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ABSTRACT

An analysis was carried out on the effects of variable thermal conducti vily on radiative MHD
flow in a porous medium between two vertical wavy walls. The thermal conductivity is
assumed a linear function of temperature and the Suid flow consists of two parts namely a
mean and perturbed part, where the perturbed component is expressed as complex
exponential series in terms of short wave length. The resultant governing equations were
solved using Homotopy Analysis Method (HAM). The effects of the fluid parameters
characterizing the velocity, temperature, Suid pressure, skin friction and Nusselt nmimber

were analysed and discussed.

Key words: A porous medium; Homotopy analysis method; Radiative MHD flow; Variable

thermal conductivity; Wavy walls.

INTRODUCTION

Considerable attention of researchers has
been drawn to the study of an
incompressible viscous fluid flow between
wavy wall(s) in the last few decades. This is
due to its applications in engineering and
industry such as in design cooling system
for electronic components, design of
ventilation for heating buildings and design
of storage facilities for agricultural produce.
The wavy channel is often used for MHD
flow in many applications such as crude oil
refinement, glass manufacturing and paper
production (Akbar, 2015).

The importance of flow in wavy wall(s) led
Fasogbon (2006) to investigate the effects of
magnetic field on the viscous
incompressible fluid in corrugated channel.
The author reported that the magnetic field
slow down the fluid velocity. Heat transfer

with radiation in the MHD free convection
between a vertical wavy wall and a parallel
flat wall was studied by Tak and Kumar
(2007). The authors concluded the thermal
radiation has an acceleraling effect on ihe
velocity and temperature profiles. Fasogbon
(2010) presented heat and mass transfer by
frec convection in an irregular channel. The
investigator reported that the effects of
different chemical species on the fTuid flow.
The heat transfer of viscous incompressible
fluid with slip effects within a spirally
enhanced channel was studied by Abubakar
(2014) and concluded that the slip effects
increase  the  (luid velocity,  In the
alorementioned  studies, the investigations
were narrowed down to one vertical wavy

.with a parallel flat wall.

Tak and Kumar (2006) and Kumar (2011)
studied the viscous incompressible fluid in a
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two-dimensional vertical wavy channel and
highlighted that radiation increases the fluid
flow while heat source reduces the fluid
{Tow in a non-Darcy porous medium.
The study of {Tuid flow through a porous
medium  has  vital in  heat
debris,
undergroud  disposal of  radiative  waste
material and storage of food stuffs. Abave

applications

removal  from  nuclear  fuel

mentioned applications of porous media led
Tencja and Jain (2004) 1o analyse the MHD
free convection (low in the presence ol
temperature  dependent heal source ina
fluid  confined

between a long vertical wavy wall and a

viscous  incompressible

parallel Mt wall i slip fow regime with

constant  heat  fux.  Heat with

radiation and temperature heat source i a

transfer

porous medium between two vertical wavy
walls studied by Dada and Disu (2015). The
authors reported that the velocity of the
Muid in the
permeability of the porous medium. Disu
and Dada (2017) studicd Reynolds™ model
viscosity on radiative MIID  flow in a
porous medium between two vertical wavy

increases  with  the mcrease

walls. The authors observed that an icrease
in variable viscosity paramcter increases the
velocity of the fluid.

The thermal conductivity of the fluid flow
in all the above studies is assumed constant
throughout the Mow regime. Howgever, it is a
known fact that the thermal conductivity
changes with temperature within the fluid

flow. For example, the thermal conductivity
of engine oil at 20°C and 80°C arc
0.145W/mK and 0.138 W/mK respectively.
Some  studies of  variable  thermal
conductivity of the fluid flow over a
stretching sheet, paralle]l walls and pipe
have been reported (Chaim, 1992; Sharma
and Singh, 2009).

In view of the above, it is necessary lo
extend  the variation of the thermal
conductivity to the study of the fluid flow in
a porous medium between two vertical
wavy walls. Therefore, we present the
effects of variable thermal conductivily on
MHD radiative flow in a porous medium
between two vertical wavy walls. Thermal
conductivity is assumed a linear function of
temperature and Darcy model is used for
porous medium.

Formulation of the problem
Consider a
convective,

two-dimensional
stcady laminar and
hydromagnetic-radiative flow in a Darcy’s
model porous medium between two vertical
wavy walls (Figure 1). The X-axis is taken
vertically  upwards  and Y -axis
perpendicular o it. The wavy walls are
represented by Y = &' cos(AX)and Y =
L + &" cos(AX) respectively, where £ &
1. The fluid tukes  place  under
buoyancy and temperature dependent heat.
The governing equations of the fluid flow
and heat transfer are given below:

free

MNow
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The boundary conditions are taken as:
U=0V=0T=T.aty= £* cos(AX),
U=0V=02%= gat Y=L+
£° cos(AX), (5)

where U, V are the velocity components in X
and ¥ directions, P is the fluid pressure, pu
is the dynamics viscosity, g is the
acceleration due to gravity, f is the
coefficient of volume expansion, T is the
fluid temperature, H, is the uniform
magnetic field, K™ is the porosity parameter,
I (T) is the variable thermal conductivity, p
is the density of the fluid, Cp is the specific
heat at constant pressure, @ is the heat
source, Ty is the equilibrium temperature,

4x is the radiative heat flux in  the

X —dircction and Gy is the radiative heat
flux in the ¥ —direction.

The Rosscland approximation defined the
radiative heat flux in the X and ¥ directions
as Brewster (1972)

w=w(@) v=nl)  ©

where Ry is the mean absorption coelTicient
and o is the Stefan-Boltzmann constant.
Assuming  the lemperature  differences
within the fluid flow are sufficiently small
such that T* may be expressed as a lincar
function of the temperature, then the Taylor
serics expansion of  T* ghout T,. alier
neglecting higher order terms., is given by
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T* = AT}T — 3T (7
The thermal conductivity is assumed to vary
as a linear function of temperature (Slattery
(1972); Sharm: dnd Singh (2009))

k(T) = k|1 + d(T =T,)] . (8)

The non-dimensional parameters are delined

as
o _y; w o w PR
x = ,y il i
§=d(T, - Ti_).a = ”T P: L6 =
@Ak
hq/m R = ku_,f' o w M u,, K o
ﬂU AST, Py
w.'1*/\1", -=,— (9]

S is the thermal conductivity variation
parameter, Prois the Prandtl, ¢ is the
Grasshol number, R is radiation paramcter,
a is the heat source parameter, M is the
magnetic  parameter, K is the  porosity
parameter, 4 is the dimensionless frