐴] that takes the value of 1 ifthe statement in 

brackets is true and 0 ifotherwise, i.e. 𝐼[ . ] = 1 if the value of ε combined with x induces 

the farmerto choose outcome 𝐴, and 𝐼[ . ] = 0 if the value of ε combined with x induces 

the farmerto choose some other outcomes. The probability that the farmer 

observesoutcome 𝐴 is the expected value of theindicator function, where the expectation 

is over all possible values of the unobserved factors: 

𝑃(𝐴|𝑥) = 𝑃𝑟𝑜𝑏(𝐼[𝑓(𝑥, 𝜀) = 𝐴] = 1)………………………………………............…...3 

              = ∫ 𝐼[𝑓(𝑥, 𝜀) = 𝐴]𝑓(𝜀) 𝑑𝜀…………………………...………………………...4 

The probability of whether a farmer adopts an adaptation strategy given the net benefit or 

observed utility can be determined from the integral function in equation (4). The 

behavioural model specifying the farmer’s action is a function of observed farmer 

characteristics 𝑥 and unobserved factors 𝜀 such that: 

𝑈 =  𝛽𝑥 +  𝜀 …………………………………………………………………………..…5 

A farmer adopts a given climate-smart adaptation option if such decision provides a net 

benefit, i.e. the utility 𝑈 is positive. Therefore, the probability that a farmer adopts an 

option (practices and technologies), given the observables, will be: 

 𝑃 = ∫ 𝐼[𝛽𝑥 +  𝜀 > 0]𝑓(𝜀) 𝑑𝜀……………………………...………...…….…………..6 

wheref is the density of 𝜀, which can be assumed to have either logistic or probit 

distribution. The distributions mostly used are those that assume𝜀to beindependently and 

identically distributed with mean zero. 

In the context of adaptation, farmers are more likely to adopt several practices 

simultaneously to deal with climate change-related production constraints, than to adopt 
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a single practice (Asfaw et al., 2016). As such, the probability function in equation (6), 

would need to account for possible interdependency of decision outcomes and 

simultaneity (Cameron &Trivedi, 2005). A multivariate discrete outcome model which 

allows the errors terms to be correlated because of complementarity or substitutability 

between different adaptation options is considered adequate for this nature of outcomes 

(Asfaw et al., 2016; Mulwa et al., 2017; Tarekegn, Haji & Tegegne, 2017). Following 

these authors, the multivariate probit model consists of a set of simultaneous binary 

dependent variables 𝐴𝑖 that equals 1 if farmer 𝑖 adopts a practice 𝑗 such that: 

𝐴𝑖𝑗 = 𝛽𝑖𝑗𝑥𝑖𝑗 +  𝜀𝑖𝑗 > 0     ………………………………………………………………..7 

otherwise, 

𝐴𝑖𝑗 = 𝛽𝑖𝑗𝑥𝑖𝑗 +  𝜀𝑖𝑗 ≤ 0,   for each  𝑗 = 1, 2, 3, ……, n,    ………………………………..8 

where, 𝑥𝑖𝑗 is setof the explanatory or independent variables including household 

demographic and motivation, plot and climate change-related variables, 𝛽𝑖𝑗 are the 

parameter vectors, and 𝜀𝑖𝑗 are the error terms assumed to exhibit multivariate normal 

distribution with zero mean, unitary variance and an n x n correlation matrix.  

Impact analysis requires that endogeneity resulting from self-selection and treatment 

issues are considered since estimations which do not account for these problems will 

generate bias and inconsistent estimates. In this study, for instance, adaptation decision 

variable(s) in the productivity (outcome) model is not exogenous but endogenous and 

would, therefore, require endogeneity consideration. The methods of instrumental 

variables (IV), for a single instrument, or two-stage least squares (2SLS), for multiple 

instruments, and the use of structural specifications are common estimation approaches 

in literature for handling endogeneity issues (Greene, 2012; Wooldridge, 2012). The IV 

and 2SLS methods have been used in several impact studies (Di Falco, Veronesi & 

Yesuf, 2011; Simtowe, Kassie, Asfaw, Shiferaw, Monyo & Siambi, 2012; Liverpool-

Tasie, Adjognon & Kuku-Shittu, 2015; Dzanku, 2015; Manda, Alene, Gardebroek, 

Kassie & Tembo, 2016; Makate, Wang, Makate & Mango, 2016; Arslan et al., 2016). 

Again, the endogenous issues can be handled by matching methods, especially the 

propensity score matching (PSM) (Mendola, 2007; Liverpool-Tasie et al., 2015; Ali & 

Erenstein, 2017;Makate, Wang, Makate & Mango, 2017). 
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Also, structural equations have been applied to jointly estimate sets of the equation to 

account for selectivity bias and correlated error terms in impact models. Studies 

(Rahman, 1999; Perz, 2002; Blanc, 2011; Kaminski, Kan & Fleischer, 2012) have either 

suggested or used the Zellner’s Seemingly Unrelated Regression Estimator (ZSURE) to 

obtain consistent estimates under this condition. More recently, Roodman (2011) 

proposed the “conditional recursive mixed-process (CMP)” modelling framework which 

is based on the seemingly unrelated regressions (SUR) setup and allows mixing of 

different multi-equation systems such that each dependent variable of the different 

equationscanbe ofdifferentkinds. The various components of the framework are 

described as follows: “Multi-equation means that CMP can fit Seemingly Unrelated 

(SUR) systems, instrumental variables (IV) systems, and some simultaneous-equation 

systems”. “Mixed process” means that the different equations can have different 

dependent variables: continuous, censored, discrete binary variable. A dependent 

variable in one equation can appear as an independent variable of another equation. 

“Conditional” means that the model can vary by observation such that an equation is 

modelled only if observations are relevant. “Recursive” means, however, that “CMP can 

only fit sets of equations with clearly defined stages, not the ones with simultaneous 

causation” (Roodman, 2011; Baum, 2016).  

CMP, which is appropriate for two types of models can be used for (i) those models 

which a truly recursive data-generating process is hypothesizedand fully modeled, and 

(ii) those in which there is simultaneity, but instruments allow for the construction of a 

recursive set of equations, as in two-stage least squares, that can be used to consistently 

estimate structural parameters in the final stage. In the first case, CMP is a full-

information maximum likelihood estimator and all estimated parameters are structural. In 

the second case, CMP is a limited-information maximum likelihood estimator, and only 

the final stage’s coefficients are structural, the rest are reduced-form parameters (Asfaw 

et al., 2016; Baum, 2016). Maximum likelihood (ML) SUR estimators, including CMP, 

are appropriate for the class of simultaneous equation models in which endogenous 

variables appear on the right side of structural equations as well as on the left (Asfaw et 

al., 2016).  

The CMP framework differs from the SUR framework. In the SUR setup, the equations 

for each dependent variable is specified and can be estimated by ordinary least squares 

(OLS) such that each equation satisfies the zero-conditional mean assumption, 



20 
 

𝐸[𝑈𝑗|𝑋𝑗] = 0, ruling out either simultaneity or presence of endogenous variables in the 

𝑋𝑗 (Baum, 2016). Though based on seemingly unrelated regression algorithm, the CMP 

modelling framework, using a systems approach, allows for joint estimation of two or 

more equations whose dependent variables may or may not be related but with linkages 

among their error processes, accounting for multiple endogeneity in a structural model 

(Asfaw et al., 2016; Ergano, 2017). That is, the CMP analyseseach equation as 

independent from one another, but models their underlying errors as jointly and normally 

distributed.  

Hence, the CMP framework produces more consistent and efficient estimates than either 

the instrumental or two-stage least squares estimation technique. Asfaw et al. (2016) 

further explains that CMP differs from instrumented regressions by not automatically 

including the first stage exogenous regressors (included instruments) from the second 

stage. However, the major challenges associated with the implementation of CMP 

approach arecomputational burden and those with achieving convergence, especially for 

a large and varying multi-equations. Asfaw et al. (2016) applied it to analyse the impacts 

of three climate-smart technologies on-farm productivity and net crop income in Niger 

while Ergano (2017) used this estimation technique to estimate adoption decisions for 

four dairy technologies in Ethiopia.  

The CMP framework is therefore considered most appropriate in this study where the 

decision to use, the intensity of use, the productivity, and welfare effects of use of 

climate-smart adaptation strategies are sequentially connected and the unobserved factors 

are likely to impact the dependent variable at each sequence.   

In this study, a major concern is on the climate-smart adaptation choices and 

productivity/welfare linkages. The conceptual frameworks proposed by Selvaraju, 

Subbiah, Baas and Juergens (2006) and Eisenack andStecker (2012) are adapted in this 

study because they adequately explain the linkages by emphasizing the households as the 

pivot of adaptation decision and the receptor of decision outcomes.  

At the centre of the frameworks are human systems, which are individuals or households, 

who adjust (adapt) in response to changes in climatic variables. Specifically, agricultural 

households are key in the frameworks not only because they are usually affected by 

changes in the climatic variables, but also because they are at the centre of where 

adaptation strategies are developed, and decisions taken to develop and maintain 
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livelihoods, by means of the livelihood portfolio (Selvaraju et al., 2006) and because 

they are the receptors of these livelihood decisions.  

In the framework, climate change events (floods, drought, high temperature, pest and 

diseases), biophysical (agriculture) unit, socio-economic units (households) and the 

actions/strategies taken by them with the purpose to achieve intended ends are part of a 

simple system as shown in Figure 1. Climate change could influence the biophysical 

(agriculture) and households’ socio-economic variables, impact resources and assets, 

including social capital; and affecting the resource management strategies and decision-

making potential of the households (Eisenack & Stecker, 2012). Households, however, 

respond to these impacts by adjusting (adapting) to achieve target livelihood outcomes, 

including productivity and welfare. The adjustments (adaptations) can be made to target 

biophysical (crops) and social (households) units; and would require the use of different 

livelihood resources (means) to achieve the intended outcomes(Eisenack & Stecker, 

2012). These livelihood resources could be natural resources (e.g. land), 

economic/financial resources, human resources (e.g. labour, skills, knowledge and 

expertise), and social capital (e.g. formal and informal networks, strong social and legal 

institutions) (Scoones, 1998; Brooks & Adger, 2005). The availability and ability to 

effectively use these resources to achieve adaptation,reflects the adaptive capacity of the 

households (Brooks & Adger, 2005). Furthermore, some external factors are 

hypothesisedto influence the extent of use of the climate-smart adaptation strategies 

(Figure 1). For instance, the prevailing climatic risk evident in the crop production 

process, availability or access to required climate-smart technologies and market access, 

could influence the type and number (diversification) of climate-smart technologies, used 

by households, to adapt to climate change and variability. 
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Figure 1: Conceptual framework for productivity and welfare impacts of climate-smart adaptation practices 

Source: Adapted from Selvaraju et al. (2006) and Eisenack and Stecker (2012) 

Climate change stimuli and associated risks 
• Changes in average intensity, frequency and variance of climatic 

variables particularly rainfall and temperature 

• Risk events: Droughts, high temperature, and pest and diseases 

Bio-physical Unit 

(Agriculture) 

Social Unit 

(Households) 

 

Adaptation actions by households 
Climate-smart adaptation strategies: intercropping practice, 

agroforestry, improved seed, irrigation, water control 

practices, fallow practices, e.t.c. 

Productivity Outcomes 
▪ Farm (crop) yield 

▪ Yield stability 

Internal Factors 
▪ Farmers demographic characteristics  

▪ Household resource endowments 

(natural, financial, social and human)  

▪ Intention to adapt: Risk perception, 

attitudes towards adaptation, normative 

influences, and perceived behavioural 

control 

External Factors 
▪ Agro-climatic conditions 

▪ Market access 

▪ Availability of CS adaptation 

technologies 

Welfare Outcomes 
▪ Multidimensional 

▪ Asset 

▪ Consumption 

▪ Income 
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2.3. Analytical/methodological Review 

This section deals with the different approaches to measuring the various indices of 

concern in this study, such as; productivity, welfare outcomes, intensification indices, 

and motivational processes. 

2.3.1. Approaches to indicator measurement 

2.3.1.1. Farm productivity 

One of the most fundamental insight of the climate-smart adaptation practices is that they 

are to increase farm productivity. The term productivity has received different 

interpretations, including the ability of production factors to produce the output 

(Latruffe, 2010), “the ratio of a volume measure of output to a volume measure of input 

use” (OECD, 2001), the value of farm output per worker (Dzanku, 2015), and the rate of 

output produced per unit of input used for a given production process (Burja, 2012). It is 

also considered as the overall efficiency with which inputs are transformed into output 

within a production process. Liverpool-Tasie, Kuku & Ajibola (2011) defined it as 

“theratio of final output, in appropriate units, to some measure of inputs”. In each case, 

therefore, productivity infers an input-output relationship which shows the extent to 

which input(s) used in a production process generate the desired amount of output. Three 

indicators of agricultural productivity (partial factor, total factor and total resource) 

which are defined on the basis of ratio of quantity-based output to input in a production 

process are mentioned in literature (Fuglie, Benton, Sheng,Hardelin,Mondelaers, & 

Laborde, 2016).  

Partial factor productivity is the ratio of output and any one of the inputs, particularly 

labour or land (Nyangito&Odhiambo, 2003). If labour is the input used, it is called 

labour productivity, while land input will generate land productivity. According to FAO 

(2001) in Dzanku (2015), output per cultivated land area is used for measuring the effect 

of new production practices while farm labour productivity is often used to compare 

welfare effects of farm and nonfarm productivity. As Nyangito and Odhiambo(2003) 

mention, the major weakness of the partial factor productivity is its inability to account 

for the role of otherinputs used during a givenproduction process. The total factor 

productivity, however, corrects for this weakness, because it is the ratio of total output 

and all factor inputs (Christensen, 1975). Fuglie et al. (2016) define it as “a ratio of the 

total marketable outputs to total marketable inputs in a production process”. It is 

developed to measure production efficiency, which involves understanding how 
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economic resources are used to produce economic outputs. They, however, noted that the 

weakness of the total factor productivity is that it does not account for the environmental 

inputs or outputs whether priced in the marketplace or not. The total resource 

productivity which in addition to the total factor productivity includes the various non-

market environmental outputs and inputs used foragricultural production and therefore 

developed to account for this shortcoming (Fuglie et al., 2016). However, studies 

(Nyangito&Odhiambo, 2003; Liverpool-Tasie et al., 2011) limit productivity metrics to 

partial and total factor productivity with the latter regarded as superior to others.  

Either total or partial, price-based farm productivity is most preferred for productivity 

studies in developing countries where most household plots are under the mixed or 

intercropping system. It is usually measured by multiplying the quantity of each crop 

produced per hectare by either farmgate or market price of the produce (Peterman, 

Quisumbing, Behrman & Nkonya, 2011). This study, however, adoptsthe measure of 

quantity-based plot-level total farm productivity for each household. 

2.3.1.2. Welfare outcomes 

Literature suggest numerous proxies of household welfare which are measured through 

objective or subjective methodology. Objectively, household welfare is proxied as 

monetary variables, including; consumption expenditure, asset, and income. Of these 

metrics, consumption expenditure remains the preferred welfare metric because it is less 

prone to fluctuations compared with income metrics particularly in agricultural 

economies (Deaton & Zaidi, 2002), captures long-run welfare, less vulnerable to under-

reporting bias, accounts for relative price changes with a single deflator, reflects in-kind 

transfers, and easier to measure than the income measure of welfare (Filmer & Pritchett, 

2001; Pradhan, 2001; Meyer & Sullivan, 2003). In addition, Arndt &Mahrt (2016) note 

that this metric is more relevant in the African context, where self-employment in the 

agricultural sector is predominant. The consumption expenditure welfare measure is 

usually constructed from expenditures on food and non-food household items, using 

information on purchases, imputed values (using market prices) of own produce 

consumption, receipts-in-kinds as well as the values of durable goods and the imputed 

rent of owner-occupied housing (Arndt & Mahrt, 2016). For comparability in a food-

based measure, consumption values obtained are usually adjusted to account for seasonal 

food price fluctuations, using intra-temporal price index, especially, when different recall 

periods are involved (Dzanku, 2015; Arndt &Mahrt, 2016). The estimation of welfare as 
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per capita consumption expenditure to account for household composition is common 

(Dercon, Hoddinott & Woldehanna, 2005; Arndt &Mahrt, 2016). Other consumption 

indicators of household welfare include; consumption per adult equivalent, calorie 

consumption per person per day, and food consumption expenditure as a proportion of 

total household expenditure. Though consumption expenditure is favoured in welfare 

measurement, its use as an indicator of welfare is limited by measurement errors, the 

prohibitive cost of data collection, and spatial location of respondents, among others. 

The use of income as welfare indicator abound in literature. Income refers to the earnings 

from productive activities and current transfers includelabour services (wage income), 

the supply of assets (rental income), self-employment income, and transfers from 

government, non-government agencies, other individuals and households (World Bank, 

2003). Although used as a living standard measure, income dimension is seen to be 

conceptually and practically inadequate (World Bank, 2003) particularly among 

agricultural households and those involved in self-employed labour activities (Finan, 

Sadoulet & De Janvry, 2005). This is because income-related questions constitute more 

sensitive issues to respondents, than those based on consumption or asset 

(Moratti&Natali, 2012). Consequently, responses are likely to be underestimated and 

biased as well as fraught with recollection and measurement errors (Moser & Felton, 

2007). Again, income earnings do not necessarily translate to increased welfare for every 

member of the households, since its spending can be biased towards male members 

(Kumar, 1989). These observations, therefore, indicate that the use of income as a 

measure of welfare should be with caution. 

Asset-based welfare measure reflects household stock that indicates the accumulation 

and use of economic value and income over time (Cohen & Little, 1997). This metric 

expressed as an index is usually constructed from several assets the household owns 

using various methodologies, including; 1) simple asset score constructed by assigning 

equal weight to each asset (World Bank, 2003); 2) principal component analysis (PCA) 

if the asset variable is continuous and linear constraint is assumed (Browne, Ortmann & 

Hendriks, 2014; Dzanku, 2015); 3) factor analysis (FA) (Carletto & Zezza, 2006); and 4) 

multiple correspondence analysis when fewer assumptions are made about the 

underlying distributions of the indicator variable and the indicator variable is either 

discrete or categorical (MCA) (Booysen, Van Der Berg, Burger, Von Maltitz& Du Rand, 

2008). As a welfare measure index, asset index is adjudged to be better because it 
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“reflects long-term welfare, less volatile, than both income and consumption, and more 

suitable to analyse multi-dimensional poverty” (Filmer & Pritchett, 2001). Furthermore, 

asset measure of welfare is less prone to measurement errors (Moser & Felton, 2007). 

However, the index is considered a specific indicator, which cannot be compared to the 

income or expenditure measures of economic status (Moratti & Natali, 2012) and does 

not properly reflect current household welfare status, in addition to being urban bias 

(Filmer & Pritchett, 2001), and unable to account for spatial price level differences and 

asset quality (Moratti & Natali, 2012; Dzanku, 2015). 

Subjective measure of welfare is non-monetary, and it is often constructed using simple 

qualitative assessments of individuals or households’ perceptions about the state of well-

being (Pradhan & Ravallion, 2000). This approach accounts for the unobservable and the 

difficult-to-measure effects of some factors, which the objective measures are unable to 

capture. Consequently, it provides additional information, particularly, on the poor, 

which could help for effective policy design and implementation (Carletto & Zezza, 

2006; Lokshin, Umapathi & Paternostro, 2006). Approaches to constructing this index 

identified in literature include; 1) Minimum Income Question (MIQ) approach which is 

appropriate in developed countries (Lokshin et al., 2006); 2) Consumption Adequacy 

Question (CAQ); and 3) Economic Ladder Question (ELQ) suited for developing 

countries, where income concept is not well defined (Pradhan & Ravallion, 2000; 

Roberts, 2009). The MIQ approach is well described in Deaton & Zaidi (2002) and the 

MIQ approach can be achieved following Ravallion (2012). 

In recent studies (Finan et al., 2005; Alkire & Foster, 2011; Justino, 2012; Dzanku, 2015; 

Ardnt et al., 2018), multidimensional welfare measurement, which combines the 

strengths of the various unidimensional welfare indicators and the simultaneous multiple 

deprivations faced by households, has been advocated. This involves the construction of 

welfare index by aggregating multiple dimensions, including consumption expenditure, 

income, and those related to sanitationaccess, water and dwelling features. Finan et al. 

(2005) note that this approach helps to integrate accumulated welfare, associated with 

durables, the current flow of welfare associated with consumption and income, and 

access to public goods into a single welfare index and consequently, captures the 

multidimensionality of welfare. Several approaches have been used to construct this 

index. Using the principal component technique, Finan et al. (2005) constructed a 

multidimensional household welfare index from various dwelling 
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characteristics;(running water, electricity, has a bathroom, number of rooms, and dirt 

floors) and household durables (ownership of a blender, refrigerator, television, and 

truck). This is in addition to the short-term measures of consumption expenditure and 

non-farm labour income. Following this approach, Dzanku (2015) also constructed an 

individual welfare index by aggregating consumption, income, household durable assets, 

and dwelling characteristics including;number of bedrooms per adult equivalent, type of 

roof and walls, electricity connection and toilet facilities). The Alkire-Foster 

multidimensional poverty indicator is a context-specific index, thatconsiders the joint 

distribution of deprivations, reflecting the extent of association between the several 

dimensions of welfare. In addition, its flexibility in terms of dimensions and their cut-

offs, weights and poverty cutoff makes it adaptable to various levels; (households, 

village, state and national) and purpose (Alkire& Foster, 2011). It uses the counting 

approach (Ajakaiye, Jerome, Olaniyan, Mahrt, & Alaba,2014) based on a weighting 

scheme usually applied on cardinal and ordinal indicators grouped along three 

dimensions: living standard, health and education. The living standard dimension has 

assets, cooking fuel, floor types, drinking water, sanitation and access to electricity as 

indicators. The indicators of health include nutrition and mortality while those for 

education are school attendance and years of schooling. Under the Alkire-Foster index, a 

person or household is identified as multidimensionally poor, if such person or 

household experiences deprivation in at least 30% of the weighted indicators. Tran, 

Alkire & Klasen (2014) applied this approach in their work on “disparities between the 

monetary and multidimensional measurement of poverty” in Vietnam choosing 

indicators based on available data. The recent first-order dominance (FOD) approach to 

multidimensional welfare analysis developed by Ardnt et al. (2012) has been 

operationalized in several developing countries, including Tanzania and Nigeria. The 

features of the FOD approach include use of binary indicators and does not require 

weighting scheme, but relies on non-restrictive assumptions; and unlike the Alkire-Foster 

methodology, which focuses on deprivation in any dimension of analysis, the FOD 

approach measures non-deprivation status on any dimension under consideration (Arndt, 

Mahrt, Hussain &Tarp, 2018). Examining five dimensions including access to water, 

sanitation, energy, housing and education at the household level, Ajakaiye, Jerome, 

Olaniyan, Mahrt andAlaba(2016) use this approach to estimate a non-monetary 

multidimensional poverty for Nigeria at sectoral (rural and urban) level, across the six 

geopolitical zones and state levels. Following Alkire-Foster methodology, this study 
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constructs a multidimensional welfare index for each households by aggregating the 

various indicators of these welfare dimensions: education (years of schooling and school 

attendance by school-age children), living standards (source of drinking water, sanitation 

or toilet facilities, types of cooking fuel, electricity access, types of roof, floor and wall, 

number of bedroom per adult equivalent, access to motorable roads, land, livestock, and 

asset ownership) and health (food security and child mortality). 

2.3.1.3. Intensification index 

Various indices have been used to measure the intensity of use of agricultural 

technologies, including the number of technologies/strategies adopted (Mazvimavi & 

Twomlow, 2009; Pedzisa, Rugube, Winter-Nelson, Baylis, & Mazvimavi, 2015) and 

land area allocated to a given technology/practice (Shiferaw, Kebede & You, 2008; 

Tambo & Abdoulaye, 2012; Ngwira, Johnsen, Aune, Mekuria & Thierfelder, 2014; 

Arslan et al., 2014). However, these approaches do not account for variations in the rate 

and extent of application of these technologies (Kunzekweguta, Rich & Lyne, 2017). 

Consequently, Kunzekweguta et al. (2017) constructed and used a conservation 

agriculture index which is based on these components: number, relative importance, rate 

and extent of application of technologies. According to the authors, the index is a 

“continuous variable that accommodates partial adoption and analytical techniques that 

cannot be used with binary or ordinal dependent variables”. The index is expressed as: 

𝐶𝐴𝐼𝑖 = ∑ 𝑊𝑖𝑟𝑅𝑖𝑟𝑃𝑖𝑟𝑆𝑖𝑟…………………………………...……………………………...9 

The yield weights, 𝑊𝑖𝑟represents the perceived contribution of each or a combination of 

conservation agriculture strategies to yield. It accounts for differences in the 

perceivedimportance of the conservation agriculture strategies. It either can be estimated 

from field experiments, expert opinions, or through regression estimations. R indicates 

the rate of application of the conservation agriculture strategy (or combination of 

strategies) compared to the recommended application rate of the strategy. It is a ranking 

score based on farmer perceptions and takes the value of one (1) for a farmer who 

adheres to the recommended practices of the technology and zero (0) otherwise. P is the 

proportion of the total land area cultivated using conservation agriculture strategies. S, 

which accounts for the absolute differences in the extent to which households apply 

conservation agriculture techniques, is the area of the individual ith plot relative to largest 

plot in the data set. This approach is adapted in this study to measure the intensity of use 

of climate-smart adaptation practices, at plot and household levels, by using weighted 
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perception index to measure the contributions of each climate-smart adaptation practice. 

This is considered adequate to better capture the unobserved extent of contributions of 

adaptation strategies compared to using dummies to generate such contributions.  

2.3.1.4. Behavioural intention to adapt to climate change 

The indicator for intention to adapt to climate change is based on the outcomes of the 

risk and adaptation assessments(Grothmann & Patt, 2005). These are measured based 

on four predictors: risk perception, perception of adaptive capacity, risk experience and 

social identity (Blennow & Persson, 2009; Frank et al., 2011; Truelove, Carrico & 

Thabrew, 2015; Roesch-McNally, 2016). Risk perceptions are based on subjective 

assessment of risk (Doss et al., 2005). When faced with external pressures especially 

those associated with climate change, individuals would act only after assessing the 

perceived probability and magnitude hence, potential consequences of occurrence of 

climate risks (Alam, Alam & Mushtaq, 2017), and availability of capacities to avert or 

reduce the impacts of such pressures (Grothmann & Patt, 2005; Truelove et al., 2015). 

These perceptions concerning climate risks and capabilities strongly and positively 

influence farmer’s support for adaptation (Roesch-McNally, 2016). The extent of 

farmer’s risk perception can be determined using the risk perception index, which 

combines farmer’s perceived expectancy of climate risk exposure and severity of such 

exposure if they occur (Grothmann & Patt, 2005). As such, risk perception measures the 

anticipatory behaviour of farmers. Operationalizing this, Frank et al. (2011) measured 

perceived risk index as sum of the product of frequency (f) of experienced climate event 

types identified by the farmer and the perceived severity (s) of the impact of each event 

type [i.e. risk perception index =sum (frequency, fi * severity, si)]. Similarly, perceived 

adaptive capacity has been found to significantly explain farmers’ adaptation behaviours 

(Blennow & Persson, 2009). Grothmann andPatt (2005) identify three independent 

predictors of perceived adaptive capacity, namely; perceived adaptation efficacy, which 

highlights the extent of farmer’s belief in the effectiveness of adaptive responses to 

climate risks (Frank et al., 2011); perceived self-efficiency, which shows how confident 

the farmer is with his/her knowledge and skill to implement the adaptive responses; and 

perceived adaptation cost which represents the anticipated cost associated with the 

adaptive action (Grothmann & Patt, 2005). 

Furthermore, risk experience as a predictor of intention to adopt measures the severity of 

a risk experienced in the past. Unlike risk perception, which is based on uncertainty in 
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risk occurrence and behaviour, risk experience captures the intention to adopt associated 

with previous individual experiences with hazard events and thus, explains behaviours 

based on events, which had previously occurred (Grothmann & Patt, 2005). In recent 

times, the social dimensions of intention to adopt has been considered in the cognitive 

assessment of intention to adopt. This is because individuals do not act independently of 

cultural/social influences, but continually refer their behaviour back to the important 

reference group(s) (Burton, 2004 cited in Borges et al., 2015). Social identity construct 

refers to behaviours exhibited, based on the influence of group membership (Frank et al., 

2011; Borges, Foletto & Xavier, 2015). Justifying this construct as a predictor of climate 

change adaptation behaviour, Patt and Schröter (2008) and Frank et al. (2011) argue that 

if it can apply to actors’ perception in other areasof climate-related information, social 

capital can also influence adaptation behaviour. It is operationalized using participation 

or membership to cultural/social or farmer organizations/groups such as farmers’ 

cooperative societies (Herath & Takeya, 2003; Borges et al., 2015), and occupation of 

leadership position. The roles of social networks in predicting adaptation decision 

making, have also been identified in Roesch-McNally (2016). For each of these 

behavioural outcomes and following relevant literature discussed above, this study 

constructed an indicator based on farmer responses.  

2.4. Determinants of climate change adaptation practices: A review of empirical 

studies 

There are numerous empirical literature on the factors that explain farmers’ adaptation 

behaviour towards agricultural innovations. These factors are usually selected based on 

theory and test (Knowler & Bradshaw, 2007) and analysed using any of the parametric 

and non-parametric statistical methods, including the ordinary least square (OLS) 

method, probit/logit regression, random effects generalized least square (RE – GLS), and 

linear probability model (LPM). The choice of estimation technique, however, depends 

on the nature of the dependent variable (categorical or continuous). For instance, the 

normality distributional assumptions often associated with continuous dependent 

variables that can take large range of values, make the OLS regression technique 

adequate for continuous variables. The use of probit/logit model is adequate, when 

dichotomous/binary dependent variables are involved and the normality assumptions of 

the dependent variable is not needed, the relationship between the dependent and 

independent variables is assumed to be non-linear, and the error term is not normally 

distributed. Poisson estimation technique is suited for analysis of a count data dependent 
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variable. A count variable does not have normal distribution, but, Poisson distribution, 

which is entirely determined by its mean (Wooldridge, 2012, 2016)  

Farmers’ socioeconomic and behavioural factors, farm and climate variables, as well as 

ecological factors, have been identified as influencers of choice of climate change 

adaptation practices used by farmers. These socio-economic influencersinclude; 

education, experience, farm income/wealth status, extension and credit 

access,availability of market services, and social capital (Temesgenet al., 2008; Hisali et 

al., 2011; Komba & Muchapondwa, 2012; Yegbemey et al., 2013; Hadgu et al., 2015). 

The nature of the influence of these factors, however, differs across adaptation methods. 

For instance, farmers’ educational level has significant positive effect on the use of such 

adaptation measures assoil conservation practices, adjustment of plantingtime, drought-

tolerant varieties, irrigation and crop varieties (Temesgenet al., 2008; Hadgu et al., 2015; 

Ali & Erenstein, 2017). These differ from Komba & Muchapondwa (2012) and Shikuku, 

Winowiecki, Twyman, Eitzinger, Perez, Mwongera and Läderach (2017), which for 

instance, reveal a significant negative impactof education on useof drought-tolerant 

varieties and the changing of planting dates, as climate change adaptationstrategies. 

Uddin et al. (2014) however show that education favours the use of climate change 

adaptation strategies in general. 

In Northern Benin, farmers’ choice of crop diversification, farming practices and 

timeadjustment, and land use practices as climate change adaptation strategies are 

significantly and positively influenced by gender, credit access and experience, 

respectively (Yegbemey et al., 2013). Ahmed (2016), Ali andErenstein (2017) and 

Mulwa et al. (2017) show that extension contactshas a significant positive effect on such 

adaptation strategies as adjustment in plantingtime, drought-tolerant and disease/pest-

tolerant varieties and change to new crops. Also, Hisali et al. (2011) study in Uganda 

identifies a significantly positive effect of age of household head on the choice of labour 

supply as drought coping option. Labour availability would significantly encourage the 

use of crop diversification, soil and water conservation measures, but decreases the 

probability of the adoption of early planting and use of disease/pest-tolerant varieties as 

adaptation practices(Mulwa et al., 2017). The effect of various indicators of social 

networks also varies across adaptation strategies. For instance, Mulwa et al. (2017) show 

that, membership to farmer groups would significantly reduce the probability of farmers’ 

useof drought-tolerant crop varieties, while group cohesiveness has a significantly 
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positive relationship with the adoption of climate change adaptation methods (Ofuoku & 

Agbamu, 2012; Uddin et al., 2014). Shikuku et al. (2017) reveal that, group membership 

has a significant positive effect on terracing strategy but negativelyaffects the use of 

pest-resistant variety. This is consistent with Mulwa et al. (2017). Other socio-economic 

factors thatsignificantly and positively influence the use of climate change adaptation 

strategies include asset/livestock ownership, food security status of household, and credit 

access (Temesgenet al., 2008; Hadgu et al., 2015; Ahmed, 2016). Those with significant 

negative effect include; household distance to the market, plot distance to farmers’ home, 

social responsibility, household head’s civil status, and poor access to amenities like 

water (Arimi, 2014; Ahmed, 2016). 

The behavioural factors which determine farmers’ choiceof climate change adaptation 

strategies include; the level of perceived risk, beliefs, risk assessment, and adaptation 

abilities (Grothmann& Patt, 2005; Patt & Schröter, 2008;Hisali et al., 2011; Mulwa et 

al., 2017;). According to Grothmann& Patt (2005), these socio-cognitive or 

psychological factors have a significant effect on farmers’ general decision-making 

processes on the use of climate change adaptation strategies. Mulwa et al. (2017), for 

instance, show that drought experience by farmers would significantly favour the use of 

such adaptation methods, as; drought-tolerant varieties, early planting, crop 

diversification, and soil and water conservation measures.  

Further studies such as; (Hassan & Nhemachena, 2008; Yegbemey et al., 2013; Uddin et 

al., 2014; Ali & Erenstein, 2017; Mulwa et al., 2017) have suggested various farm 

factors including farm size, soil fertility and tenure status as influencers of the use of 

climate change adaptation strategies. For instance, Hassan andNhemachena (2008) 

observe a significant positive effectof farm size on farmers’ use of multiple cropping and 

mixed farming as adaptation strategies, while Uddin et al. (2014) reveal a significant 

negative relationship between farm size and adaptation to climate change. Shikuku et al. 

(2017) specifically indicate a negative relationship between farm size and the use of pest-

resistant variety. In their studies, Di Falco et al. (2011) and Mulwa et al. (2017) indicate 

that when farms are perceived to be highly fertile, there is significant decrease in the use 

of adaptation strategies, including; drought-tolerant varieties, early planting, and crop 

diversification strategies. 
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Weather variables also affect farmer’s choice of adaptation strategies. Temperature and 

precipitation, for instance, have significant positive and negative effects, respectively, on 

soil conservation, as choice of adaptation practice, while average temperature has a 

significant positive effect on the use of short-season crops, crops resistant to drought and 

irrigation choices asadaptation methods (Temesgenet al., 2008; Komba & 

Muchapondwa, 2012). Average rainfall has a significant positive influence on irrigation 

on drylands (Hassan & Nhemachena, 2008), but a negative effect on changing crop 

planting dates and tree planting methods of climate change adaptation. (Komba & 

Muchapondwa, 2012). Bezabih et al. (2013) indicate that changes in climate variables is 

a significant determinant of soil conservation, while farmer access to weather 

information has a significant positive effect on the use of climate change adaptation 

practices (Di Falco et al.,2011; Arimi, 2014; Ndamani & Watanabe, 2016). Further, 

Shikuku et al. (2017) show that erratic and delayed rainfall have significant positive 

effects on farmers’ choice of climate-smart adaptation strategies, with erratic rainfall 

decreasing the use of mulching, as an adaptation method. 

2.5. Farm productivity and welfare implications of climate-smart adaptation 

strategies 

This subsection focuses on existing literature onimpacts of climate-smart adaptation 

strategies on farm productivity and household welfare. Many studies have evaluated 

these outcomes vis-à-vis farmers’ decision to adopt several strategies. 

 

Di Falco et al. (2011) assessment onadaptation impacts oncropyieldin Ethiopia,shows 

that, such adaptation strategies as varying crop varieties and usingsoil and water 

conservation methodshave significant positive impacts on crop yields. Both strategies are 

most likely to support increased resilience levels of farming.A recent follow-up study in 

the same country by Di Falco andVeronesi (2013) show that, a significant net revenue 

increase is achieved, when adaptation strategies are implemented as a basket rather than 

in isolation. Specifically, the study shows that, combining knowledge-smart technology 

(changing crop varieties) with either water (water conservation) or sustainable soil 

conservation – smart strategies resulted in significantly higher farm net revenue 

compared with the application of any of these strategies in isolation. In cost-benefit 

terms, the study also indicates that, the higher the intensity of usage of these adaptation 

strategies, the lower the returns to their investments. As such, cost threshold resulting 
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from adaptation of multiple and complex strategies could be exceeded, such that, 

negative monetary returns is accrued to the farmer. 

Similarly, adaptation strategies implemented simultaneously increase net farm income on 

a maize farm compared with those used in isolation (Teklewold, Kassie & Shiferaw, 

2013). The use of three climate-smart adaptation strategies, namely; improved crop 

varieties, land levelling using, laser technology and no-till method by farmers, in the 

Indo-Gangetic plains of India, under rice-wheat farming system, indicates that, though 

each strategy can contribute to increase in net income, their combinations significantly 

improve yield and net income in the farming system and are recommended for national 

scale-up (Khatri-Chhetri et al., 2017). Furthermore, Arslan et al. (2016) examined the 

productivity impacts of selectedclimate-smart agricultural practicesused by smallholder 

maize farmers in Zambia. These strategies include; reduced or minimum tillage, crop 

rotation, and legume intercropping. Certain combinations of these inputs were jointly 

used,with improved seeds and inorganic fertiliser. While reduced tillage and crop 

rotation in combination with improved seeds and chemical fertilisershow no significant 

impact on maize yield, legume intercropping with these modern inputs but improves both 

yield and yield variability on maize farms. Welfare analysis of zero or no-till practice 

among small and medium scale farmers in Karak Governorate, Jordan by Akroush, 

Yigezu & Hadi (2015) show that, the significant increase in farmers’ net farm income is 

attributable to the adoption of the technology. 

Douxchamps et al. (2016) assessed the linkage between crop diversity, soil and water 

conservation, agroforestry, small livestock herding, improved crop varieties, fertilizers, 

and households’ food security levels in three West Africa countries of Burkina Faso, 

Ghana and Senegal. Their findings show that, intensity of usage and impacts of these 

strategies on productivity and vulnerability vary, depending on households’ market 

orientation. Households with diversified and intensive farming systems with high market 

orientation, tend to achieve significantly higher farm productivity with the 

implementation of climate change adaptation strategies, compared with households 

practising subsistence and extensive farming systems, but with low market orientation. 

As such, this study concludes that, the adoption of agricultural practices does not have a 

homogenous effect on farm productivity and consequently, there is food security status 

of households. The study of Asfaw, Di Battista & Lipper (2016) in Niger show the time 

variable effect of adaptation strategies on crop productivity under climate 
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change.Following this study, the use of such technologies as inorganic fertilisers and 

improved inputs results in higher crop productivity increase, in the short term, compared 

with the use of crop residues of which yield returns are experienced slowly. In astudy, 

Arslan et al. (2016) also determined the effects of intercrop of maize and legume, 

conservation agricultural practices, use of fertilisers (organic and inorganic), and high-

yielding seed varieties on maize yield in Tanzania and posit a similar explanation for the 

non-significant relationship between organic fertilizers and maize yield. In addition, they 

opine that, for the use of improved seed to achieve yield increase, it must be combined 

with inorganic 35ommercial. This highlights the need to adopt some productivity-

enhancing technologies as a portfolio rather than in isolation, if the intended result is to 

be achieved. Furthermore, the study reveals that the application of the characteristically 

climate-smart technologies, namely,intercrop of maize and legume, and conservation 

agricultural practices can increase maize yield by an average of 10 and 14 percent, 

respectively. In Malawi, Asfaw et al. (2015) show that, the implementation of modern 

land management practices has significant positive impacts on the productivity of maize. 

However, the level of impact depends on climate risk exposure and sensitivity of the 

farm. They conclude that, crop productivity of farms in areas of higher climate risk 

exposure and sensitivity can be increased using sustainable land management strategies, 

whereas inorganic fertilisers and improved seeds contribute significantly to crop yield in 

areas with lower climate risks, implying the need to consider farm vulnerability to 

climate change before adaptation decisions. A similar result was obtained for rice in 

Ghana where promotion and adoption of high yielding, disease and pest-resistant rice 

varieties facilitated the using of knowledge-based strategies including; demonstrations, 

training courses, community seed production, etc. showed evidence of increased rice 

yield (Buah et al., 2011).  Also, Sain, Loboguerrero, Corner-Dolloff, Lizarazo, Nowak, 

Martínez-Barón, and Andrieu (2017),evaluateseveral climate-smart agricultural 

technologies focusing mainly on water (contour ditches, stone barriers, water 

reservoirs/ponds and drip irrigation), carbon (agroforestry), energy (crop rotation and 

conservation tillage with mulch), and knowledge (improved seed varieties) – smart 

technologies in Dry Corridor in Guatemala indicated that, the cost-benefit analyses of the 

private profitability of the adoption of these practices on the average are profitable, with 

a payback period of about four years, reflecting their time influence on productivity and 

income.  
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Gill (2014) identified the advantages of land levelling,using lasser techniques as a 

climate change adaptation strategy to include; improvement in crop yields, decreasein 

water requirement for both land preparationand irrigation, increase in natural resource 

conservation and reduction in emissions that exacerbate climate change. The adoption of 

this strategy improved yield increase of both rice and wheat by an average of 330 kg/ha 

through efficient use of fertilizer and water, in addition, to increase in farm income and a 

reduction in time (pumping and cultivation) and energy spent on irrigation. Afolami, 

Obayelu and Vaughan (2015) as Simtowe et al. (2012) showedevidence of a positive 

effect of different crop varieties on household welfare by comparing the use of improved 

and local groundnut varieties and found that improved groundnut varieties returned 

higher yields to adopters than farmers using local groundnut varieties. This consequently 

results in higher net income among adopters of improved groundnut varieties compared 

with non-adopters. Evaluating the adoption impacts of high-yielding rice varieties on 

farm households’ wellbeing in rural Bangladesh, Mendola (2007) argue that, theincrease 

in rural incomes through the diffusion of modern farming technology is important, as 

shown by the significant positive effect of improved rice varieties on yield. Similar yield 

and consumption expenditure effects were reported by Amare, Cissé, Jensen & Shiferaw 

(2017) for farmers in Tanzania who adopted maize – pigeon pea intercropping system. 

Furthermore, Makate et al. (2016) observed that; crop productivity, income, food 

security and nutrition at household level improve alongside an increase in the rate of 

adoption of crop diversification. The study therefore suggests crop diversification as a 

viable climate-smart agriculture practice, that can significantly enhance crop productivity 

and consequently, aid resilience in rural smallholder farming systems. In their recent 

study of the productivity effects of urea deep placement technology in rice production in 

Niger State, Nigeria, Liverpool-Tasie et al. (2015) found that this inorganic fertilizer 

intensification practice has the potential to raise rice yield by up to 15% with possible 

additional increases, under good management practices, including adopting the 

recommended application rate at the prescribed placement depth. Rahman andBarmon 

(2015) observed similar result in Bangladesh where an average of 13% increase in yield 

is achieved for rice farms under urea deep placement technology compared with those 

under the conventional urea fertiliser. The study by Arslan et al. (2018) in Zambia 

identify livelihood diversification as having the potential to contribute to the 

componentsof climate-smart agriculture particularly, food security, through the increase 

in household income and decrease in poverty incidence.  
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2.6. Insights from literature 

The in-depth review of literature in the preceding sections is done to understand what has 

been done and highlights various methodologies and techniques, including the emerging 

ones that improve empirical findings and policy recommendations. The review shows 

that though several empirical studies have been carried out in climate change thematic 

area, research gaps especially, those associated with use of adaptation strategies and 

returns to farmers’ use decision, still exist.  

Generally, strategies to adapt to climate change are not new, but continue to evolve.Their 

use by farmers and differential effects are often influenced greatly by socioeconomic, 

environmental and biophysical factors. Literature identifies outcomes of risk and 

adaptation appraisal processes as major determinants of farmers’ use of 

adaptation strategies. However, the predictors of these constructs have been 

separately studied. This study intends to analyse models under joint interactions 

of these predictors and improve on their policy information. On methodological 

front, the review indicates the various strengths and weaknesses associated with welfare 

and productivity measurement, particularly, under developing country smallholder 

scenario. For instance, literature abound on welfare measurement by income, 

consumption expenditure, and asset approaches, but the multidimensional welfare 

indicators are considered better due to their insulation to the challenges in the use of the 

former proxies. This informs the choice of the indicator in this study. In addition, the 

choice of weighted perception index improves on the strength of intensification index 

constructed by Kunzekwegutaet al. (2017).  

The emerging analytical technique, the conditional recursive mixed-process (CMP) 

modelling framework based on the seemingly unrelated regressions (SUR) setup is 

discussed. This technique allows for the mixing of different systems of equation, where 

the dependent variable of each equation canhave differentcharacteristics. Unlike other 

frameworks, this allows for sequential modelling and analysis of several multi-equations 

without instrumentation.  

It is, therefore, evident that this section provides an understanding of climate-smart 

adaptation strategies, and the basis for the choice of both conceptual and analytical 

frameworks necessary for this study. 
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CHAPTER THREE 

METHODOLOGY 

This section discusses the study area, sampling techniques, and the analytical tools used 

to achieve the objectives of the study. 

3.1. Study area 

This study wascarried outin the Southern Guinea Savanna (SGS) and the 

DerivedSavanna (DS) agroecological zones (AEZs) of Nigeria. These zones express 

distinct climatic conditions that influence their capacity to support rainfed agriculture. 

However, staple crop production remains a significant agricultural activity in both AEZs. 

The zones also represent the transition corridors between the southern and northern parts 

of Nigeria. The derived savanna is found immediately north of the humid forest, southern 

Nigeria and it is characterized by regular bush burning particularly during the dry season, 

reduced tree cover, and fallow areas with predominantly matured woodland, relics of 

patches of high forest or forest tree, and climbers growing on relatively dry ground, 

which receives water only from rain (Adegbola &Onayinka, 1976). Dominantsoil types 

in the zone are Ferrasols, Luvisols, Nitosols, Arenosols, Acrisols and Lithosols (Salako, 

2004). The southern Guinea savanna zone lies to the immediate north of the derived 

savanna and it is covered with open savanna woodland and tall grasses. Its soil types 

include; Luvisols, Acrisols, Ferralsols and Lithosols. Salako (2004) and Wada, Kehinde, 

Ukwungwu, Adagba& Usman (2013) describe the soil types in the zones, as low in 

organic matter and chemical fertility and would require soil conservation measures, 

inorganic and organic fertilizers to improve their soil physical qualities. 

The derived savanna agroecological zone runs across states of Kogi, Nasarawa, 

Ekiti,Enugu and Benue, while the states of Niger and Adamawa are predominantly 

within the southern Guinea savanna. Both the SGS and DS zones run across the states of 

Oyo, Kwara and Taraba, while Plateau has three agroecological zones of northern and 

southern guinea savannas, derived savanna, and mid-altitude zones across its landscape 

(Figure 2).These AEZs in addition to the northern guinea savanna (NGS) constitutethe 

most extensive agroecological zone in Nigeria – the savanna. The SGS and the DS 

zonescombine the grains (cereals and pulses) production potentials of the north and the 

root/tuber production potentials of the southern part of Nigeria and therefore have great 

opportunities for farmingactivities (Adegbola &Onayinka, 1976). The zones are noted 

for the farming of crops including; maize, millet, rice, sorghum, ginger, 
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cowpea,groundnut, cassava and yam which are either in themonocropping or 

intercropping system (Ajeigbe, Singh, Musa, Adeosun, Adamu & Chikoye, 2010; Foli, 

2012).  

The prevailing environmental and cropping characteristics in the AEZs can be described 

in terms of length of growing period, amount of rainfall received, and cropping system. 

For instance, the length of growing period in the southern Guinea savanna is 181-210 

days and 211-270 days for the derived savanna/coastal savanna (Jagtap, 1995), and the 

amount of rainfall received is 1000 mm in the northern end of the southern Guinea 

savanna and 1800 mm in the southern end of the derived savanna (Adegbola &Onayinka, 

1976). The cropping system is intensive in the SGS,while increased crop diversity is 

dominant in the SGS zone (Foli, 2012).  

The zones are characterized by large year-to-year rainfall variability (Odekunle et al., 

2007; Ogungbenro &Morakinyo, 2014) and drought-prone (Woomeret al., 2014) leading 

to differences in crop yield rates (Odekunle et al., 2007). The coefficient of rainfall 

variation is between 15 – 20 percent in the guinea savanna zones and between 10 – 24 

percent in the derived savanna zone, with increasing flood risk in both agroecological 

zones (Aremu, Bello, Aganbi & Festus, 2017). Also, Oladipo (2010) perceivesreduced 

soil moisture, because of less rainfall and increasedtemperature in the savanna areas 

particularly in the northern parts of Nigeria. These environmental anomalies are 

responsible for most crop failures in the zone (Nwajiubaet al., 2015).  
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Figure 2: Map of Nigeria showing the agro-ecological zones and their states 

Source: Salako, 2004 
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3.2. Sources and types of data 

Primary data,using a structured interview schedulewas collected and used for this study.The 

interview instrumentwas pre-tested for appropriateness and revised based on the pre-test 

feedbacks, before it was administered on the sample respondents. Information collected 

include those relating to demographic andsocio-economic characteristics,plot level data on 

farm inputs including CSA strategies, crops-based CSA strategies, agricultural production, 

climate-related risks and farmers’ risk experiences and perceptions, etc. Table 1 shows the 

data needs by objectives of the study.  

3.3. Sampling procedure 

A three-stage sampling procedure stratified by two well-defined agroecological zones 

(SouthernGuinea Savanna and Derived Savanna)was used in this study. It involved the use 

ofstratified and simple randomsamplingtechniques,to select required respondents for this 

study. The States that are distinctly located in each of the two agroecological zones (AEZs) 

(SGS and DS) were grouped as a stratum. Hence, the two AEZs were considered as two 

different strata. The use of strata allows for smaller error of estimation to be produced and 

allows for precise information inside the subpopulations, about the variables under study 

(Barreiro & Albandoz, 2001). Hence, this sampling allows for identification of distinct 

spatial characteristics between the two zones (SGS and DS) within the same region.The 

probability proportional to size accounts for population differences (assigning self-weights) 

andit is adequate for indicating the number of enumeration areas (Eas) selected, while the 

simple random sampling technique was used to physically select the Eas and the households 

interviewed. Administratively, each state isdivided into Local Government Areas (LGA) and 

each LGA divided into localities. Each locality was further divided into enumeration areas 

(Eas) by the National Population Commission (NPC) for population census purposes.In the 

states selected for this study, the frame of Eas used underthe National Integrated Survey of 

Household (NISH) system by the National Bureau of Statistics (NBS) to conduct its 

household-based survey was adapted. In this system, 30 Eas had randomly been pre-selected 

from each of the 774 LGAs in Nigeria through systematic sampling.  

In this study, the sampling stages were as follows: First, a simple random sampling 

technique was used to select astate per stratum. Accordingly,Niger State with 25 LGAs was 

randomly selected from the SGS and BenueState with 23 LGAs from the Derived savanna 
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zone.Following this selection, the rural LGAs in each of the states were identified with the 

assistance of states ministry of agriculture and natural resources staff specifically from 

Department of Planning, Research and Statistics (DPRS) and the Agricultural Development 

Programme (ADPs) as follows: 

i. Benue State Rural LGAs (n=16):  

Ushongo, Konshisha, Logo, Gwer East, Gwer West, Buruku, Tarka, Apa, Ado, Obi, Oju, 

Agatu, Aogbadibo, Okpokwu, Ohimini and Guma 

ii. Niger State Rural LGAs (n=18):  

Agaie, Gbako, Edati, Katcha, Lavun, Bosso, Gurara, Munya, Paikoro, Shiroro, Rafi, Tafa, 

Agwara, Magama, Mariga, Mashegu, Rijau, and Wushishi 

 

Due to high level of insecurityassociated withconflicts and violence, and the difficult terrain 

in some locations of both states, the above identified rural LGAs were further evaluated, 

with the help of staff of the state ADPs and informal interactions with security operatives in 

the state, for accessibility for data collection.  

 

In the second stage, a total of 33 EAs were randomly selected for this study. The sample of 

EAs picked allows for concentration of the study within focused geographically delineated 

area.  

 

In the last stage, a purposive selection of representative farming households from the 

sampled Eas was carried out. At this stage, purposive sampling was used because not all the 

people in the Eas are engaged in the crops (rice, maize, millet, sorghum, yam, cassava, 

groundnut, soybean, and cowpea) of interest to the study. It is important to focus directly on 

farmers cultivating these crops, so the type of crops cultivated by farmer is the main criteria 

of selecting respondents for the study. 

Using the Cochran (1977) formula, the statistically relevant number of respondents for the 

study was determined as follows: 

𝑛ℎℎ𝑑 =
𝑧2𝑝𝑞

𝑒2
 , 
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where, 

𝑛ℎℎ𝑑= the number of households (sample size) required for this study; z = the selected 

critical value of desired confidence level usually at 95% level (z =1.96); p = the estimated 

proportion of farming attribute (smallholder crop farming) that is present in the population. 

This is assumed to be a maximum variability of 50% (p = 0.5); q=1 – p; and e = the desired 

level of precision of ±5% (e = 0.05), a total of 384 representative households were required 

for the study. However, 450 households were selected and interviewed across the Eas (Table 

1).  

3.4. Analytical techniques and models 

This section describes the analytical tools employedfor analysis of the stated objectives. 

These tools include; descriptive statistics, Ordinary Least Square (OLS)multiple regression, 

multivariate (MV) probit estimation, heterogeneous treatment effect(I) based on propensity 

score matching (PSM) technique, and the conditional recursive mixed-process (CMP) 

modelling framework (CMP) involving, probit and OLS estimation. The analytical tool(s) 

for each objective is presented in Table 1. 

Table 1: Analysis of objectives of the study 

S/No Objective 
Analytical tool(s)/ 

level of analysis 
Data used 

1 

describe the types of CSA 

strategies used by staple crop 

farmers 

Descriptive statistics 

(Household level) 

Various climate-smart 

technologies used by 

households and crops 

produced 

2 

examine the factors that 

determine the choices of CSA 

strategies of small-holder arable 

crop farming households 

Multivariate probit 

estimation 

(Household level) 

Tetrachoric 

correlation 

Various climate-smart 

technologies used by 

households, socio-economic 

and behavioural intention 

variables 

3 

analyse the determinants of 

intensity of use of CSA 

strategies 

Ordinary least square 

(OLS) estimation 

 

Poisson estimation* 

(Household level) 

Climate-smart intensification 

index, farmer, and 

households’ socio-economic 

and demographic 

characteristics 

4 

determine the productivity and 

welfare effects of usage of CSA 

strategies 

CMP modelling 

framework involving 

probit and OLS 

regression estimation 

Climate-smart intensification 

index, crop yield and its 

production inputs, household 

welfare status constructed 



44 
 

Heterogeneous 

treatment effects 

based on propensity 

score matching 

technique 

(Plot/household 

level) 

Seemingly Unrelated 

Regression 

Analysis* 

using the indicators of the 

three dimensions (education, 

living standard, and health), 

households’ socio-

demographic,spatial and plot 

characteristics 

5 

Identify the constraints to the 

use of CSA among staple crop 

farmers 

Descriptive statistics, 

mainlyGarrett 

ranking score 

(Household level) 

Farmer-identified and ranked 

constraint variables 

NB: *Alternative estimation technique for robustness check 

 

3.4.1. Descriptive statistics 

The descriptive analyses employed include; frequencies, proportions, means,standard 

deviation, and the Garrett’s ranking technique. 

The Garrett’s ranking technique is based on normality assumption in the trait for which 

ranking is made. The formula is given as: 

Percent position =
100(Rij-0.5)

Nj
,  

where𝑅𝑖𝑗 is the rank assignedto ith constraintby the jth farmer and 𝑁𝑗 is the number of 

constraintsranked by the jth farmer. The calculated percent position of each assigned rank 

was converted into scores,using the table developedby Garrett and Woodworth (1969). This 

table assigns to each constraint a “problem weight” on a scale of 100 points. For 

everyconstraint (factor), the score of respondents were summedtogether and then divided by 

the total number of the respondents. The authors explained that, such scores define the 

contribution of constraints better than a rank of 1, 2, 3, etc will.  

3.4.2. Multivariate probit (MVP) estimation model 

Following Mulwa et al. (2017) and Asfaw et al. (2016), the basic multivariate probit model 

is specified as: 

𝐶𝑆𝑖 = 𝛼0 + 𝛼1ℎℎ𝑑𝑎𝑔𝑒 + 𝛼2𝑑𝑒𝑝𝑟𝑎𝑡𝑖𝑜 + 𝛼3ℎℎ𝑑𝑔𝑒𝑛𝑑𝑒𝑟 + 𝛼4ℎℎ𝑒𝑑𝑢𝑐 + 𝛼5ℎℎ𝑠𝑖𝑧𝑒 +

𝛼6ℎℎ𝑑𝑔𝑟𝑝𝑚𝑒𝑚𝑏 + 𝛼7𝑝𝑙𝑜𝑡𝑡𝑜𝑝𝑜 + 𝛼8𝑐𝑟𝑑𝑡𝑐𝑜𝑛𝑠𝑡 + 𝛼9ℎℎ𝑑𝑟𝑖𝑠𝑘𝑒𝑥𝑝 +
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𝛼10ℎℎ𝑑𝑟𝑖𝑠𝑘𝑝𝑒𝑟𝑐𝑒𝑝 + 𝛼11ℎℎ𝑑𝑎𝑑𝑎𝑝𝑡𝑐𝑎𝑝 + 𝛼12𝑝𝑙𝑜𝑡𝑓𝑒𝑟𝑡𝑝𝑒𝑟𝑐𝑒𝑝 + 𝛼13𝑡𝑒𝑛𝑢𝑟𝑒𝑠𝑡𝑎𝑡 +

𝛼15𝑎𝑔𝑟𝑜𝑧𝑜𝑛𝑒 + 𝜀𝑖…..……................................................................................................10 

𝐶𝑆𝑖are the dependent variables measured as binary outcomerepresenting the list of climate-

smart adaptation strategies a farmer used in the last 10 years to combat climate-related 

shocks such as;drought, flood, crop pests and diseases, among other shocks. To ensure that 

these strategies are based on climate shocks, respondents were asked about their personal 

perceptions on changes in local climate over the last decade (ten years) and probable future 

concerns, and their experiences with climate-related shocks. Following this, farmers were 

requested to identifystrategies they had used and those they intend to use to reduce the 

effects of the shocks.The former responses were used as outcome variables in the 

multivariate probit analysis.𝛼𝑖  (𝑖 = 0, 1, 2, 3, … . . , 15) are unknown parameters, and 𝜀𝑖 (𝑖 =

1, 2, 3, 4, 5, … … . . , 𝑛) are the random errors in each outcome model distributed as a zero 

mean, unitary variance multivariate normal distributionand an 𝑛 𝑥 𝑛vector correlation 

matrix. The independent variables and their aprioriexpectations arepresented in Table 

2.However, these variables were subjected to principal component analysis (PCA) after 

standardization to summarize their variability. PCA, a useful technique for transforming 

many variables, is often used in data analysis to obtain smaller and clearer set of 

uncorrelated (orthogonal) factors known as principal components (Krishnan, 2010). Using 

the eigenvalue-one criterion (Kaiser criterion), any component with an eigenvalue greater or 

equal to one (1) was retained, since such component accounts for a greater amount of 

variability than had been contributed by singlevariable.Further, the tetrachoric correlation, 

which is a Pearson correlation estimate that assumes a latent bivariate or joint normal 

distribution for each pair of variables, was used to assess and describe the nature of the 

combinations of the CSA strategies by farmers. Adaptation strategies are considered 

simultaneously used by farmers, if the coefficient of the tetrachoric correlation is 

significantly high and positive. If the coefficients are significantly high and negative, the use 

of both technologies are considered to be mutually exclusive (Rauniyar & Goode 1992; 

Sharma, Kumar & Yadav, 2014). 

Table 2: Description of explanatory variables used in the various models (multivariate 

probit, OLS, and CMP estimations) 

Variable Definition measurement Expected sign/explanation 
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Variable Definition measurement Expected sign/explanation 

hhdage Age of household head Years 

(+/-)Age as a proxy for 

experience and if correlates 

with risk aversion, older 

farmers are more likely to adopt 

climate-smart strategies due to 

possible experiences of climate-

related hazards. 

depratio 

Household dependency 

ratio which relates to 

the number of children 

(0 – 14 years old) and 

older persons (65 years 

or over) to the 

working-age 

population (15 – 64 

years old) (UN-DESA, 

2006) 

Per 100 persons 

aged –5 - 64 

(+/-) Households with high 

dependency ratio are less likely 

to adopt and use local climate-

smart technologies since there 

would be less available person-

day. However, the probability 

of using modern labour saving 

strategies may be higher.  

hhgender 
Gender of household 

head 

Dummy 

(1=Male) 

(+) The likelihood of male 

headed households to adopt 

climate-smart technologies is 

more,since they are expected to 

have more control of resources. 

If female households are risk 

averse, adoption of CSA 

practices, would also be 

favoured.  

mstat 
Marital status of the 

household head 

Dummy 

(1 = Married and 

living with 

spouse) 

(+) Married household heads 

living with their spouse(s) are 

more likely to use climate-smart 

technologies, due to possible 

joint decision making. 

hheduc 
Educational level of 

household head 

Years of 

schooling 

(+) Better educated households 

are more likely to apply CSA 

technologies  

hhsize 
Adjusted household 

size 
Adult equivalent 

(+/-) Small-sized households 

are less likely to adopt labour-

intensive technologies,but they 

will readily adopt labour saving 

strategies.  

hhdnature 

Nature of households 

indicating 

monogamous or 

polygamous category 

of the household 

Dummy 

(1 = 

Monogamous 

household) 

Monogamous households are 

expected to have better level of 

multidimensional welfare level, 

due to reduced competition for 

familial resources  

hhdgrpmemb 

Membership of 

social/cultural/farmer 

group of one or more 

household members 

Dummy 

(1=Member of 

group) 

(+) This variable is a proxy for 

farmers’ social capital and 

provides opportunity for human 

capital and information sharing, 

which are likely to promote 
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Variable Definition measurement Expected sign/explanation 

technology adoption  

plotcultyr 
Years of cultivating 

plot 
Years 

(+) Use intensity of climate-

smart adaptation strategies is 

expected to increase on plots, 

that have been under cultivation 

for several years 

mktdist 

Distance of household 

to the nearest 

input/output market 

Km 

(+/-) Nearness to markets (input 

or output) increases market 

information and access to 

modern farm technologies, but 

may tend to decrease the use of 

local technologies. 

roadaccess 
Walking distance to 

the nearest major road 

Dummy 

(1 = less than 30 

minutes walk) 

(+/-) Nearness to motorable 

road is likely to increaseaccess 

to information and farm 

technologies; and consequently, 

increases intensity of use of 

CSA strategies 

plottopo Plot topography 

Dummy 

(1 = Flat; 

otherwise = 0) 

(+) Plots that are not flat are 

likely to need adaptation 

strategies, particularly, those 

that improve water retention 

and uptake and reduce erosion 

crdtconst 

A credit constrained 

household is one 

which was unable to 

access the amount of 

credit it intended in the 

last 5 years 

Dummy 

(1= No credit 

constraint, 

otherwise=0) 

 

 

(-) Credit access relaxes 

liquidity constraints of 

households, thus, increasing 

technology adoption 

extaccess 

Frequency of extension 

contact in last five 

years 

Number 

(+) Households with more visit 

of extension officers are more 

likely to be informed and 

therefore, use smart 

technologies that are risk 

reducing. 

hhdriskexp 

Drought/flood/pest and 

disease experience in 

last 10 years 

Number of risk 

events 

experienced 

(+) The higher the frequency of 

climate risk events, the more 

likely households would adopt 

CSA strategies, to ameliorate 

the impacts of such events 

hhdriskpercept 
Risk perception of 

household head 

Risk perception 

index (sum of the 

product of risk 

frequency and 

severity) 

(+) The higher the risk 

perception index, the more 

likely households would adopt 

CSA strategies 

hhdadaptcap 

Perceived adaptation 

efficacy of the 

household head 

Weighted 

effectiveness of 

household’s 

adaptive 

responses 

(+) Climate-smart technologies 

perceived by the farmer as more 

effective in increasing farm 

yield, are more likely to be 

adopted. 
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Variable Definition measurement Expected sign/explanation 

plotfertpercep 

Farm plot fertility 

perception (Weighted 

average soil fertility 

perception per 

household) 

Soil fertility 

index 

(5=Very fertile, 

…..,1=Not at all 

fertile) 

(-) Households are less likely to 

invest to improve the fertility of 

farm plots, that they perceive to 

be fertile. 

tenurestat 

Extent of household’s 

perceived plot tenure 

security  

Dummy 

(1=Secure, 

0=Insecure) 

(+) Households are more likely 

to invest in long-term strategies 

on plots, perceived to be better 

secured. 

farmsize 

Average size of farm 

cultivated per 

householda 

Hectare 

(+/-) The larger the farm size, 

the higher the probability of use 

of CSAstrategies,since farmers 

can use part of their land to 

experiment new adaptation 

strategies. However, those with 

small farms mightbe more 

likely to usestrategies that 

involve intensive management. 

agrozone 
Agroecological zone 

location of household 

Dummy 

(1=SGS, 0=DS) 

(+/-) The apriori expectation 

here is indeterminate since 

adaptation behaviour may 

depend on severity of climate-

related risks in the area 
aAverage farm size was used for household level analysis while actual farm size was used for plot-level 

analysis  

3.4.3. Climate-smart intensification index (CSI) 

This index is the measure of usage and was constructed following the approach of 

Kunzekweguta et al. (2017) in equation (9).The equation highlights the need to account for 

thenumber, their relative importance, and variations in household’s rate and extent of 

application of agricultural technologies on a given land. The variables for the construction of 

the index are presented in Table 3. Kunzekwegutaet al. (2017) used econometric analysis to 

generate the contributions of conservation agriculture to crop yield.This study, however, 

used weighted perception index to achieve these contributions. This is considered adequate 

to better capture the unobserved extent of contributions of adaptation strategies,compared to 

using dummies to generate such contributions.  

 

Table 3: Components of climate-smart intensification index construction 

Variable Definition Measurement 
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Wir Perceived contribution of CSA strategy (or their 

combination) to crop yield 

Weighted household 

perception of adaptation 

strategI, i, contribution 

to crop yield 

Rir Perceived rate of application of the conservation 

agriculture strategy (or combination of strategies) 

compared to the recommended application rate of the 

strategy. 

Ranking score 

(5=strictly adhered, …., 

1=Not at all adhere) 

Pir Proportion of the total land area cultivated, using 

conservation agriculture strategies. 
Percentage (%) 

Sir Area of the individual ith plot relative to largest plot in 

the data set 

Percentage (%)  

3.4.4. Ordinary Least Squares (OLS) regression technique 

Furthermore, objective 3 wasanalysed at thehousehold level, using the ordinary least square 

(OLS) estimation procedure following that, the dependent variable, climate-smart 

intensification index 𝐶𝑆𝐼𝑖 per farming household,isa continuous one. This variable was 

generated by adapting Kunzekweguta et al. (2017) methodology presented in Equation 9. 

The independent variables were those related to plot and households’ demographic and 

socio-economic variables and those defined in Table 4. The basic econometric model is: 

𝐶𝑆𝐼𝑖 =  𝛾0 +  𝛾1ℎℎ𝑎𝑔𝑒 +  𝛾2ℎℎ𝑔𝑒𝑛𝑑 + 𝛾3𝑚𝑠𝑡𝑎𝑡 +  𝛾4𝑑𝑒𝑝𝑟𝑎𝑡𝑖𝑜 +  𝛾5ℎℎ𝑑𝑛𝑎𝑡𝑢𝑟𝑒 +

𝛾6𝑒𝑥𝑡𝑎𝑐𝑐𝑒𝑠𝑠 + 𝛾7𝑐𝑟𝑑𝑡𝑐𝑜𝑛𝑠𝑡 +  𝛾8ℎℎ𝑑𝑔𝑟𝑝𝑚𝑒𝑚𝑏 +  𝛾9𝑇𝐿𝑈 +  𝛾10𝑝𝑙𝑜𝑡𝑐𝑢𝑙𝑡𝑦𝑟 +

𝛾11𝑚𝑘𝑡𝑑𝑖𝑠𝑡 + 𝛾12𝑟𝑜𝑎𝑑𝑎𝑐𝑐𝑒𝑠𝑠 +  𝛾13𝑓𝑎𝑟𝑚𝑠𝑖𝑧𝑒  + 𝛾14𝑝𝑙𝑜𝑡𝑡𝑜𝑝𝑜 +  𝛾15𝑡𝑒𝑛𝑢𝑟𝑒𝑠𝑡𝑎𝑡 +

𝛾16𝑠𝑜𝑖𝑙𝑓𝑒𝑟𝑡𝑝𝑒𝑟𝑐𝑒𝑝  +  𝛾17ℎℎ𝑑𝑟𝑖𝑠𝑘𝑝𝑒𝑟𝑐𝑒𝑝   + 𝛾18𝑎𝑔𝑟𝑜𝑧𝑜𝑛𝑒 +  𝜀𝑖………………..11 

Table 4: Description of explanatory variables in the OLS model 

Variable* Definition Measurement Expected sign 

livestock Number of livestock owned perhousehold  TLU** +/- 

CSAfreq Number of years of use of strategies Year + 

*Other included variables are as defined in Table 3 

**TLU is tropical livestock unit 
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3.4.5. CMP modelling framework with Probit and OLS regression estimation 

In addition to the indicator of usage of CSA strategies, crop productivity and household-

level welfare indicators were needed in the analysis of this objective. In this study, crop 

productivity was measured as the yield per hectare of the various staple crops under study. 

The indicator of household welfare,the multidimensional welfare, was measured as weighted 

deprivation score. The score is used to determine the welfare cut-off, which shows the 

proportion of weighted deprivations a household would experience,to be classified 

asmultidimensionally poor or otherwise. The dimensions of the multidimensional welfareare 

the global dimensions for multidimensional poverty index (MPI): education, health and 

living standard. Their respective indicators are as shown in Table 5.Eight of the indicators 

are same as the international MPI, while household food security was used as proxy 

indicator for nutrition indicator in the health dimension. Four additional indicators – number 

of persons (measured in adult equivalent) per bedroom, access to motorable roads, land 

ownership, and livestock ownership, were included as measures of living standard. These 

are considered adequate in the Nigeria rural setting. 
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Table 5:Multidimensional welfare dimensions and indicators 

Dimension 

(Weight) 

Indicator (weight) Deprivation cutoff 

Household is deprived if: 

Education (1/3) 

Years of schooling (1/6) No member has completed six years 

of schooling 

School attendance by school-age 

children (1/6) 

Any school-aged child (5 – 14 years) 

in the household is not attending 

school. A household without school-

aged children is considered non-

deprived 

Living standard 

(1/3) 

Source of drinking water (1/30) It does not have access to piped 

water, public tap, borehole, 

protected well, or safe water is more 

than 30-minute walk (round trip) 

Sanitation or toilet 

facilities(1/30) 

It does not have ventilated improved 

pit, flush toilet/latrine,or improved 

toilet available is shared with other 

households 

Type of cooking fuel (1/30) It cooks with animal dungs, charcoal 

or wood 

Electricity access (1/30) It has no electricity (either from 

public or private sources) 

Roof, floor and wall types (1/30) If the materials for the floor, roof, 

and walls are not modern 

Number of persons (measured in 

adult equivalent) per bedroom 

(1/30) 

It has more than 2 persons per 

bedroom (Based on Canadian 

National Occupancy Standard; 

Adebayo and Iweka (2013)) 

Access to motorable road (1/30) It is more than 30-minute walk from 

the nearest major road 

Land ownership(1/30) It owns less than 0.5 ha of 

farmland(Based on 2015/2016 

Nigeria LSMS-ISA Household 

Survey Report) 

Livestock ownership (1/30) It does not own more than three 

cattle, goat, sheep, pig, chicken, 

duck, guinea fowl. 

Asset ownership (1/30) It does not own more than one radio 

set, TV, mobile phone, bicycle, 

motorcycle, or refrigerator; and does 

not own a car or truck 

Health (1/3) 

Food security (1/6) Household suffers food shortage as 

indicated by the food consumption 

coping strategy index 

Child mortality (1/6) Any child has died in the household 
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NB: A household is in good food security standing if it has a food consumption coping 

strategy score of less than 4. 

Following Santos and Alkire (2011), the deprivation score, 𝐶𝑖 for each household wasbe 

computed as: 

𝐶𝑖 = 𝑤1𝐼1 +  𝑤2𝐼2 + ⋯ +  𝑤𝑖𝐼𝑖……………………………………………………….12 

Where 𝑤𝑖 = indicator weight, 𝐼𝑖 = number of deprivations. 

NB: Household is multidimensionally poor, if it experiences deprivation in at least 30% of 

the weighted multidimensional indicators. 

Following equation 12, the multidimensional welfare indices of relevance to this study 

include;  

i. Headcount ratio (H) – this identifies the percentage of the respondents that are 

deprived, at least eitherall the indicators of a single dimension or a combination 

across dimensions; 

ii. Intensity of deprivation among the poor (A), which describes the average number of 

deprivations a poor person suffers and  

iii. Adjusted headcount ratio (M0), which indicates the share of the respondents that is 

multidimensionally poor adjusted by the intensity of deprivation suffered. It reflects 

the proportion of deprivations that the poor experiences in the study area, out of all 

the overallor potential deprivations that the study area could experience. 

 

The modelling of the relationship between household welfare and crop productivity requires 

that endogeneity and potential simultaneity issues be accounted for. This will normally 

require the use of instrumental variables to identify anexogenous source of variations in the 

regressors. However, the CMP modelling framework will allow for sequential joint 

estimation of the welfare,productivity, and climate-smart intensification equations, while 

accounting for these issues (i.e., it will allow the error terms –unobserved and unmeasured 

variables– to be freely correlated and yield unbiased estimates).Theoutcome (welfare, Wi) of 

CSA decisions of the households is assumed to be achieved in a sequential manner. First, the 

decision and extent of use (𝐶𝑆𝐼𝑖
∗) of any CSA strategy in the face of weather-related threats 

is expected to be influenced by several factors. Next, the effect of the farmer’s adaptation 

decisions (use and intensity) is expected to influencehousehold’s farm yield, 𝑌𝑖
∗; therefore, 
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the decision and/or extent of use variable will enter the yield (productivity) equation as an 

endogenous variable. Household farm productivity is again expected to translate to 

improved household welfare,𝑊ℎ
∗ - little or no deprivations.Hence, adaptation decision and 

farm productivity will enter the welfare equation as endogenous variables. Therefore, the 

recursive systems of equations are stated implicitly as: 

𝑊𝑖
∗ = 𝑓(𝑌𝑖𝑐, 𝐶𝑆𝐼𝑖) +  𝜀3 ……….……………………………………………………………13 

𝑌𝑖
∗ = 𝑓(𝐶𝑆𝐼𝑖) +  𝜀2 ….……………………………………………………………………...14 

𝐶𝑆𝐼𝑖
∗ = 𝑓(𝑋𝑖) +  𝜀1…………….……………………...………………………..…………..15 

Explicitly,  

𝑊𝑖
∗ =  𝛼0 + 𝛼1𝑌𝑖 +  𝛼2ℎℎ𝑔𝑒𝑛𝑑  +  𝛼3𝑒𝑑𝑢𝑦𝑟𝑠 +  𝛼4ℎℎ𝑔𝑒𝑛𝑑 ∗ 𝑒𝑑𝑢𝑦𝑟𝑠 +  𝛼5ℎℎ𝑑𝑎𝑔𝑒 +

 𝛼6ℎℎ𝑑𝑐𝑟𝑑𝑠𝑡𝑎𝑡 +  𝛼7𝑑𝑒𝑝𝑟𝑎𝑡𝑖𝑜 + 𝛼8ℎℎ𝑡𝑙𝑢 +  𝛼9𝑚𝑟𝑜𝑎𝑑 + 𝛼10𝑡𝑒𝑛𝑢𝑟𝑒𝑠𝑡𝑎𝑡 +
 𝛼11𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼 …...…………………………………………….16 

𝑌𝑖
∗ =  𝛿0 +  𝛿1𝐶𝑆𝐼𝑖 +  𝛿1𝑓𝑎𝑟𝑚𝑠𝑖𝑧𝑒 +  𝛿2𝑡𝑜𝑡𝑝𝑑𝑎𝑦 + 𝛿3𝑎𝑔𝑟𝑜𝑐ℎ𝑒𝑚 +  𝛿4𝑓𝑒𝑟𝑡𝑐𝑜𝑠𝑡 +

  + 𝛿5𝑡𝑒𝑛𝑢𝑟𝑒𝑠𝑡𝑎𝑡 +  𝛿6𝑝𝑙𝑜𝑡𝑡𝑜𝑝𝑜 +  𝛿7𝑓𝑎𝑟𝑚𝑠𝑖𝑧𝑒 ∗ 𝑓𝑒𝑟𝑡𝑐𝑜𝑠𝑡 +  𝛿8𝑓𝑎𝑟𝑚𝑠𝑖𝑧𝑒 ∗ 𝑡𝑜𝑡𝑝𝑑𝑎𝑦 +

 𝛿9𝑓𝑎𝑟𝑚𝑠𝑖𝑧𝑒 ∗ 𝑎𝑔𝑟𝑜𝑐ℎ𝑒𝑚 +  𝛿10𝑓𝑎𝑟𝑚𝑠𝑖𝑧𝑒 ∗ 𝐶𝑆𝐼 + 𝛿11𝑡𝑜𝑡𝑝𝑑𝑎𝑦 ∗ 𝑓𝑒𝑟𝑡𝑐𝑜𝑠𝑡 +

 𝛿12𝑡𝑜𝑡𝑝𝑑𝑎𝑦 ∗ 𝑎𝑔𝑟𝑜𝑐ℎ𝑒𝑚 +  𝛿13𝑡𝑜𝑡𝑝𝑑𝑎𝑦 ∗ 𝐶𝑆𝐼 +  𝛿14𝑎𝑔𝑟𝑜𝑐ℎ𝑒𝑚 ∗ 𝑓𝑒𝑟𝑡𝑐𝑜𝑠𝑡 +

 𝛿15𝑎𝑔𝑟𝑜𝑐ℎ𝑒𝑚 ∗ 𝐶𝑆𝐼 +  𝛿16𝐶𝑆𝐼 ∗ 𝑓𝑒𝑟𝑡𝑐𝑜𝑠𝑡 +  𝛿17ℎℎ𝑑𝑎𝑔𝑒 +  𝛿18ℎℎ𝑠𝑖𝑧𝑒 +

 𝛿19𝑒𝑥𝑡𝑎𝑐𝑐𝑒𝑠𝑠 +  𝛿20ℎℎ𝑑𝑔𝑟𝑝𝑚𝑒𝑚𝑏 +  𝜀𝑦……………………………………….………17 

𝐶𝑆𝐼𝑖 =  𝛾0 +  𝛾1ℎℎ𝑎𝑔𝑒 +  𝛾2ℎℎ𝑔𝑒𝑛𝑑 + 𝛾3𝑚𝑠𝑡𝑎𝑡 +  𝛾4𝑑𝑒𝑝𝑟𝑎𝑡𝑖𝑜 +  𝛾5ℎℎ𝑑𝑛𝑎𝑡𝑢𝑟𝑒 +

𝛾6𝑒𝑥𝑡𝑎𝑐𝑐𝑒𝑠𝑠 + 𝛾7𝑐𝑟𝑑𝑡𝑐𝑜𝑛𝑠𝑡 +  𝛾8ℎℎ𝑑𝑔𝑟𝑝𝑚𝑒𝑚𝑏 +  𝛾9𝑇𝐿𝑈 +  𝛾10𝑝𝑙𝑜𝑡𝑐𝑢𝑙𝑡𝑦𝑟 +

𝛾11𝑚𝑘𝑡𝑑𝑖𝑠𝑡 + 𝛾12𝑟𝑜𝑎𝑑𝑎𝑐𝑐𝑒𝑠𝑠 +  𝛾13𝑓𝑎𝑟𝑚𝑠𝑖𝑧𝑒  + 𝛾14𝑝𝑙𝑜𝑡𝑡𝑜𝑝𝑜 +  𝛾15𝑡𝑒𝑛𝑢𝑟𝑒𝑠𝑡𝑎𝑡 +

𝛾16𝑠𝑜𝑖𝑙𝑓𝑒𝑟𝑡𝑝𝑒𝑟𝑐𝑒𝑝  +  𝛾17ℎℎ𝑑𝑟𝑖𝑠𝑘𝑝𝑒𝑟𝑐𝑒𝑝   + 𝛾18𝑎𝑔𝑟𝑜𝑧𝑜𝑛𝑒 +  𝐼…………...….18 

Where𝛾𝑖, 𝛿𝑖and 𝛼𝑖are matrix of coefficients while 𝜀𝑐𝑠, 𝜀𝑦 and 𝜀𝑤 are random error terms 

representing both equation-level unobservables and choice-specific unobservables, whose 

correlation coefficient measures the indirect effect of first-level outcome on the second-level 

outcome, after the endogenous influence of the first-level outcome is accounted for, and so 

on. 𝛼1and𝛿1measure endogeneity of the endogenous variable(s) on the outcome variable at a 

given system level (Bhat, Castro & Pinjari, 2015; Ergano, 2017). The explanatory variables 

are as explained in Tables 2,3, 4 and 5. 

Further, the study employed the propensity score-based heterogenous treatment effect 

technique to analysethe treatment effect of use of CSA strategies on crop yield. The 

potential of this technique,lies in its ability to account for variability across units of analysis 
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(Xie, 2007) since individuals differ not only in their background characteristics, but also, in 

how they respond to any treatment or intervention (Xie, Brand & Jann, 2012). The research 

and policy implications of using this technique are documented in Xie et al. (2012). 

3.5. Limitations to the Study 

As with any other scholarly work, this dissertation was challenged by several limitations, 

though several steps were taken to reduce or eliminate their influences on the results. 

Generally, climate change analyses are best done, using panel series data, since climate-

relate risk events are observed over time. In this study, however, data on climate risk 

variables were collected during a one-round survey from the household head, who was 

presumed to be well-informed about the climate change events within the study reference 

period of ten (10) years. The survey round and timeframe considered may not have allowed 

for information on some major climatic events outside the period to be captured. Therefore, 

the responses might not have reflected every climate change eventas closely as possible. 

This is because the data on several variables, particularly, those related to climate risk events 

used for this study, were based on farmer recall (memory) and perception. These methods 

are often associated with inaccurate information and could haveimpact on response 

precision.  

This study is limited to dichotomous choices, made by farmers in the use of the CSA 

strategies and did not consider the cost of use of these strategies. As such, cost-related data 

were not collected for analysis. 

Often, several factors,including climate change events,simultaneously affect farm household 

outcomes such as farm productivity and welfare. When this happens, attribution of these 

outcomes to climate change events,becomes difficult for the farmer and responses can be 

biased. 

Another limitation is that associated with sampling methodology, since biases were expected 

under a disproportionately sized sample, as used in this study. However, this was corrected 

by using cluster (weights), in the various regression analyses carried out.  

In this study as well, selection bias resulting from both observables and unobservables was 

assumed and therefore requires that a valid instrument, which is often difficult to identify be 
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used (Angrist &Krueger, 2001). Similarly, adaptation and impact route of farmers’ use of 

CSA strategies is considered recursive, which implies that,it requires various equations with 

defined stages, rather than simultaneous relationship. Considering these difficulties, the 

study estimated impact of CSA strategies, following the conditional recursive mixed-process 

(CMP) modelling framework, which helps to circumvent these methodological constraints, 

often associated with the well-known impact evaluation methods. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

This chapter presents the results of data analysis to examine productivity and welfare effects 

of climate-smart adaptation (CSA) practices of smallholder staple crop farmers in Savanna 

Agro-Ecological Zone of Nigeria. These results are presented and discussed in two parts: 

background information of the respondents and results based on the study objectives. 

4.1. Background information of respondents 

These are presented and discussed under characteristics of sample respondents and the 

impacts and severity of climate risks events in the study area. 

4.1.1. Characteristics of sample respondents 

The socio-economic characteristics of the respondents on various variable groups are 

presented in Table 6. The characteristics presented and discussed include;age, gender, 

educational level, marital status, and household size. Others considered,were dependency 

ratio, incidence of child mortality, extension visits, membership of groups, food security 

level, and credit status, among others. Asset (land and livestock) ownership and various 

indicators of household living standards, were used to measure household 

wealth/infrastructure status.Distance of household from nearest market and access to 

motorable road were indicators of community level variables, 

Table 6: Socio-economicattributes of respondents (n=391) 

Socioeconomic Variables Frequency Percentage Mean (SD) 

Age of household head  

30 – 44  189 48.34 

45.60 

(±10.87) 

45 – 59  150 38.36 

60 – 74  46 11.76 

75 – 89  6 1.53 

Gender of household head   

Female 46 11.76  

Male 345 88.24  

Educational level of household head   

No formal education 98 25.06 

9.21 (5.99) 
Primary education 68 17.39 

Secondary education 172 43.99 

Above Secondary education 53 13.55 

Civilstatus of head   

Married and living with spouse 344 87.98  

Married and living without spouse 47 12.02  
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Socioeconomic Variables Frequency Percentage Mean (SD) 

Household size (AE)  

1 – 6  187 47.83 

7.91 (4.94) 

7 – 12  148 37.85 

13 – 18  36 9.21 

19 – 24  14 3.58 

25 – 30  5 1.28 

31 – 37  1 0.26 

Dependency ratio   

Low dependency (Less than 1) 259 66.24 

0.85 (0.98) 
Moderate dependency (1 – 2) 117 29.92 

High dependency (3 – 5) 12 3.07 

Very high dependency (above 5) 3 0.77 

Incidentof child mortality   

Yes 156 39.90  

No 235 60.10  

Numberof extension contacts in last 5 

years  

   

None 111 28.39 

5.84 (7.83) 

1 – 7  170 43.48 

8 – 14 46 11.76 

15 – 21 44 11.25 

22 – 28 11 2.81 

29 – 35 9 2.30 

Extension visit on climate change 

issues  

 

Yes 138 35.29  

No 253 64.71  

Group membership of household   

Yes 327 83.63  

No 64 16.37  

Food security status  

Very good 175 44.76  

Good 84 21.48  

Fair 54 13.81  

Poor  78 19.95  

Household mobile phone ownership  

Yes 372 95.14  

No 19 4.86  

Credit status of household   

Constrained 265 67.77  

Unconstrained 126 32.23  

Community level Variables    

Distance of household from nearest 

market  

 

Less than 1 169 43.22 

5.88 (16.24) 

1 – 3  79 20.20 

4 – 6 45 11.51 

7 – 9 21 5.37 

Above 9 77 19.69 
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Socioeconomic Variables Frequency Percentage Mean (SD) 

Access to motorable road less than 

30minutes walk 

 

Yes 353 88.69  

No 45 11.31  

Wealth/infrastructural indicators 

Number of livestock owned (TLU)  

None 23 5.88 

1.51 (1.35) 

0.01 – 1.00 162 41.43 

1.01 – 2.00 96 24.55 

2.01 – 3.00 59 15.09 

3.01 – 4.00 20 5.12 

4.01 – 5.00 31 7.93 

Asset ownership quintile  

Poor 74 18.93  

Fair 85 21.74  

Good 88 22.51  

Very good 63 16.11  

Excellent 81 20.72  

Access to safe water  

Yes 358 91.56  

No 33 8.44  

Access to improved sanitation/toilet   

Yes 250 63.94  

No 141 36.06  

Use of efficient cooking fuel   

Yes 7 1.79  

No 384 98.21  

Access to electricity   

Yes 305 78.01  

No 86 21.99  

Dwelling place of modern floor, roof 

and wall types  

 

Modern dwelling 146 37.34  

Local dwelling 245 62.66  

Adult equivalent per rooms   

Adequate 351 88.24  

Inadequate 46 11.76  

Average farmsize   

0.1 – 0.5  117 29.92 

1.06 (0.75) 

0.6 – 1.0  131 33.50 

1.1 – 1.5 64 16.37 

1.6 – 2.0 33 8.44 

2.1 – 2.5  27 6.91 

2.6 – 3.0 19 4.86 

Source: Field survey, 2018 

 



59 
 

The overall averageage of the household heads, who are mostly (88%) male, is 46 years with 

about 9 years of formal education (equivalent to completion of Junior Secondary School 

level). The age distribution shows that most (48.34%)of the respondents were between the 

ages of 30 – 44 years old followed by those within the age bracket of 45 – 59 years. About 

2% of the respondents were older than 74 years. About 44% of the respondents had up to 

secondary education, while a quarter is shown to have no form of formal education. Those 

with primary and above secondary education were about 17% and 14%, respectively. 

Further on Table 6, the civil status of the respondents shows that majority (88%) of the 

household heads live with their spouse(s), providing opportunity for possible joint 

adaptation decision-making. Household size proxied for labour accessibility and based on 

adult equivalent, the average is eight (8) with most (47.83%) of the households having a 

household size of 1 – 6 persons. This is followed by those with 7 – 12 and 13 – 18 persons 

representing 38% and nine per cent, respectively. Some evidence in literature suggest that 

greater labour availability are associated with increased adaptation practices (Ali & 

Erenstein, 2017; Arslan et al., 2017; Mulwa et al., 2017). Overall, households in the study 

area had high low dependency ratio with each person in their prime or working age, 

supporting about 0.85 children or elderly persons. The distribution of households’ 

dependency ratios indicates that, those with low and moderate dependency are 66% and 

30% respectively, while about three per cent and one per cent of the households had high 

and very high dependency.  

On the average, respondents had about six contacts with extension agents in the last five 

years, approximately one per year with about 43% having between 1 – 7 contacts in the last 

five years. The percentage of households decreased with increased number of extension 

contacts within the period. However, about 35% of the households in the last five years 

received climate change related information, due to their contact with extension agents in 

their areas. This could have implications on the use of adaptation practices, since extension 

contacts could increase availability of information and technical assistance needed to foster 

climate-smart adaptation practices. Social capital or networks among farmers had been 

shown to play significant positive role in agricultural technology adoption (Knowler & 

Bradshaw, 2007). Majority (84%) of the respondents are members of different 

social/cultural/farmer groups. Based on food consumption coping strategy index,households 
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with lower mean scores are considered more food secure. The quantile distribution of these 

scores indicates that,two-third (66%) of the households are in good food security 

standing.Majority (95%) of the households in the study area had mobile phone mostly used 

for communication and which could have aided in climate change information 

dissemination. In terms of access to credit, 68% of the households where considered to be 

credit (either formal or informal) constrained, which can limit farmers’ resilience to shocks 

(Elias, Ayele & Ferede, 2017). 

Distance-related variables are often considered as determinants of farm input use decision, 

since to a considerable extent, they influence travel time and transaction costs (Asfaw et al., 

2016). Proxied by distance of household’s residence to the nearest market and walk time to 

nearest access road, farmers on average travel about 6km to the nearest market with great 

variability shown by the distribution of the households. About 43% of the households travel 

less than a kilometer to the nearest market while about 20% must travel more than nine 

kilometers to access the nearest market in their location. Another 20% of the respondents 

showed that they travelledbetween 1 – 3 km to access the nearest market while 12% 

travelled 4 – 6 km. Generally, the closer a farmer is to the market, the more access to market 

information and lesser transportation cost. Access to motorable roads is very high in the 

study area as indicated by 89% of the respondents, who opined that, these roads are less than 

30 minutes’ walk from their homes. It is imperative to note that, these results are indicative, 

since the quality of the roads were not considered. 

The availability of various resources, including physical, human, institutions, technological 

and social means, have been identified to affect distributional impact and adaptation 

behaviours of households (Burton, Diringer & Smith, 2006; Devereux, 2007; Ayanladeet al., 

2017). The wealth and infrastructure indices of the sampled households indicate similarity in 

livestock ownership and use of efficient cooking fuel, with respondents having about two (2) 

livestock and 98%, using such cooking method, respectively. Ninety percent (92%), 64%, 

78% and 88% of the respondents had access to save water, improved sanitation, electricity 

and adequate household size-room ratio, respectively; indicating a relatively high living 

standard.  Land-based asset proxied by average plot size shows that, respondents own an 

average of one hectare (1 ha) with 34% having between 0.6 – 1.0 ha followed by about 30% 
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of the respondents with 0.1 – 0.5 ha. Households with 1-6 – 2.0 ha, 2.1 – 2.5 ha, and 2.6 – 

3.0 ha are about eight, seven and five per cent, respectively. Non-land asset quintile 

distribution of households indicates a relatively similar distribution across the levels. For 

instance, about 19% of the respondents are in the poor non-land asset category, 22% in the 

fair category while 23% were in the good non-land asset group. 16% and 21% of the 

respondents fall into the very good and excellent non-land asset ownership category (Table 

6). 

The perceptions about farm plot fertility, nature of topography, and perceived plot-level 

tenure security status are presented on Table 7. Also presented, are the length of use of plot 

for farming activities and the efficacy of adaptation strategies, used by farmers on the plots. 

Table 7: Respondents’ plot characteristics 

Plot biophysical and perceived tenure security 

variables 

Frequency Percentage Mean (SD) 

Farm-plot fertility perception    

Fertile  832 65.00  

Non-fertile 448 35.00  

Nature of farmtopography   

Flat  1080 84.38  

Non-flat 200 15.63  

Leave farmempty with no fear of loss   

Secure plot 933 72.89  

Insecure plot 347 27.11  

Likelihood of ownership/use dispute   

Secure plot 398 31.01  

Insecure plot 882 68.91  

Length of farm-plot use for farming activities   

1 – 10  412 32.19 

19.50 

(13.71) 

11 – 20  445 34.77 

21 – 30  187 14.61 

31 – 40 121 9.45 

41 – 50 115 8.98 

Perceived adaptation efficacy of the household head     

None 86 6.72 

0.13  

(0.09) 

0.01 – 0.09 514 40.16 

0.1 – 0.19 420 32.81 

0.2 – 0.29 187 14.61 

0.3 – 0.39 73 5.70 

Source: Field survey, 2018 

NB: Biophysical and plot variables were measured at plot level (number of plots = 1,280) 
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Sixty-five per cent of the respondents perceived their farmland to be fertile; thus, requiring 

small amount of fertilizer to increase crop production, even after about 20 years of farming 

activities of such lands. Indicators of tenure insecurity, proxied by the possibility of the 

farmer to leave farmland empty with no fear of loss and the likelihood of occurrence of 

ownership or use dispute with 73% and 69% respectively, show that, tenure insecurity is a 

concern in the agroecological zone. The perceived efficacy of adaptation practices ranges 

between zero (0) and one (1) or 0 and 100 per cent with zero indicating no adaptation 

efficacy and 1 or 100% showing full efficacy of adaptation practices. The median score of 

perceived efficacies of the climatesmart adaptation strategies used by farmers is 0.13 

(±0.09). This indicates that these strategies as used by farmers contribute poorly to the yield 

of the crops compared to their potentials. This may not be unconnected with the use 

intensity among other factors. The distribution of the perceived efficacy scores indicates that 

plots with 0.01 – 0.09 efficacy score were about 40% of the total plots. This is followed by 

33% and 15% of plots with scores between 0.1 – 0.19 and 0.2 – 0.29, respectively.  

On Table 8, climate risks experiences of households,over the last ten (10) years,are 

presented and include those associated with fluctuations in temperature, rainfall 

characteristics and incidences of climate risk events.  

Table 8: Climate change experience/perception of respondents 

Climate Risk Variables Frequency Percentage 
Mean  

(SD) 

Temperature changes  

Yes 376 96.16  

No 15 3.84  

Changes in rainfall quantity     

Yes 382 97.70  

No 9 2.30  

Changes in rainfall distribution   

Yes 382 97.70  

No 9 2.30  

Changes in rainfall duration   

Yes 383 97.95  

No 8 2.05  

Number of drought incidences  

None 236 60.36 
1.24 

(2.09) 
1 – 5 139 35.55 

6 – 10 16 4.09 

Number of delayed rainfall incidences  

None 4 1.02 3.33  
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Climate Risk Variables Frequency Percentage 
Mean  

(SD) 

1 – 5 233 59.59 (3.32) 

6 – 10 133 34.02 

11 – 15 13 3.32 

16 – 20 8 2.05 

Number of earlier onsets of rainfall 

incidences  

 

None 9 2.30 

6.42  

(4.62) 

1 – 5 211 53.96 

6 – 10 107 27.37 

11 – 15 48 12.28 

16 – 20 16 4.09 

Number of erratic rainfall pattern 

incidences  

 

None 43 11.00 

4.30  

(3.17) 

1 – 5 238 60.87 

6 – 10 98 25.06 

11 – 15 12 3.07 

Number of too much rain incidences   

None 23 5.88 

5.11  

(3.79) 

1 – 5 242 61.89 

6 – 10 102 26.09 

11 – 15 16 4.09 

16 – 20 8 2.05 

Number of less rain incidences   

None 22 5.63 

5.05  

(3.29) 

1 – 5 226 57.80 

6 – 10 124 31.71 

11 – 15 15 3.84 

16 – 20 4 1.02 

Number of higher temperatures 

incidences 

 

None 32 8.18 

5.17  

(4.38) 

1 – 5 221 56.52 

6 – 10 94 24.04 

11 – 15 33 8.44 

16 – 20 11 2.81 

Number of hailstorm/windstorm 

incidences  

 

None 11 2.81 

3.98  

(2.85) 

1 – 5 295 75.45 

6 – 10 75 19.18 

11 – 15 10 2.56 

Number of increased pests/diseases 

incidences  

 

None 9 2.30 

5.04  

(3.89) 

1 – 5 254 64.96 

6 – 10 104 26.60 

11 – 15 15 3.84 

16 – 20 9 2.30 
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Climate Risk Variables Frequency Percentage 
Mean  

(SD) 

Number of climate risks incidences in 

last 10 years 

 

None 2 0.51 

4.66  

(2.49) 

1 – 3 153 39.13 

4 – 6 158 40.41 

7 – 9 64 16.37 

10 – 12 10 2.56 

13 – 15  4 1.02 

Climate risk perception index of 

respondents 

 

0.1 – 1.9 172 43.99 

2.96  

(2.11) 

2.0 – 3.9 114 29.16 

4.0 – 5.9  65 16.62 

6.0 – 7.9  29 7.42 

8.0 – 9.9 8 2.05 

10 – 11.9  3 0.77 

Source: Field survey, 2018 

 

It is evident from Table 8that climate variability/change exist as more than 90% of the 

respondents acknowledge observing changes in temperature and rainfall characteristics in 

the last decade, or since when they started farming. In terms of number of incidences of 

climate anomaly,60% of the respondents indicated that no drought incidence has occurred in 

the last 10 years or since when they started farming activities. Thirty-six (36%) and four (4) 

per cent of the households opined that drought occurred between 1 – 5 and 6 – 10 times 

respectively in the study area in the last 10 years.The incidence of early onset of rains is 

more with an average of six (6) occurrences within the same period. About 54% and 27% of 

the respondents noted that this climatic anomaly has happened between 1 – 5 and 6 – 10 

times, respectively, in the last 10 years. Only 2% of the households have not witnessed any 

occurrences, while those who witnessed the occurrences of this climatic deviation between 

11 – 15 and 16 – 20 times in the last 10years were about 12% and 4%, respectively. Similar 

distribution pattern exists across other climate risk events, with modal observations within 1 

– 5 times in the last 10 years. This is followed by 6 – 10 times occurrences over the study 

period. On average, households in the study area have had about five incidences of one 

climate risk event or the other in the last 10 years. About 39%,40% and 16% of the 

respondents had witnessed the occurrence of at least one of the climate-risk events between 

1 – 3, 4 – 6, and 7 – 9 times, respectively. This portends some implications on the adaptation 
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behaviours of farmers, who are more likely to be involved in anticipatory/proactive, rather 

than reactive adaptation behaviours. Furthermore, the distribution of respondents based on 

perceived climate risk index shows that 44%, 29%, and 17% of the households have 0.1 – 

1.9, 2.0 – 3.9, ad 4.0 – 5.9 index scores while about 10% of the households recorded 6% and 

above. This indicates that, multiplicative effects of the number of incidence and the severity 

of climate risk events arelow in majority of the households.  

4.1.2. Climate risk events: impacts and severity 

The results in this sub-section are presented and discussed under the followings: 

outcomes/impacts and perceived severity of climate risk events. The results,as presented in 

Table 9, show varied outcomes of the different climatic risk events, with most of the 

outcomes yield based. 
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Table 9: Descriptive summary of climate change risk events (Percentages) 
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Climate event outcomes/impacts+  

No effects 36.07 0.26 2.06 7.85 6.44 5.43 5.40 2.08 2.06 

Decrease in crop yield 39.07 64.01 4.88 52.09 26.29 50.13 4.11 5.97 42.67 

Increase in crop yield 2.19 1.54 77.12 10.47 22.94 2.07 0.51 0.00 1.29 

Food scarcity/insecurity 30.05 35.48 3.60 24.87 9.79 37.47 3.34 5.71 28.02 

Increase in food prices 12.84 26.22 4.37 8.12 5.93 21.96 1.80 0.78 15.17 

Decrease in food prices 0.82 1.29 28.02 3.14 7.99 1.81 0.51 0.00 2.83 

Increased conflict among resource users 1.91 1.29 0.00 1.57 1.80 6.98 0.51 0.26 0.00 

Death/disability of a household member 1.64 0.51 0.00 0.26 0.77 0.00 1.29 4.68 0.51 

Dwelling damaged/demolished 0.55 0.51 0.77 1.83 38.40 0.26 3.08 85.45 0.77 

Decreased livestock productivity 1.91 1.29 0.26 2.36 9.02 3.10 14.65 0.52 8.48 

Increase in livestock productivity 0.00 0.00 6.17 0.52 2.84 0.26 0.26 0.26 0.00 

Death of livestock 7.65 0.77 0.00 0.26 6.96 1.55 33.42 7.79 28.02 

Reduced water availability 16.94 11.57 1.03 1.57 0.77 17.31 26.48 2.60 0.51 

Health-related problem 1.09 0.26 1.29 1.05 2.32 1.03 37.53 1.82 10.28 

Incidence of pest and diseases 1.91 1.26 2.31 2.36 3.35 3.36 10.03 1.30 22.88 

Negative changes in vegetation 1.09 2.31 0.77 6.81 5.93 6.20 15.94 4.68 4.63 

Severity of climate change events  

None 45.36 1.54 22.05 11.31 5.90 5.64 7.69 3.59 1.03 

Little 12.30 22.88 27.18 30.59 18.72 18.46 10.26 22.82 9.25 

Somewhat 22.95 41.13 35.64 35.48 34.10 29.23 23.59 30.51 30.59 

Much 7.10 26.74 12.05 20.31 18.72 25.64 25.13 25.13 23.39 

A great deal 12.30 7.71 3.08 2.31 22.56 21.03 33.33 17.95 35.73 

Source: Field survey, 2018 
+Multiple responses recorded, and number reported are percentages based on farmers’ experiences in the last ten (10) years or since started farming, ++ 2 – 3 

months of little or no rainfall characterized by insufficient soil moisture resulting in lack of crop growth and production (Wilhite, 2000). 
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The decreasein crop yield over the past ten years was attributed by the respondents to 

delayed onset of rainfall, unpredictable (erratic) rainfall pattern, limited quantity (amount) of 

rain, increased incidences of pests/diseases, and drought incidence by 64%, 52%, 50%, 43%, 

and 39%, respectively. Usually, yield decline has spiral effects. Hence, these risk events 

except excessive rainfall (about 10%) were also indicated to lead to food shortage/insecurity 

while food price increases were attributed partly to delayed onset of rainfall (26%), limited 

quantity of rainfall (22%), pest/disease (15%) and drought incidences (13%). A positive 

outcome of decrease in food prices was observed only for early onset of rain. This could be 

that, when such occurred, it remained stable or at intervals and that, supports crop growth 

and development. Non-farm asset loss (damaged/demolished dwelling place) was attributed 

to excessive rains (38%) and the occurrence of hail/windstorm (85%), while the decline in 

livestock productivity, livestock death, reduced water availability, human health-related 

problems, and negative changes in vegetation cover, were associated with incidences of high 

temperatures.  

In addition, about 23% and 10% of the respondents noted that, pests and diseases incidences 

led to proliferation of more pests/diseases incidences and some human health-related issues. 

Though drought, defined in this study following Wilhite (2000), was identified to impact 

welfare of respondents, 36% of the respondents noted that, it had no economic/welfare 

effects on them. This probably reflects the frequency of its incidence, which is highly 

limited to about one occurrence in the last ten years (see Table 8). Other events with higher 

frequencies of incidence did not follow this pattern as less than 10% of the respondents 

noted that they had no economic effect, when they occurred. The multiple responses of 

respondents show that the impacts/outcomes of these climate risk events are not mutually 

exclusive and as such, could not be solely attributed to anevent. For instance, a decline in 

crop yield could be a manifestation of anomalies in multiple climate risk events occurring, 

simultaneously. High variability in rainfall could trigger increased pest/disease incidence, 

and increased temperature could favour reproductive/productivity failure in livestock, 

animal migration, and reduced photosynthetic activity in plants (Haynes, 1964). Overall, the 

severity of the incidences of the climate risk events is heterogeneous. For instance, about 

55% of the respondents opined various levels of severity ranging from little to a great deal 
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of severity for drought incidence in their locality. About 99% of the respondents indicated 

similar severity distribution for pests and diseases incidences. 

4.1.3. Crop-based climate-smart adaptation strategies used by farmers 

Table 10shows the distribution of the use of various climate-smart adaptation practices for 

staple crops farming and their length of usage in the study area, over the last decades. These 

strategies are presented and discussed according to the crops cultivated by the respondents. 

Crops like rice, maize, millet, and sorghum are collectively discussed under cereals; yam 

and cassava constitute root/tuber crops; while groundnut, soybean, and cowpea belong to 

pulses group.  

Table 101: Percentage Distribution of CSA strategy use by major crops and years of 

usage 

Crop Type 
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Rice 1.25 2.58 7.66 2.34 3.98 3.59 7.50 0.86 6.09 9.53 3.67 

Maize 0.47 16.17 15.23 9.84 25.86 22.03 25.16 2.89 19.77 20.00 9.84 

Millet 0.23 12.42 14.38 3.75 15.70 11.95 13.05 2.34 14.84 7.03 2.19 

Sorghum 0.55 13.67 15.47 3.83 16.33 13.20 13.83 2.42 16.64 8.13 2.58 

Yam 0.08 7.97 7.81 13.98 19.22 16.41 18.91 2.50 12.19 13.28 11.33 

Cassava 0.31 8.13 9.38 7.97 19.14 16.02 21.95 2.81 10.00 16.09 6.56 

Groundnut 0.16 14.77 13.59 8.91 25.31 20.16 24.38 2.81 15.63 14.61 7.19 

Soybean 0.08 6.02 5.55 4.45 12.89 10.86 12.66 1.56 6.95 9.69 3.98 

Cowpea 0.31 8.44 9.45 2.42 10.23 7.27 8.52 1.80 9.61 5.86 0.82 

Years of 

usage 

 

1 – 5  68.97 83.16 53.89 60.31 83.75 74.06 59.84 90.54 66.98 90.24 90.88 

6 – 10  31.03 16.84 35.49 37.02 16.25 24.87 35.04 9.46 25.28 9.76 9.12 

11 – 15  0.00 0.00 2.33 1.15 0.00 0.00 0.67 0.00 0.94 0.00 0.00 

16 – 20  0.00 0.00 2.07 1.15 0.00 1.07 1.48 0.00 1.70 0.00 0.00 

21 – 25 0.00 0.00 0.00 0.38 0.00 0.00 0.13 0.00 1.13 0.00 0.00 

26 – 30  0.00 0.00 6.22 0.00 0.00 0.00 2.83 0.00 3.96 0.00 0.00 

Mean year of 

usage 
4.30 3.71 7.18 5.45 4.14 4.75 7.04 3.01 11.39 3.52 3.34 
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Source: Field survey, 2018 

Choice of use of any strategy is dependent on several factors, including; frequency of 

climate risk incidence, crop physiology, cost of use, technical know-how, local 

knowledge/experience, and their perceived contributions to yield. While some of the 

practices are readily applicable at individual/household levels, others require support from 

government, private organizations and donors, due to the limitations posed by some of these 

factors. Across all crop types under study, irrigation and agroforestry are least practiced. 

Only about 1% of rice is produced under irrigationfollowed by sorghum, maize and millet. 

The share of these crops in irrigation practice reflects their water requirements, with rice 

noted as “thirstier” compared toother crops. Drought stress or water-limited condition is a 

major constraint to rice and maize production (Zhang, Zhang, Cheng, Jiang, Zhang, Peng, 

Lu, Zhang &Jin, 2018;Zhao, Xue, Jessup, Hao, Hou, Marek, Xu, Evett, O’Shaughnessy& 

Brauer, 2018) while sorghum and millet are more drought tolerant. Irrigation use is also 

capital intensive, which could limit its use by smallholder farmers.  

 

The use of cover crops follows expected and similar trend as seen under irrigation practice. 

About 16%, 14% and 12% of maize, sorghum and millet respectively were produced under 

cover cropping practices,while rice has the least share of about 3%. This observation 

buttresses the traditional farming systems associated with maize, millet, and sorghum under 

subsistence/small scale levels, where mixed/intercropping is predominantly practiced for 

risk impact mitigation, labour saving, and output per area maximization.  In most cases, rice 

is cultivated under sole cropping system, probably, due to agronomic practices required for 

its cultivation. Furthermore, the use of minimum tillage, crop rotation,legume intercropping, 

green manuring, agroforestry, farmyard manure, improved crop variety and fertilizer deep 

placement follow similar trend across the cereal crop types; (rice, maize, millet, and 

sorghum) and this is indicative of the production system, prevalent in the study area. Maize 

compared to other cereal crops continues to be the predominant cereal crop, that farmers use 

these strategies forits production.  

 

Under yam and cassava production, irrigation is the least practiced. Green manuring (19%), 

crop rotation with legumes (19%), intercropping with legumes (16%) and mulching 
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(14%)were most practiced for yam, while green manuring (22%), crop rotation with 

legumes (19%), and use of improved variety (16%) were dominant for cassava farming. 

Table 11 further shows that the use of crop rotation with legumes (25%), green manuring 

(24%), intercropping with legumes (20%), farmyard manure (16%) and use of 

new/improved crop variety (15%) were dominant under groundnut production compared 

with soybean production where such strategies as crop rotation with legumes (13%), green 

manuring (24.38%), intercropping (11%) and use of improved varieties (10%) were mostly 

used. For cowpea production, the use of crop rotation with legumes, farmyard manure, 

minimum tillage, and cover crops were indicated by 10.23%, 9.61%, 9.45% and 8.44% of 

the households, respectively. Across crops under pulses category, the use of the climate-

smart strategies is most pronounced for groundnut, compared tosoybean and cowpea. 

 

The foregoing observations show that, smallholder crop farmers in the study area are more 

inclined to the use of nutrient (green manuring, farmyard manuring and intercropping with 

legumes), energy (crop rotation with legumes) and knowledge (use of better crop varieties) 

smart adaptation strategies, with limited use of those strategies associated with water and 

carbon smart adaptation strategies. These choices indicate farmers’ preference for low 

external inputs, which are readily accessible, since they are available locally or at relatively 

cheap costs compared with external inputs, such as, fertilizers and efficient irrigation 

practices. Other reasons for these choices could be associated with those identified 

byHimanen, Mäkinen, Rimhanen & Savikko, (2016), and Nyasimi, Amwata, Hove, 

Kinyangi andWamukoya (2014). 

 

While majority of the farmers have used these strategies for between 1 – 5 years, Table 

10further shows that the use of some of the strategies arerecent and others had been in use in 

the last decades. For instance, the use of strategies such as; irrigation, cover cropping, crop 

rotation, intercropping with legumes, agroforestry, new/improved crop variety and fertilizer 

deep placement is relatively new; mostly in the last five years. The practices of minimum 

tillage, mulching, green manuring and farmyard manuring span over the last five years with 

farmyard manure had been most used (over a decade). This, in addition to other factors, 
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could be attributed to local knowledge and awareness level of these strategies among the 

farmers. 

4.2. Determinants of choice(s) of climate-smart adaptation strategies of arable crop 

farming households 

The individuals/groups,who influenced the respondents and reasons for use of identified 

strategies for climate change adaptation, association or mix of strategies used and the 

multivariate estimates of the determinants of choice of strategy used on farmers’ plots are 

presented and discussed in this sub-section.  

4.2.1. Sources of information for farmers’ choice of CSA strategies 

The results of those, who were identified by respondents as being responsible for their actual 

use of the strategy on a given plot are presented in Table 11. Though farmers can get 

information from different sources, the results presented are those showing the sources, that 

influenced their actual use of strategies. 

Table 2: Distribution of sources of information for farmers’ choice of climate-smart adaptation 

strategies (Proportion=100%) 
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CSA use 
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Household 

member 
27.78 18.89 17.41 10.91 18.40 16.67 9.93 11.32 19.56 4.98 0.96 

Fellow farmer 5.56 34.14 17.41 25.45 34.13 27.50 17.88 39.62 21.25 28.91 22.19 

Extension agent 50.00 17.19 30.08 5.82 10.96 10.83 9.40 9.43 5.23 39.00 47.27 

Electronic media 0.00 0.24 0.53 0.36 0.42 0.17 0.13 0.00 1.01 1.66 0.00 

Paper media 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.17 0.14 0.00 

NGOs 0.00 0.24 0.26 0.73 0.42 0.50 0.00 3.77 0.51 3.32 0.32 

Cooperative 

associations 
0.00 0.22 0.79 0.73 1.69 1.67 0.66 0.00 1.18 4.98 0.32 

Community 

meetings 
0.00 0.00 0.00 1.09 0.70 1.50 0.66 1.89 0.67 5.53 0.32 

Agric service 

providers 
5.56 0.73 0.00 1.82 0.00 0.00 0.26 0.00 0.17 5.53 1.29 

Agricultural 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.28 0.00 
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shows 

Personal 

indigenous 

knowledge 

11.11 28.57 33.51 53.09 33.14 41.00 61.05 33.96 50.26 5.67 27.33 

Source: Field survey, 2018; Figures are percentages 

The respondents opined that their use of perceived efficient irrigation practices, including; 

stream diversion, drip/spot irrigation, and manual water extraction on about 50%, 28% and 

11% of their plots was due to persuasion by extension agents, members of the household and 

indigenous knowledge respectively. Those who used this as an adaptation strategy, 

following fellow farmer information and agricultural service providers,were only six percent 

each. About 11% however, used irrigation, following their personal indigenous knowledge. 

The use of green manure, mulches, farmyard manure, intercropping with legumes and 

agroforestry on 61%, 53%, 50%, 41% and 34% of plots, where these strategies are practiced 

was based on generational local knowledge. Other adaptation strategies influenced by this 

knowledge included legume-based crop rotation and minimum tillage practiced on about 

33% and 34% of plots, respectively. The influence of indigenous knowledge supports the 

assertion of Douxchamps et al. (2016) that most climate-smart strategies have evolved from 

traditional or local practices. Further, social network effects tend to play roles in the choices 

of practicing cover cropping, crop rotation with legumes, intercropping with legumes and 

agroforestry as climate change adaptation strategy. These strategies were practiced on about 

34%, 34%, 28% and 40% of the plots in the study area, respectively, due to the influence of 

fellow farmers. The advice and conviction by extension agents in the study area is very 

important in the use of modern adaptation technologies, including; irrigation practices, 

new/improved crop varieties, and fertilizer deep placement as climate change adaptation 

strategies. Overall, the influence of media (electronic and paper), NGOs, cooperative, 

community associations, agricultural service providers and agricultural shows, played 

limited roles in promoting the use of climate-smart adaptation strategies.  

4.2.2. Farmers reasons for use of CSA strategies 

The reasons for using certain adaptation strategies, as adduced by the respondents are shown 

in Table 12. Generally, the reasons for use of these strategies are not mutually exclusive 

(more than one reasons possible for a strategy) and discussions of results are based on 

strategies with at least a quarter response rate, across each observed reason.  
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Table 3: Reasons for plot use of climate-smart adaptation strategies by famers 

Climate-smart 

adaptation 

strategies 

Reasons for use+ 
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Irrigation 6 2.08 15 5.21 9 3.13 0.00 0.00 10.00 3.47 

Cover crops 89 18.86 69 14.62 111 23.52 168 35.59 79 16.74 

Minimum tillage 108 24.05 79 17.59 154 34.30 83 18.49 33 7.35 

Mulching 27 5.59 46 9.52 187 38.72 25 5.18 21 4.35 

Crop rotation with 

legumes 
80 10.43 162 21.12 90 11.73 111 14.47 432 56.32 

Intercropping with 

legumes 
197 27.29 126 17.45 109 15.10 48 6.65 195 27.01 

Green manuring 85 10.35 127 15.47 19 2.31 52 6.33 608 74.06 

Agroforestry 11 3.82 7 2.43 19 6.60 16 5.56 0 0.00 

Farmyard manure 84 13.17 248 38.87 17 2.66 54 8.46 412 64.58 

New/improved 

crop variety 
124 14.32 568 65.59 7 0.81 25 2.89 44 5.08 

Fertilizer deep 

placement 
26 4.68 92 16.58 2 0.36 61 10.99 211 38.02 

Source: Field survey, 2018; + Multiple responses recorded 
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The labour- saving potentials of intercropping with legumes, minimum tillage, and cover 

cropping were indicated as the most reason for use of these strategies by about 28%, 24% 

and 19% respondents, respectively, underpinning Arslan, McCarthy, Lipper, Asfaw 

andCattaneo (2014) and FAO (2016) classification, particularly for minimum tillage and 

cover cropping practices. However, the responses of the respondents reflect smallholder 

farmers’ view that, these practices can reduce the amount of labour (mandays) needed for 

weeding (Al-Kaisi and Kwaw-Mensah, 2016) and other related activities. Respondents also 

noted that, their use of farmyard manure and new/improved crop varieties help in labour- 

saving with irrigation, agroforestry practices, and fertilizer deep placement contributing the 

least to the benefit of labour -saving. All except agroforestry and irrigation practices were 

used by farmers for their yield increasing potentials, especially the use of new/improved 

crop varieties (66%), farmyard manure application (39%) and crop rotation with legumes 

(21%). These strategies are noted by several scholars, including D'Hose, Cougnon, De 

Vliegher, Van Bockstaele,andReheul(2012), Arslan, McCarthy, Lipper, Asfaw, Cattaneo & 

Kokwe (2015), Khatri-Chhetri et al. (2017), to enrich soil nutrients through increased soil 

organic carbon and moisture contents, water stress reduction during dry season, among 

others. These are precursors for good soil health and consequently, increase in crop yield. 

Similarly, the practices of mulching (39%) and minimum tillage (34%) also contribute to 

soil moisture retention by reducing or limiting evapotranspiration, while the cover crops 

considered are able to ensure soil moisture retention and soil erosion control by 24% and 

36% of the respondents, respectively. Furthermore, the strategies of crop rotation and 

intercropping with legume provide other ecosystem services likepests and disease control 

and development of soil micro-organisms as reported by 56% and 27%, respectively. The 

use of manures (green and farmyard) and fertilizer deep placement as indicated by 74%, 

66%, and 38% of the respondents respectively was based on their ability to contribute to 

pests/diseases reduction on farms, development of micro-organisms, and reduction in 

economic wastage accruing to efficient fertilizer use. 

4.2.3. Tetrachoric correlation for CSA strategy mix by respondents 

Following Sharma et al. (2014), Ergano (2017) and Mensah-Bonsu, Sarpong, Al-Hassan, 

Asuming-Brempong, Egyir, Kuwornu & Osei-Asare (2017) tetrachoric correlation was used 

to assess the association or mix (either simultaneously or exclusively) of the climate-smart 
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adaptation strategies by farmers in the study area (Table 13). Correlation coefficients which 

lie between 0.25 and 0.50 are described as moderate (Mensah-Bonsu et al., 2017) and those 

above 0.5 regarded as high (Sharma et al., 2014). Overall, 78.26% of the significant 

correlation coefficients are less than 0.5 (Table 13); comparable to Mensah-Bonsu et al. 

(2017) observation for maize farmers in Ghana. Following their conclusion, the estimated 

correlations among smallholder farmers’ selection of climate-smart adaptation strategies are 

not high. 

 

The estimated positively high correlation coefficients between cover cropping and either 

crop rotation with legumes or farmyard manure shows that, farmers select the pairs 

simultaneously due to their potentials to improve soil fertility, at reduced labour needs, 

while controlling for crop pests and diseases incidences on the farms. Similarly, the pairs of 

minimum tillage and farmyard manure and green manure and crop rotation with legumes are 

simultaneously used by farmers for same reasons. Crop rotation with legumes and 

intercropping with legumes are also simultaneously used by farmers to adapt to climate 

change incidences. Observed agroforestry practices in the study area, commonly involves 

cultivation of multiple arable crops on either cashew, mango, or orange plantations. This 

reduces the impacts of production risks, ensure efficient use of farm plot, and increases 

farmer’s income streams. The correlation coefficient between agroforestry and intercropping 

with legumes is significantly high and positive.  

 

By defining correlation coefficient between 0.10 and 0.24 as low indicates that 39% out of 

the 78% significant correlation coefficients fall within this category, while the remaining 

39% falls within the moderate group (Table 13). Moderately and positively correlated pairs 

of climate-smart strategies used by farmers for climate change adaptation include, irrigation 

and either of mulching, agroforestry, or fertilizer deep placement practices; cover cropping 

and either of minimum tillage, intercropping with legumes, green manuring, agroforestry, 

new/improved crop variety, or fertilizer deep placement; and mulching with either of green 

manuring or fertilizer deep placement. Other moderately and simultaneously used strategies 

were crop rotation with legumes and green manuring or use of new/improved crop variety, 

green manuring and agroforestry or fertilizer deep placement, among others. The pair of 
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significantly and mutually exclusively moderate strategies used by farmers for climate 

change adaptation are irrigation and cover cropping; mulching and cover cropping; while the 

pair of significantly and mutually exclusively low strategies include; minimum tillage and 

any of deep placement of fertilizer or use of improved crop types/varieties; irrigation and 

crop rotation with legumes and mulching and use of new/improved crop variety. 



77 
 

Table 4: Tetrachoric correlation estimates of climate-smart adaptationpractices 
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Irrigation 1.000           

Cover crops -0.297** 1.000          

Minimum tillage 0.237** 0.493*** 1.000         

Mulching 0.365*** -0.312*** -0.048 1.000        

Crop rotation with legumes -0.234** 0.608*** 0.224*** 0.211*** 1.000       

Intercropping with legumes -0.062 0.501*** 0.071 0.217*** 0.741*** 1.000      

Green manuring -0.178 0.484*** -0.038 0.248*** 0.524*** 0.463*** 1.000     

Agroforestry 0.389*** 0.382*** 0.193*** 0.169** 0.337*** 0.664*** 0.317*** 1.000    

Farmyard manure 0.145 0.710*** 0.542*** -0.216*** 0.255*** 0.218*** 0.098*** 0.114 1.000   

New/improved crop variety 0.025 0.245*** -0.150*** -0.195*** 0.203*** 0.313*** 0.222*** 0.262*** -0.023 1.000  

Fertilizer deep placement 0.338*** 0.174*** -0.212*** 0.447*** 0.179*** 0.229*** 0.243*** 0.291*** -0.055 0.310*** 1.000 

Source: Field survey, 2018 
*** denotes 1% significance and ** denotes 5% significance
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4.2.4. Determinants of choice of CSA strategies by respondents 

The results on parameter estimates from the analysis of the multivariate probit model are 

presented in Table 14. It highlights the factors responsible for farmer’s choice of climate-

smart adaptation strategies.  The model results indicatethat decisions of farmers to use 

different climate-smart adaptation strategies on a given plot are distinct. To a significant 

extent, the factors central to the decision to use any of the strategies are also different, 

indicating heterogeneity in the adaptation decisions of smallholder crop farmers in the study 

area. The model diagnostics show that, it fits the data to a significant extent, following that 

the Wald Chi square statistic is statistically significant and therefore, rejects the hypothesis 

of independence of use of climate-smart adaptation strategies by farmers. This as a 

resultvalidates the use of multivariate probit model for assessing farmers’ use decisions of 

the various climate-smart adaptation strategies in the last ten (10) years. Overall, the test of 

null hypothesis that the error terms across equations are uncorrelated is also rejected; thus, 

supporting the hypothesis that at plot level, the use of climate-smart adaptation strategies is 

dependent and simultaneous. The correlation coefficients (rho) are different statistically 

from zero in 37 of the 55 cases.  The signs of the correlation coefficients indicate 

interdependency of use of the strategies, either as substitutes or complements (Asfaw et al., 

2016). While farmers use a combination of strategies to adapt to climate change, the 

preference of a strategy over the other,is influenced by several factors and these are 

discussed below.  
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Table 54: Multivariate estimates of determinants of CSA strategies choice (Plot-level analysis) 

Variables 

Dependent variables: climate-smart adaptation strategies 
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hhdage 
-0.339*** 

(0.110) 

0.237*** 

(0.054) 

0.151*** 

(0.054) 

-

0.041(0.

057) 

0.190*** 

(0.051) 

-0.013 

(0.049) 

-0.089* 

(0.050) 

0.080 

(0.084) 

0.212*** 

(0.055) 

0.005 

(0.047) 

0.152*** 

(0.052) 

hhgender 
0.057 

(0.122) 

0.098* 

(0.053) 

0.357*** 

(0.072) 

-0.088** 

(0.043) 

0.050 

(0.040) 

-0.034 

(0.041) 

-0.181*** 

(0.046) 

-0.043 

(0.068) 

0.338*** 

(0.053) 

-0.068* 

(0.40) 

-0.133*** 

(0.045) 

hheduc 
-0.204** 

(0.083) 

-0.092* 

(0.047) 

-0.259*** 

(0.047) 

0.001 

(0.046) 

0.084* 

(0.045) 

0.138*** 

(0.045) 

0.107** 

(0.043) 

-0.115 

(0.071) 

-0.421*** 

(0.049) 

0.245*** 

(0.042) 

0.192*** 

(0.047) 

depratio 
0.118 

(0.078) 

0.076* 

(0.044) 

0.005 

(0.051) 

0.030 

(0.045) 

0.027 

(0.037) 

-0.038 

(0.040) 

-0.114** 

(0.051) 

0.102** 

(0.050) 

0.033 

(0.041) 

0.076* 

(0.039) 

0.088** 

(0.040) 

hhsize 
0.164** 

(0.078) 

0.073 

(0.049) 

-0.016 

(0.049) 

0.400 

(0.050) 

-0.034 

(0.046) 

-0.026 

(0.043) 

0.039 

(0.043) 

0.030 

(0.068) 

0.091* 

(0.047) 

-0.118*** 

(0.044) 

0.071 

(0.049 

hhdgrpmemb 
-0.412*** 

(0.152) 

-0.452*** 

(0.060) 

-0.275*** 

(0.058) 

-0.500 

(0.056) 

-0.194*** 

(0.049) 

-0.110** 

(0.048) 

-0.224*** 

(0.051) 

-0.317*** 

(0.095) 

-0.052 

(0.052) 

-0.000 

(0.047) 

-0.463*** 

(0.054) 

crdtconst 
0.103 

(0.093) 

0.167*** 

(0.048 

0.388*** 

(0.047) 

0.091* 

(0.49) 

0.067 

(0.044) 

-0.098** 

(0.044) 

0.023 

(0.043) 

0.200** 

(0.080) 

0.047** 

(0.046) 

-0.078* 

(0.042) 

-0.254*** 

(0.045) 

hhdriskpercep 
-0.585*** 

(0.156) 

-0.619*** 

(0.113) 

-0.592*** 

(0.112) 

0.135 

(0.106) 

0.301*** 

(0.093) 

0.029 

(0.093) 

-0.085 

(0.098) 

-0.542*** 

(0.143) 

-0.952** 

(0.115) 

-0.113* 

(0.093) 

-0.050 

(0.099) 

hhdriskexp 
0.571*** 

(0.170) 

0.050 

(0.107) 

0.314*** 

(0.107) 

0.083 

(0.105) 

-0.204** 

(0.094) 

0.093 

(0.095) 

0.205** 

(0.097) 

0.494*** 

(0.157) 

-0.145 

(0.114) 

-0.009 

(0.096) 

0.202** 

(0.102) 

hhdadaptcap 
0.212*** 

(0.082) 

0.534*** 

(0.052) 

0.217*** 

(0.045) 

0.053 

(0.043) 

0.568*** 

(0.049) 

0.515*** 

(0.045) 

0.523*** 

(0.048) 

0.390*** 

(0.063) 

0.502*** 

(0.051) 

0.346*** 

(0.042) 

0.045 

(0.044) 

plottopo 
0.071 

(0.084) 

0.343*** 

(0.052) 

0.074* 

(0.043) 

-0.071 

(0.044) 

-0.266*** 

(0.045) 

0.095** 

(0.044) 

0.086* 

(0.044) 

-0.006 

(0.062) 

0.230*** 

(0.049) 

0.063 

(0.040) 

0.119** 

(0.047) 

tenurestat 
-0.032 

(0.091) 

0.007 

(0.047) 

0.033 

(0.45) 

-0.004 

(0.046) 

-0.010 

(0.041) 

0.108*** 

(0.042) 

-0.180*** 

(0.043) 

-0.133** 

(0.061) 

-0.046 

(0.046) 

0.057 

(0.040) 

-0.009 

(0.046) 

Constant 
-2.431*** 

(0.171) 

-0.626*** 

(0.046) 

-0.587*** 

(0.047) 
-0.946*** 

(0.045) 
0.100** 

(0.040) 

-0.184**** 

(0.039) 

0.241*** 

(0.040) 

-1.981*** 

(0.087) 

-0.134*** 

(0.043) 

0.054 

(0.038) 

-0.789*** 

(0.045) 

Log pseudolikelihood = -5372.633, Wald chi2(132) = 1703.26; Prob>chi2 = 0.00; LR test of rhoxy: Chi2 (55) =744.288; Prob>chi2 = 0.000 

Source: Generated by author from field survey, 2018 data using STATA 16 software 
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*** 1% significance; **5% significance and *10% significance. Figures in parentheses are robust standard errors 
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The effects of respondents’ demographic and socio-economic characteristics are 

heterogenous on the use decision of the climate-smart adaptation strategies. Consistent with 

He, Cao & Li (2007) and Chuchird, Sasaki and Abe (2017), the likelihood to adopt irrigation 

technology as an adaptation strategy is significantly and inversely related with the age of 

household head; thereby, suggesting that young household heads are more likely to use 

modern irrigation facilities, which could be a little complex in operation, to adapt to climate 

change. Thus, targeting young farmers under climate-smart technology promotion can 

increase adoption. However, the positive coefficients of age variable indicate that, older 

household heads have higher likelihood to usesuch practices as crop rotation with legumes, 

new/improved crop variety, minimum tillage, farmyard manure, and fertilizer deep 

placement as climate change adaptation strategies. Knowledge of climate change/variability 

and skills to reduce its consequences increase with age. Therefore, older farmers who 

understand and or have experienced the effects of climate change/variability and have 

moreresource endowment are likely to use these strategies, to reduce the impacts of climate 

change. This result is consistent with findings of Ahmed (2016) and Simtowe, Asfaw & 

Abate (2016). 

The effect of gender is significantly positive for the decisions to use cover crops, minimum 

tillage and farmyard manure. This shows that, the likelihood of use of these climate-smart 

adaptation strategies are significantly higher for male than female household heads. 

Resource ownership and labour requirements are expected to account for farmyard manure 

use. Farmyard manure are mostly animal-based, and livestock ownership is male-dominated 

which gives them more access to animal dungs/manure than their female counterparts. 

Similarly, manure application is labour-intensive, which male-headed households can afford 

because they command most of the household resources, including the use of cash income 

(Waithaka, Thornton, Shepherd& Ndiwa 2007). As Marenya, Kassie, Jaleta, Rahut & 

Erenstein (2015) noted, male headed households are typically dual adults (husband and 

wife) households. Such households are likely to have more adult residentswith more 

capacity to implement labour demanding practices. The practice of fertilizer deep placement 

is more likely among female-headed households compared totheir male counterparts. This 

agrees with the findings of Liverpool-Tasie et al. (2015) that, female plot managers were 
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more likely to adopt improved method of urea application for rice production, than male plot 

managers. 

The educational level of household head proxied by years of schooling has heterogenous 

effects on decision to use the climate-smart adaptation strategies. It has significant positive 

effect on the use of crop rotation with legumes,  intercropping, new/improved crop variety, 

and fertilizer deep placement; significant negative influence on practices of irrigation, use of 

cover crops, minimum tillage and farmyard manure; while it has no effect on the use mulch, 

and agroforestry in the study area. Earlier study by Knowler andBradshaw (2007) 

acknowledges these mixed results. Education, as a human capital, enables farmers to 

critically anayse and use technical information to understand the causes and consequences of 

climate change, prepares them to live with the impacts of climate change and empowers 

them to take appropriate actions (UNESCO, 2015; Tripathi &Mishra, 2017). Here, crop 

rotation with legumes, intercropping, new/improved crop variety, and fertilizer deep 

placement practices are considered information-intensive strategies, which can easily be 

used by educated farmers. Generally, previous studies have found that education effect on 

farmers’ adaptation to climate change is positiveand significant (Below et al., 2012; 

Chukwuone, 2015; Lokonon& Mbaye, 2018). However, Komba and Muchapondwa 

(2012),Tanellari, Kostandini, Bonabana-Wabbi andMurray (2014) and Shikuku, 

Winowiecki, Twyman, Eitzinger, Perez, Mwongera and Läderach (2017) found a 

significantly negative nexusbetween education and climate change adaptation decisions. 

The likelihood of farmer’s use of cover crops, agroforestry, new/improved crop variety, and 

fertilizer deep placement as strategies to adapt to climate change is increased with higher 

dependency ratio. These strategies, which can boost crop productivity in short and medium 

term, are relatively modern farm inputs whichAsfaw et al. (2016) opined that their use is 

favoured by higher dependency ratio. However, dependency ratio is likely to significantly 

decrease the decision to use green manuring at plot level. Asfaw et al. (2016) posited similar 

negative effect on the use of crop residues, though not statistically significant. Household 

size (in adult equivalent) is statistically significant and positively signed for the practice of 

irrigation and use of farmyard manure as strategies for adaptation. This implies that the 

likelihood of use of these strategies would increase with farmers that have larger household 
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sizes. This agrees with earlier study by Hassan andNhemachena (2008) that the choice of 

anadaptation measure depends on household endowments, including household size at the 

disposal of farming households. Large family size is a potential indicator of adequate labour 

availabilityfor production activities, especially for use of adaptation strategies (Yegbemey et 

al., 2013; Asfaw et al., 2016). The use of improved crop varieties, however, decreases with 

large household size. This partly may be due to the consumption pressure on the household, 

which could lead to diversion of financial resources from the purchase of improved crop 

varieties to food consumption. 

Social capital, which is also a constituent of adaptation appraisal processes, plays a critical 

positive role in sustainable technology adoption among farmers (Lokonon &Mbaye, 2018). 

However, the finding of this study shows the contrary as the coefficient of farmers’ 

membership of any group, measured as number of years of membership, is significant and 

negatively signed for irrigation, cover cropping, minimum tillage, crop rotation with 

legumes, intercropping with legumes, green manuring, agroforestry, and use of fertilizer 

deep placement. This negative correlation is supported by the work of Mponela, Tamene, 

Ndengu, Magreta, Kihara, andMango (2016). One possible explanation for this observation 

is that farmers do not discuss or access information on climate change through these groups. 

Other reasons advanced for this negative relationship, include; marketing and dealing with 

specific constraints, that do not depend on social networks (Asante, Afarindash & Sarpong, 

2011).  

In this study, households, that are not able to borrow against future income in the last five 

(5) years are categorized as being credit constrained.  Credit access relaxes liquidity 

constraints of household and therefore, increases the odds of technology adoption 

(Temesgenet al., 2008; Hadgu, Fantaye, Mamo & Kassa, 2015). This study found that 

farmers using cover crops, minimum tillage, mulching, agroforestry, and farmyard manure 

are probably credit constrained, while those who are not credit constrained, used 

intercropping with legumes, improved crop varieties and fertilizer deep placement strategies. 

The latter strategies are capital intensive, thus, requiring households with strong financial 

capability to adopt. 
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The variables used in this study to measure households’ behavioural intention to adapt to 

climate change, include; risk perception, risk experience, and perceived adaptation efficacy 

of identified strategies. The coefficient and sign of household risk perception index indicate 

that, it has a significantly negative effect on the likelihood of use of all the strategies except 

crop rotation with legumes. This observation depicts the risk attitudes of the farmers and the 

potentials of the strategies for minimizing climate change risk. As risk averse, the 

probability of use of strategiessuch as; irrigation, cover cropping, green manuring, 

agroforestry, and farmyard manure will decrease significantly. However, as risk takers, the 

probability of crop rotation with legumes would significantly increase as risk-taking farmers 

considers the strategy as climate risk minimizing.  

Further, the number of actual climate risks experienced is seen to have mixed effects on 

farmers’ probabilities of use of adaptation strategies. With increase in climate risk 

experienced, farmers are more likely to adopt the use of irrigation, minimum tillage, green 

manuring, agroforestry, and fertilizer deep placement technology as adaptation measures. 

However, this is not the case with the use of crop rotation with legumes, which would 

experience a significant decrease in use. Generally, the farmers believe that, the climate-

smart adaptation strategies can helpthem out of the negative consequences of climate change 

as indicated by the significantly positive coefficient of perceived adaptation. This is in line 

with the studies by Grothmann &Patt (2005) and Mase, Gramig& Prokopy(2017). From the 

result in Table 15, this adaptation appraisal variable is positive for all strategies, but not 

statistically significant for mulching and fertilizer deep placement.Knowing the problems 

associated with soil degradation often influences farmers’ decisions about improved soil 

fertility management practices (Pulido &Bocco, 2014; Bwambale, 2015). Also, Pulido 

&Bocco (2014) observed that farmers choose to invest in soil conservation technology if the 

cropping system becomes more productive within a short period. 

Plot topography has a significantly positive effect on the respondents’ likelihood use of 

cover crops, minimum tillage practices, intercropping involvinglegumes, green manuring, 

farmyard manuring, and the practice of fertilizer deep placement technology as climate-

smart adaptation strategies. The use of these strategies tends to increase on farmlands, with 

relatively flat topography, serving as effective water retention, soil-nutrient saving, and 
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limited soil disturbance strategies adequate for increased fam yield. Although the use of 

these strategies is expected for plots with topographical diversity (concave and convex 

slopes) due to increased leaching losses, infiltration, and runoff potentials(Brouwer & 

Powell, 1998; Senthilkumar, Kravchenko & Robertson, 2009) and high yield variability 

(Beehler, Fry, Negassa, & Kravchenko,2017), the results show that these strategies are not 

limited to such topographic features. This is probably because such soil degradation features 

affect relatively flat farmlands.  

Perceived plot tenure security status has a significant positive effect on farmers’ likelihood 

of using nitrogen-fixing cropping method (intercropping with legumes). Surprisingly, the 

likelihood of use of organic manures (green and farmyard) and agroforestry tend to decrease 

with secure tenure security. This is a deviation from Arslana et al. (2015) who found that, 

improved tenure security is an incentive to investments in strategies, that increase 

productivity and improve soil health in the long run. This finding could be a result of 

farmers’ preference for strategies, that can bring quick returns on investment within the 

shortest period considering that climate change events and impacts are unpredictable. 

4.3. Determinants of use intensity of climate-smart adaptation strategies among staple 

crop farmers 

This section is aimed at presenting the analysis forobjective three of the study. Hence, the 

results discussed are those on climate-smart intensification index and its determinants.  

4.3.1. Intensification of climate-smart strategies by crop category 

The distribution of plot-level climate-smart intensification level is shown in Table 15. 

Following that the respondent farmers practice intercropping generally and the use of 

adaptation strategies are not mutually exclusive for crops in each plot, the distribution of the 

intensification level follows similar pattern across the three crop categories.  

Table 6: Percentage distribution of climate-smart intensification level 

Household 

Climate-smart 

intensification 
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Low  499 38.98 310 36.95 273 44.54 273 39.57 

Medium  272 21.25 177 21.10 134 21.86 153 22.17 

High  509 39.77 352 41.96 206 33.60 264 38.26 

Total 1,280 100.00 839 100.00 613 100.00 690 100.00 

 Source: Field survey, 2018 

NB: Multiple responses across columns 

 



87 
 

Overall, the intensity of use of climate-smart adaptation strategies is relatively low, given 

that only about 40% of the plots were under high use intensity of these strategies. Across 

crop categories, the intensity of use of these strategies is higher in cereals (42%) than in 

either pulses (38%) or root and tuber crops (34%), suggesting that higher production 

investment is made in this crop category compared to others, probably 

d87ommercializationialisation potentials. Furthermore, the distribution of CSA 

intensification index among the respondents is presented in Figure 1. The distribution of the 

index shows, homogeneous variations in use intensity of CSA strategies, among the 

respondents except for two distinct group of farmers: high intensity and low intensity users. 

Following this pattern, the number of farmers is likely to decrease, with increasing use 

intensity of CSA strategies.   
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Fig. 1: Kernel density estimate of plot-level CSA intensification index
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4.3.2. Determinants of the use intensity of climate-smart adaptation strategies 

Table 16shows the results of the clustered OLS and Poisson regression analyses (for 

robustness check). The use of clustered option helps to account for possible correlation 

within an enumeration area. Based on model performance criteria (model specification, 

collinearity, and smaller standard error), the OLS model was chosen for further 

discussions. The model exhibits a high explanatory power,with the coefficient of 

multiple variation, R2 = 0.6155 and thus, explains 61.55% of the total variations in 

intensity of adaptation. The F-statistic of joint significance of the explanatory variables 

was 156.96 with a probability =0.000 indicating that, the model parameters were jointly 

significant at 1% level and adequate in fitting the data.  

 

Table 76: Estimates of determinants of use intensity of climate-smart strategy 

(Dependent variable = households’ climate-smart intensification index) 

Variables 

OLS estimate 

DV= CS intensification index 

Poisson estimate 

DV=Number of strategies used 

Coefficient Robust Std. Error Coefficient Std. Error 

hhdage -0.003** 0.001 0.001 0.003 

hhgender 0.041 0.030 0.066 0.081 

Mstat 0.045* 0.022 0.146* 0.085 

depratio 0.002 0.008 0.014 0.022 

hhnature -0.012 0.018 -0.087 0.058 

extaccess 0.015* 0.008 0.038 0.024 

crdtconst -0.001 0.016 0.056 0.082 

hhdgroupmemb 0.028 0.029 -0.012 0.082 

TLU 0.005** 0.002 0.018 0.012 

plotcultyr 0.002** 0.001 -0.0001 0.004 

lnmktdist 0.023** 0.011 0.090*** 0.029 

roadaccess -0.012 0.022 0.026 0.087 

lnfarmsize 0.376*** 0.028 -0.403*** 0.069 

plottopo -0.029 0.018 0.305*** 0.106 

tenurestat 0.030 0.024 0.013 0.061 

soilfertpercep 0.124*** 0.021 0.399*** 0.090 

hhdriskpercep -0.002 0.003 -0.006 0.017 

agrozone 0.005 0.065 0.271** 0.116 

Constant 0.053 0.059 0.610*** 0.213 

Number of 

observations 

1, 151 1, 151 

R2 0.6155 Log pseudolikelihood (-2275.79) 

F – statistic  156.96 Wald chi2(18) (219.27) 

Prob > F 0.000 Prob>chi2 (0.000) 
Source: Generated by author from field survey, 2018 data using STATA 16 software 
*** denotes 1% significance; ** denotes 5% significance and * denotes 10% significance; NB: Standard error 

adjusted for clusters in enumeration areas 

 

Age of household head had a significant and negative effect on intensity of use of 

climate-smart adaptation strategies; signifying that a year increase in age of household 
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head decreasing intensity of use by 0.3%. This impliesthat, the younger the farming 

household head, the more the practice of climate-smart intensification. This could be an 

indication of younger farmers disposition to experiment with several strategies,that are 

capable to help them reduce the consequencesof climate change. This supports the 

finding of Olarinde, Adepoju andJabaru (2014) but deviates from the findings of Belay, 

Recha, Woldeamanuel andMorton (2017) which shows that, the decision to intensify 

agricultural practices increases with age.   

The influence of joint decision making within the household is shown by the significant 

and positive relationship between household heads living with their spouse and 

intensification index. The increase in climate-smart intensification is about 5% higher 

among farmers living with their spouse compared with those who do not or that are 

single. This shows that, some level of intra-household bargaining or deliberation for 

resource use between spouses exist in intensification of adaptation strategies; consistent 

with the conclusions of Bomuhangi, Nabanoga, Namaalwa, Jacobson andGombya-

Ssembajjwe(2016) and Kunzekweguta et al. (2017). Earlier, Doss (2013) opine that, 

intrahousehold bargaining is likely to influence the adoption of new agricultural 

technologies. 

As expected, the coefficient of extension contacts shows that, it increases intensification 

of adaptation strategies by 1.5%.  Access to extension services enables farmers to make 

informed decisions on the type, number, and frequency of use of adaptation strategies. 

This corroborates the works of Mazvimavi and Twomlow (2009), and Kunzekweguta et 

al.(2017)which conclude that intensity of adoption is significantly and positively 

influenced by farmer’s access to extension services.A one-kilometer increase in distance 

between farmers’ place of residence and the nearest market will significantly increase 

intensification of adaptation strategies by 0.2%.  Access to market has been identified to 

increase the intensity of use of inputs like; fertilizers, pesticides, and improved crop 

varieties (Olarinde et al., 2014; Belay et al., 2017). However, when farmers greatly 

depend on locally available adaptation strategies, for intensification practices and are not 

commercial-oriented, intensification of adaptation strategies could deviate from these 

earlier findings, such that, it increases with increasing market distance.  

Livestock are store of wealth often measured in tropical livestock unit, a weighted sum 

of large and small livestock (Kunzekweguta et al., 2017). From Table 16, a percentage 
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increase in the numbers of livestock owned by a household would lead to 0.5% increase 

in the intensification of climate-smart adaptation strategies in the study area. This 

suggests that the wealthier the farmer, the more the use of multiple strategies on plots 

cultivated. Chen, Wichmann, Luckert, Winowiecki, Förch, andLäderach(2018) found 

similar result in their study of diversification and intensification of agricultural 

adaptation strategies from global to local, where livestock ownership increases 

adaptation intensity by about 0.6%. Use intensity of climate-smart adaptation strategies 

would increase by 0.2% as plot is put into cultivation for an extra year. Continuous 

farming on a piece of land for a prolonged period, impacts on its characteristics, 

including; structure, fertility status, biodiversity and vegetative biomass. This has 

tendency to reduce the natural capital of the soil and distort the flow of environmental 

services. To avoid this, farmers would tend to employ several strategies, simultaneously, 

to renew this stock on a continuous basis. The intensity of use climate-smart adaptation 

strategies tends to increase with increasing distance of households from the nearest 

market. Generally, many of the climate-smart strategies considered in this study are 

traditional strategies which can be sourced locally. This tends to agree with Asfaw et al. 

(2016) whoobserved that, farm households that reside far away from periodic or 

permanent markets, tend to use more of locally sourced inputs such as; organic fertilizers 

and less of modern inputs. 

Households’ average farm size has a significant and positive effect on the intensity of 

use of climate-smart adaptation strategies with a hectare increase, leading to an increase 

in plot intensification index by about 37%. Thus, the larger the farm size, the more the 

share of intensification practices by farmers. Studies (Mazvimavi & Twomlow, 2009; 

Tongruksawattana, 2014;Kassie, Teklewold, Jaleta, Marenya, & Erenstein, 2015) have 

observed similar trend, which they attribute to influence of household’s endowment and 

response to productivity gains. Furthermore, the results in Table 16indicate that 

intensification of use of adaptation strategies increases even when farm-plots are 

perceived to be fertile. Though it is expected that intensification would increase with less 

soil fertility, farmers might however, be concerned with sustaining or improving the 

current soil fertility status for increased productivity; suggesting that they are aware that 

climate change can cause depletion in soil fertility. Hence, they would increase the use 

intensity of the climate-smart adaptation strategies to prevent this loss in the future.  
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4.4. Productivity – welfare effects of climate-smart adaptation strategies 

Results discussed in this sub-section are to answer the fourth research question and 

hence, achieve the objective of determining the productivity and welfare effects of usage 

of climate-smart adaptation strategies. Results discussed include those related to crop 

productivity under different climate-smart adaptation practices, household 

multidimensional welfare level, and the nexus between welfare – productivity – use 

intensity of climate-smart adaptation strategies. 

4.4.1. Crop productivity under climate-smart adaptation practices 

As described earlier, climate-smart adaptation strategies are promoted as means to 

improve sustainable crop productionin the presenceof climate variability and change. 

The heterogenous treatmenIffect (HTE) results of use of various climate-smart 

adaptation strategies are shown in Table 17. Evident from the table is the varied 

contributions/effects of the climate-smart adaptation (CSA) strategies to crop yield. 

Table 8: Estimated average treatment effect on the treated (ATT) for use of 

CSAstrategies 

Crop 

category 
CSA strategy Sample Treated Control difference t-stat 

Cereals  

Irrigation 
Unmatched 2453.24 1668.79 333.89 2.35 

ATT 2453.24 2189.73 416.43 0.63 

      

Cover cropping Unmatched 2030.92 1663.18 367.74 2.10 

ATT 2030.92 1396.36 634.56** 1.93 

      

Minimum tillage Unmatched 1763.97 1677.25 86.72 0.57 

ATT 1763.97 1768.67 -4.50 -0.02 

      

Mulching Unmatched 2009.88 1681.39 328.49 1.18 

ATT 2009.88 2442.72 -432.83 -0.72 

      

Crop rotation with legume 
Unmatched 2110.37 1640.20 470.17 2.74 

ATT 2110.37 1619.13 491.24 1.34 

      

Intercropping with legume 
Unmatched 2383.76 1610.09 772.67 4.25 

ATT 2383.76 1844.83 537.93 1.10 

      

Green manuring 
Unmatched 2076.24 1513.32 562.93 4.09 

ATT 2076.24 1822.24 254.01 1.09 

      

Agroforestry 
Unmatched 2239.97 1691.04 548.93 1.16 

ATT 2239.97 2561.98 -322.01 -0.36 

      

Farmyard manure 
Unmatched 1683.60 1775.34 -91.74 -0.64 

ATT 1683.60 1177.69 505.89 0.38 
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Crop 

category 
CSA strategy Sample Treated Control difference t-stat 

Improved crop variety 
Unmatched 1984.30 1325.52 658.78 4.87 

ATT 1984.30 1665.30 319.00 1.43 

      

Fertilizer deep placement 
Unmatched 2049.91 1649.80 400.11 2.37 

ATT 2049.91 726.13 1323.78** 2.16 

 

 

Pulses 

CSA strategy Sample Treated Control difference t-stat 

Cover cropping 
Unmatched 465.73 506.92 -41.19 -0.63 

ATT 465.73 417.58 48.15 0.33 

      

Minimum tillage 
Unmatched 380.30 568.89 -188.55 -2.92 

ATT 380.30 107.97 272.34 0.60 

      

Mulching 
Unmatched 311.56 524.27 -212.70 -2.71 

ATT 311.56 518.14 -206.57 -1.51 

      

Crop rotation with legume 
Unmatched 554.92 350.38 204.54 3.11 

ATT 554.92 203.26 351.66** 3.00 

      

Intercropping with legume 
Unmatched 506.22 458.87 47.35 0.76 

ATT 506.22 419.96 86.25 0.82 

      

Green manuring 
Unmatched 462.96 526.93 -63.97 -0.96 

ATT 462.96 578.80 -115.84 -0.55 

      

Agroforestry 
Unmatched 229.41 508.97 -279.55 -2.51 

ATT 229.41 273.67 -44.26 -0.24 

      

Farmyard manure 
Unmatched 389.57 587.07 -197.50 -3.24 

ATT 389.57 398.69 -9.12 -0.05 

      

Improved crop variety 
Unmatched 516.72 450.80 65.91 1.03 

ATT 516.72 293.61 223.11** 2.10 

      

Fertilizer deep placement 
Unmatched 427.56 500.71 -73.15 -0.87 

ATT 427.56 747.01 -319.45 -1.65 
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Roots 

and 

Tubers 

Cover cropping 
Unmatched 6327.78 13694.83 -7367.06 -2.41 

ATT 6327.78 5339.63 988.15 0.48 

      

Minimum tillage 
Unmatched 6661.77 12997.48 -6335.71 -1.60 

ATT 6661.77 9582.56 -2920.78 -0.50 

      

Mulching 
Unmatched 23729.39 8485.99 15243.40 6.19 

ATT 23729.39 13486.51 10242.88** 2.24 

      

Crop rotation with legume 
Unmatched 10929.04 12877.14 -1948.10 -0.78 

ATT 10929.04 26846.08 -15917.04 -2.13 

      

Intercropping with legume 
Unmatched 11487.72 12077.53 -589.81 -0.22 

ATT 11487.72 3466.62 8021.10 1.02 

      

Green manuring 
Unmatched 15014.08 6975.52 8038.56 3.27 

ATT 15014.08 29077.77 -14063.69 -1.57 

      

Farmyard manure 
Unmatched 7362.77 16121.65 -8758.88 -3.79 

ATT 7362.77 7059.15 303.63 0.04 

      

Improved crop variety 
Unmatched 12749.25 11884.38 864.87 0.36 

ATT 12749.25 11560.07 1189.18 0.17 

      

Fertilizer deep placement 
Unmatched 15788.32 10641.63 5146.69 2.06 

ATT 15788.32 12949.21 2839.11 0.51 

Source: Generated by author from field survey, 2018 data using STATA 16 software 
** denotes 5% significance 

 

Climate-smart adaptation strategies with statistically significanteffect on crop yield 

includecover cropping, fertilizer deep placement, crop rotation with legume, improved 

crop variety and mulching.On the average,the treatment effect on the treated of the use of 

cover croppingis positive and increased the yieldof cereal crops by 45%.Similarly, the 

percentage change in cereal yield,as a result of fertilizer deep placement practice is182% 

over non-use of the strategy. Still on cereal production, the impacts of the use of irrigation, crop 

rotation and intercropping with legumes, green manure, farmyard manure, and improved 

varieties is positive though not statistically significant. These are indications that the use of these 

strategies positively impacted yields of cereal crop.Under pulsesproduction, the average 

treatment effects on the treated of use of crop rotation, with legumes as well as improved 

varieties as CSA strategies increased yield by 75% and 76%, respectively. However, minimum 

tillage and intercropping with legumes had positive, though not statistically significant, effect 

that indicatessuch practices may not be adequate for this crop category. Quantitatively, the use of 

mulch in roots and tubers increased yield by 76%compared to non-use. Though, the use of cover 

cropping, intercropping with legumes, farmyard manure, improved crop variety and the practice 
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of fertilizer deep placement on root and tuber crops production had positive effects on yield, the 

effects are statistically non-significant. 

Crop yields under the practices of minimum tillage and farmyard manure use were 

significantly less likely to contribute to increased crop yield, compared to plots without 

such practices. Minimum tillage for instance can lead to reduced or no yield (Gattinger, 

Jawtusch, Müller, & Mäder, 2011) and the effects of farmyard manure on crop yield are 

usually not immediate. Studies (Witt, Cassman, Olk, Biker, Liboon, Samson, & Ottow, 

2000; Luo, Wang & Sun, 2010; Khatri-Chhetri, et al., 2017) have shown that, climate-

smart adaptation strategies are more effective, when applied in combinations.  

4.4.2. Nature of multidimensional welfare deprivation in the study area 

The figures in Table 18indicate that,overall, the respondent households are 

multidimensionally deprived, since none of the scores is zero (0) under any of the 

dimensions (or indicators). However, the level of multidimensional deprivation varies 

across the dimensions/indicators. 

Table 98: Summary of household multidimensional welfare dimensions 

Dimension Weight *Deprived (%) 

Education  

Years of schooling 0.17 9.45 

School attendance by school age children 0.17 45.67 

Living Standard  

Source of drinking water 0.03 8.40 

Sanitation/toilet facilities 0.03 37.27 

Type of cooking fuel 0.03 98.69 

Electricity access 0.03 22.31 

Quality of dwelling place 0.03 62.99 

Adequacy of bedrooms 0.03 11.81 

Access to motorable road 0.03 11.81 

Land ownership 0.03 22.57 

Livestock ownership 0.03 70.87 

Asset ownership 0.03 39.90 

Health  

Food security 0.17 56.69 

Child mortality 0.17 40.42 

Source: Calculated from field survey data (2018) using Stata 16software 
* Percentage of households whose indicator values are below the threshold 

 

From Table 18, it is evident that households in the study area, suffer multiple welfare 

deprivations particularly across the use of environmentally degrading cooking methods 

(99%), level of livestock ownership (71%), quality of dwelling place (63%) and food 

security (57%). The high level of use of firewood, charcoal, and other environmentally 

degrading cooking fuel may relate to their cheapness and availability, since they can be 
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locally sourced. According to Anozie, Bakare, Sonibare & Oyebisi (2007), the use of this 

type of cooking fuel is due to poverty factors and often decreases with increase in 

income level. Other areas of deprivation include high out-of-school children (school 

attendance by school age children) (46%), child mortality (40%), asset ownership (40%) 

and sanitation/toilet facilities (37%). The study households are least deprived in sources 

of drinking water with about 92% of the households under study having access to 

protected drinking water sources (piped water, public tap, borehole, protected well, etc.), 

which are typically less than 30-minute walk (round trip). This is followed by years of 

schooling, which shows that about 91% of the households in the study area had at least a 

member that completed a minimum of six years of schooling. 

Table 19: Multidimensional welfare levels 

Headcount Ratio (H): % Population in multidimensional deprivation (poverty) 0.575(0.025) 

Intensity of deprivation among the poor (A): Average % of weighted deprivations 0.510 (0.008) 

Adjusted Headcount Ratio (M0* = MPI = H x A): Mean of censored 

deprivation matrix 
0.293(0.014) 

Dimension and indicator  
Contribution to 

M0 

Dimension  

Dimension 1: Education 0.258 

Dimension 2: Living standard 0.262 

Dimension 3: Health 0.480 

Indicator  

Dimension 1: Education 

Years of schooling 0.04 

School attendance by school age children 0.22 

Dimension 2: Living Standard 

Source of drinking water 0.008 

Sanitation/toilet facilities 0.033 

Type of cooking fuel 0.064 

Electricity access 0.017 

Quality of dwelling place 0.043 

Adequacy of bedrooms 0.004 

Access to motorable road 0.005 

Land ownership 0.013 

Livestock ownership 0.051 

Asset ownership 0.025 

Dimension 3: Health 

Food insecurity 0.273 

Child mortality 0.207 

Source: Calculated from field survey data (2018) using Stata 16software 
*M0 is the multidimensional welfare index of households 

Figures in parentheses are standard errors 
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The multidimensional welfare indices reported in Table 19include the headcount ratio 

(H), intensity of deprivation among the households (A) and adjusted headcount ratio (M0 

= H*A).Following Alkire-Foster methodology, a household is multidimensionally 

deprived, if it experiences deprivations in at least 30% (deprivation cut-off) of the 

weighted indicators (Alkire & Foster, 2011; Alkire, Conconi & Seth, 2014). 

Multidimensional headcount ratio or incidence of deprivation (poverty) is the proportion 

of household who experience multiple deprivations in the welfare dimensions: education, 

living standard, and health. About 58% of the households show that, they are deprived at 

least either in all the indicators of a single dimension or in a combination across 

dimensions and thus, in acute poverty.  

Overall, the multidimensional welfare index indicated by the adjusted headcount ratio, 

which capturesboth the incidence and intensity of deprivation (i.e. adjusts headcount 

ratio by the number of deprivations) and depicts the multidimensional welfare level in 

the study area, shows that 29% out of the 58% of the welfare-deprived household 

respondents suffer larger deprivation on the average. This implies that, a poverty 

intervention aimed at reducing intensity rather than proportion of the poor would be 

more effective if this 29% of the poor is targeted while the 58% deprived households 

would be the target if the aim of the intervention is change in proportion rather than 

intensity of poverty. 

The health dimension, consisting of the food security and child mortality indicators, 

made the largest contribution of 0.48 (48%) to households’ welfare deprivation. This is 

followed by the living standard dimension with 0.262 (26.20%) and the education 

dimension with a contribution of 0.258 (25.80%). The results, therefore,show that, the 

households in the study area are more deprived, in the indicators of health dimension 

compared to others. 

4.4.3. Crop productivity and welfare effects of usage of climate-smart adaptation 

strategies 

The results in this sub-section are presented in three parts: household welfare, crop 

productivity, and use intensity of climate-smart adaptation strategies. These were jointly 

estimated with maximum likelihood (ML) employing OLS and probit models and 

implemented with the cmpStata command. The estimation was done, while accounting 

for cluster heteroscedasticity standard error, at enumeration area level. Based on OLS 

regression, the estimation of the determinants of use intensity is the first stage of the joint 



97 
 

estimation process, followed by the estimation of the effects of use intensity on crop 

yield.The third stage involved a probit analysis of the effects of yield on household 

welfare category, defined as deprived (1) or not deprived (0). The estimated modelsfor 

the crop categories haveX2 goodness-of-fit statistic significant at the 1% level. Also, the 

models yield significant correlation coefficients, among the error terms between CSA 

intensity and productivity equation and between production and welfare model. The 

correlation is shown by atanhrho parameter estimates (a measure of selection bias) 

which indicates that, joint recursive estimation was adequateunder each crop model 

(Table 20). A positive atanhrho value implies that, there are unobserved factors, that 

positively affectsthe selection and outcome equations and that individual models 

ignoring the correlation would be biased. The reverse can be said about observed 

negatively signed atanhrho (Makate et al., 2016). 

Table 10: Estimates of effects of CSA use intensity on crop-based farm productivity 

and household welfare using CMP analysis 

Variables 

Crop category 
 Cereals Root and tubers Pulses 

 
Coefficient 

(Std. error) 

Coefficient 

(Std. error) 

Coefficient 

(Std. error) 

Welfare model (DV1 = Welfare status (MPI non-poor=0)) 

ln of yield   0.480** (0.218) -0.455***(0.127) -1.881*** (0.467) 

ln of yield squared  -0.076*** (0.025) 0.028** (0.013) 0.062** (0.031) 

hhdgroupmemb  0.276 (0.290) 0.122 (0.228) -0.337 (0.244) 

Dratio  -0.130 (0.116) -0.058 (0.053) - 

Crdstat  0.066 (0.440) -0.584*** (0.202) - 

Hhgend  0.718** (0.286) - - 

Hhdnature  -0.236 (0.415) - - 

hhdnature* crdstat  -0.274 (0.536) - - 

ln mktdist  - 0.152 (0.147) 0.912*** (0.226) 

Hhdage  - -0.010 (0.009) - 

Mstat  - - -0.367 (0.270) 

Location  - - -2.249*** (0.532) 

Constant   -0.093 (0.490) 1.707*** (0.519) 11.313*** (2.261) 

Productivity model (DV2 = Log of yield (kg/ha)) 

CSI intensity    3.378** (1.590) 6.347*** (1.364) 2.842** (1.220) 

ln farmsize  -2.648** (1.151) -4.001*** (0.975) 0.012 (0.167) 

ln farrmsizesq  0.289 (0.243) -0.192*** (0.057) -0.096*** (0.032) 

ln totpday  -0.329 (0.257) -1.223*** (0.452) - 
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Variables 

Crop category 
 Cereals Root and tubers Pulses 

 
Coefficient 

(Std. error) 

Coefficient 

(Std. error) 

Coefficient 

(Std. error) 

ln agrochemqty  -0.267 (0.213) - - 

ln fertcost  0.238 (0410) -0.972*** (0.369) - 

hhdgroupmemb  0.038 (5.83)  - 

Plotcultyr  -0.016 (0.019) - 0.018* (0.010) 

Extaccess  - 0.094 (0.316) 0.033 (0.067) 

Hhdage  -  -0.006 (0.011) 

Fertstat  -  1.213** (0.569) 

ln mktdist  -  -0.3002 (0.272) 

crdtconst  -0.137 (0.440) - - 

flattop  - 0.841 (0.556) - 

Location  -0.612 (0.635) - -1.011 (0.807) 

Constant  5.051 (4.684) 11.354*** (3.033) 2.447 (1.853) 

 
CSA use intensity model (DV3=CSA intensity) 

Hhage  -0.004* (0.003) - -0.004*** (0.002) 

Roadacess  0.057 (0.051) - 0.115*** (0.042) 

ln farmsize  0.647*** (0.075) 0.595*** (0.036) - 

Tenuresec  - 0.161*** (0.058) 0.116** (0.059) 

Extaccess  0.015 (0.021) - - 

Hhgend  0.202 (0.133) - - 

hhdgroupmemb  -0.058 (0.058) - - 

Tlu  0.0361*** (0.011) - - 

Plotcultyr  0.006** (0.002) - - 

Mstat  - 0.245*** (0.043) - 

Hhdnature  - - -0.066* (0.035) 

ln mktdist  0.091*** (0.033) 0.044 (0.032) 0.154*** (0.050) 

plotfertpercep  0.115* (0.064) 0.092* (0.052) -0.101 (0.106) 

hhdriskpercep  -0.010 (0.011) -0.015 (0.012) -0.032*** (0.005) 

Location  -0.100 0.112) 0.073 (0.062) 0.114 (0.157) 

Constant  0.883*** (0.123) 0.737*** (0.067) 1.691*** (0.164) 

/atanhrho_12  0.421** (0.171) 0.868*** (0.245) 0.643*** (0.225) 

/atanhrho_13  -0.096 (0.112) 0.275** (0.121) -0.064 (0.138) 

/atanhrho_23  -0.511*** (0.195) -0.480*** (0.134) -1.112*** (0.424) 

/lnsig_2  0.698***(0.183) 1.245*** (0.116) 0.261 (0.328) 

/lnsig_3  -1.293*** (0.093) -1.352***(0.197) -1.129*** (0.128) 

Log likelihood  -348.662 -282.981 -196.694 
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Wald chi2(31; 21; 24)  40937.52 14531.28 303155 

Prob > chi2  0.000 0.000 0.000 

Number of observations  255 164 134 

Source: Generated by author from field survey, 2018 data using STATA 16 software 
*** denotes 1% significance; ** denotes 5% significance and * denotes 10% significance 

Although several covariatesare included in the models (Table 20) to capture the adjusted 

effects of the outcome variables, the causal relationships between household welfare, 

crop productivity and use intensity of climate-smart adaptation strategies are the focus in 

this section.The individual joint estimation models show that, household welfare is likely 

to improve, with increase in yield of the crop categories. This collaborates the findings 

by Dzanku (2015) that an increase infarm productivity increases the probability of being 

non-poor in all indicated welfare dimensions.However, the pathto achieving the increase 

differs with crop category. For instance, a percentage increase in cereal yield, is likely to 

increase household welfare by 48%. However, the significant positive sign of the linear 

coefficient of yield and its significant negative nonlinear coefficient in the cereal model, 

implies that, household welfare is likely to first increase at the indicated rate and then 

decrease with size of yields of cereal crops. In the case of roots and tubers and pulses, a 

reverse observation is noted. In both models, household welfare is likely to first decrease 

and then increase by 2.8% and 6.2% with respective yield increase. This observation is 

associated with the significant negative linear and the positive non-linear relationship 

between the household welfare and the yields of roots and tubers and pulses. 

Overall, increase in yields of cereals and pulses are significantly more likely to make 

significant positive contributions, to household welfare improvement, than roots and 

tubers (yield coefficients: cereals = 0.48; pulses = 0.062; roots and tubers = 0.0.028). 

One possible explanation for this, is that, cereals and pulsesare high-value crops,which 

can be sold for high prices, at local or international market (Rahmanian et al., 2018) and 

therefore,could contribute more to household income than roots and tubers.Furthermore, 

the higher contribution of cereals to household welfare compared with pulses is 

consistent with Amare, Mavrotas & Edeh(2018). Their study noted that, the share of 

cereal crops in Nigeria farm households’ net crop income have been consistently higher 

than that of pulses in the last decade. 

The results of the productivity models show that, the responses of crop yields to intensity 

of use of climate-smart adaptation strategies,are significantly positive and exceed 
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proportionate increases. This indicates increasing returns to scale (at 1% roots and tubers 

and 5% level of significance for cereals and pulses). This is consistent with the findings 

of Roco, Bravo-Ureta, Engler, & Jara-Rojas (2017). The negative term associated with both 

farm size and square of farm size collaborate earlier empirical findings in literature. 

4.5.Constraints to use of CSA strategies by farmers in the study area 

Following the responses of the sampled respondents, the constraints to use of CSA 

strategies by farmers were ranked and prioritized, by using the Garrett’s ranking method 

and reported in Table 21.  Overall, the most important constraint to the use of CSA 

strategy by smallholder arable crop farmers, is the initial establishment cost without 

immediate benefits (62.17 Garrett score). Following that CSA strategies are long term 

investments, they often require huge investments to establish and maintain, if the needed 

returns are to be achieved. However, the time lapse to achieve these returns tends to be 

an impediment to their use by smallholder farmers who are often credit constrained. This 

constraint mostly affects the practice of fertilizer deep placement, improved crop 

varieties, green manuring, and minimum tillage. This constraint is followed by plot 

tenure security status (61.76 Garrett score), which mostly affects the use of legume-

based practices, mulching and cover cropping. Constraints related to markets to purchase 

the inputs for strategy implementation occupies the third position with 60.69 Garrett 

score, which is the most important constraint to the use of irrigation and agroforestry, 

while cost of labour for strategy use, followed with a Garrett score of 59.93. This 

constraint is mostly an impediment to farmyard manure use by smallholder farmers.  

Knowledge of climate-smart adaptation strategy seems to be high among the respondents 

considering that, information-related constraints have relatively low Garrett scores across 

the strategies, with overall Garrett score of 58.66. Similarly, the respondents identified 

access to product market as an important constraint to use of agroforestry (61.81 Garrett 

score) and cover crops (62.70 Garrett score). However, it has on overall Garrett score of 

57.33 for all the constraints. The least scored constraint is that related to credit access 

(52.40 Garrett score). Across the strategies, this constraint is almost the least scored, 

except for irrigation, where it ranked the fourth most impeding constraint.Generally, the 

rank of this constraint is an indication that,respondents do not depend on external 

financial source to use CSA strategies.
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Table 111: Garrett mean score distribution of constraints affecting use of CSA strategies 

Nature of constraints 
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Initial establishment cost 

without immediate benefits 

62.17 

(1) 

56.06 

(3) 

64.06 

(2) 

65.43 

(1) 

64.60 

(4) 

63.67 

(2) 

65.59 

(2) 

64.88 

(1) 

53.29 

(7) 

62.96 

(2) 

63.06 

(1) 

62.31 

(1) 

Land ownership status of plot 
61.76 

(2) 

52.04 

(7) 

65.13 

(1) 

59.04 

(5) 

67.40 

(1) 

66.81 

(1) 

65.97 

(1) 

61.46 

(3) 

61.19 

(3) 

56.00 

(6) 

60.98 

(2) 

61.24 

(2) 

Markets to purchase the 

inputs for the strategy 

60.69 

(3) 

61.94 

(1) 

57.17 

(6) 

64.34 

(2) 

66.42 

(2) 

62.30 

(3) 

57.63 

(5) 

62.91 

(2) 

61.93 

(1) 

61.63 

(3) 

57.99 

(4) 

53.32 

(6) 

Cost of hired labour for 

technology application 

59.93 

(4) 

52.24 

(6) 

61.45 

(4) 

63.08 

(3) 

64.78 

(3) 

59.02 

(4) 

58.39 

(4) 

59.26 

(4) 

58.03 

(5) 

64.31 

(1) 

58.89 

(3) 

59.80 

(3) 

Limited access to information 

on CS practices 

58.66 

(5) 

61.05 

(2) 

59.86 

(5) 

58.21 

(6) 

58.46 

(5) 

58.61 

(5) 

58.87 

(3) 

58.33 

(5) 

60.92 

(4) 

57.34 

(5) 

56.24 

(5) 

57.37 

(4) 

Access market to sell farm 

products 

57.33 

(6) 

53.13 

(5) 

62.70 

(3) 

61.87 

(4) 

52.51 

(7) 

56.56 

(6) 

57.53 

(6) 

53.51 

(7) 

61.81 

(2) 

61.12 

(4) 

55.85 

(6) 

54.00 

(5) 

Credit access 
52.40 

(7) 

53.83 

(4) 

49.97 

(7) 

50.91 

(7) 

53.55 

(6) 

52.42 

(7) 

53.33 

(7) 

55.22 

(6) 

53.88 

(6) 

53.00 

(7) 

51.04 

(7) 

49.28 

(7) 

Source: Field survey, 2018 

NB: Figures in parentheses are in order of merit of constraints. 
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SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1. Summary 

It is evident in literature that improving farm productivity, using climate-smart 

agricultural technologies,has positive implications for rural household wellbeing. 

However, the extent to which these benefits will accrue to households, depends on 

various conditions, including the types of climate-smart technologies adopted and the 

intensity of adoption; with a higher intensity able to drive higher farm productivity and 

consequently, household welfare. Empirical evidence of this nexus remains scanty. In the 

absence of such evidences, the extent of agricultural enhancement of the poor and the 

incentive to promote the use of climate-smart adaptation strategies, among farmers, will 

be limited. This study, therefore, examines how productivity and welfare of smallholder 

staple crop farmers in Savanna Agro-Ecological Zone of Nigeria vary with intensity of 

use of climate-smart adaptation strategies, by addressing five important policy questions. 

Firstly, what type of climate-smart adaptation strategies do staple crop farmers use vis-à-

vis the type of crops produced? Secondly, what factors are responsible for the choices of 

climate-smart adaptation strategies among staple crop farmers? Thirdly, what factors 

determine the intensity of use of climate-smart strategies by farmers and crops produced? 

Fourthly, how does the intensity of use of climate-smart adaptation strategies affect 

farmers’ productivity/welfare level? Fifthly, what constraints limit farmers use of 

available climate-smart adaptation strategies in the study area? 

Using a cross-sectional data collected through a survey of smallholder crop farming 

households in Benue and Niger States, the first and fifth questions were addressed using 

descriptive statistics. The econometric methods,including multivariate probit, 

heterogenous treatment effect, based on propensity score matching, and conditional 

recursive mixed-process (CMP) modelling framework, involving probit and OLS 

estimations, were employed to address questions two, three, and four, respectively. The 

use of CMP framework allows for joint estimation of two or more equations, whose 

dependent variables may or may not be related, but with linkages among their error 

processes, account for multiple endogeneity, while producing more consistent and 

efficient estimates than either the instrumental or two-stage least squares estimation 

method. 

The descriptive analysis of the sample respondents indicates that, the household heads 

are predominantly male with mean age of 46 years; overseeing a household size of 8 
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persons with low dependency ratio. These household heads, on average, spent about 9 

years in formal education with an average of six extension contacts in five years mostly 

on non-climate change related issues. Social network among household heads is high 

with 84% belonging to at least a farmer/social group. Farmers on average travel about 

6km to the nearest market with great variability shown by the distribution of the 

households; while majority are credit constrained. 

On wealth and infrastructural indicators, 37 percent of the respondent households are in 

the upper non-land and livestock asset quintile, and had, on average, 2 animal units and 

cultivate one hectare of farmland. Majority of the households had accesses to safe 

drinking water, improved sanitation, and electricity, but, no efficient cooking fuel and 

modern dwelling place. 

Descriptive analysis of plot biophysical and perceived tenure security variables shows 

that, most farmers perceive their farms to be fertile, though these farms have been in use 

for an average of 20 years. The results for land tenure security are mixed. Though 

respondents do not fear loss of their farmland, there are likelihood of ownership and use 

disputes occurring.The adaptation strategies used by the households received only 13 

percent perceived efficacy score, even as climate change occurrence is evident, as 

perceived by more than 90% of the respondent households. The outcomes of climate 

change events were manifested in yield decline, loss of dwelling places, and health-

related problems with varying degree across the events. 

Irrigation and agroforestry are least practiced climate-smart adaptation strategies across 

all crop types, while the use of the climate-smart strategies is dominant for maize 

farming. The use of these strategies varies for yam and cassava, butmost pronounced for 

groundnut compared with soybean, and cowpea under pulses. The use of these strategies 

is, however, a reflection of local knowledge and awareness among farmers. 

Empirical results show that majority of the climate-smart strategies are used 

simultaneously. The mix and the intensity of use of these strategies isrelatively 

low,overall, while the determinants of choice(s) of these strategies,arestrategy 

specific.Furthermore, the results show that; marital status, access to extension services, 

livestock ownership, years of plot cultivation, distance to market, farm size and 

perceived soil fertility level, significantly, encourage intensity of use of climate-smart 

strategies, while aged farmers are less likely to increase the use of these strategies. 
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Additionally, the study found out that mulching has significant impact on yields of roots 

and tubers,while the use of improved crop varieties and the practice of crop rotation with 

legumes significantly increased the yields of pulses. In addition, thepractice of fertilizer 

deep placement and cover cropping have significant positive impact of cereal yield 

compared with other climate-smart technologies. Overall, the effect of intensity of use of 

these strategies on household welfare, through the yields of crops is significantly 

positive. Butthe intensity – productivity nexus is linear, the linkage between productivity 

– welfare is non-linear. 

On the multidimensional welfare, multidimensional headcount ratio or incidence of 

deprivation is 58% while the adjusted head count ratio is 29%. The health dimension 

contributed most to household deprivation, followed by living standard and the education 

dimensions. In all, initial cost of establishment, plot tenure security, input and output 

markets, and good knowledge of climate-smart adaptation strategies remain challenges to 

intensity of use. Surprisingly, access to finance had the least Garrett score, which is an 

indication though a challenge, farmers may not depend solely on external financial 

source to use CSA strategies. 

5.2. Conclusion 

A clearevidence from this study is the differential contributions of the crop yields to 

household welfare improvement. Also, the effects of intensity of use of climate-smart 

adaptation strategies on crop yields, is heterogenous across the crop categories. Both 

observations indicate that, promoting crop-specific use of CSA strategies is likely to be 

more effective in improving the wellbeing of smallholder crop farmers in Nigeria. 

The study further showssimultaneity and low intensity of use of climate-smart adaptation 

strategies by smallholder farmers across crop categories. Despite the low intensity of use, 

climate-smart adaptation strategies contribute positively to crop productivity in a non-

linear relationship, exceeding proportionate increases. This, therefore, suggests an 

increasing return to scale. Though the impact of intensity of use of climate-smart 

adaptation strategies is lower in cereals and pulses, both crops are pro-poor, since they 

significantly contribute to household welfare improvement compared with root and tuber 

crops.  

The positive impacts of marital status, livestock ownership, farm size, tenure security 

among others on intensity of use of climate-smart adaptation strategies supports the 
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consideration of gender-inclusive outreach activities, in policy design to stimulate 

increased intensification of climate-smart strategies. This follows literature evidence that, 

female-headed households and farmers are often more disadvantaged than the male 

counterparts in resource allocation. 

The depth of contribution of health dimension to multidimensional deprivation suggests 

that policies targeting household welfare need to pay attention to its components, to 

reduce the intensity of deprivation in the study area. 

5.3. Policy Recommendations 

The conclusions from this study provide strong evidence that, farmers acknowledge the 

existence of climate change and are adapting to it, using various strategies. These 

strategies are impacting positively on the livelihood and welfare of the farmers. 

However, the depth of deprivations evident is the study area suggests that, policy 

interventions,addressing the right use of climate-smart adaptation strategies in terms of 

mix, intensity and crop can be a pathway to improving crop productivity and 

consequently, household welfare levels. 

Key recommendations from this study include: 

• Use of farmer groups as platform for promoting the use of CSA strategies and 

providing on-lending facilities for farmers.  

• Yield decline is mainly associated with delayed or less frequent or amount of 

rainfall. A smart approach shouldbe provision of artificial water source through 

promotion of affordable and less sophisticated irrigation facilities. 

• The government’s ongoing National Home-Grown School Feeding Programme 

(NHGSFP), which promotes enrolment among school-age children, should be 

vigorously pursued and encouraged. In addition to improving school enrolment, 

this also would encourage local farm production and subsequently, the use of 

farm production technologies, that are climate smart. 

• With more than half of the population under multidimensional deprivation, policy 

interventions which seek to promote the use of improved cooking fuel, improve 

children school enrolment, encourage backyard livestock production, asset 

ownership and reduce any form of child illness and mortality can be an effective 

way to bring more households out of deprivation, in the short term. Such policy 

interventions need to be vigorous pursued, by all the tiers of government. 
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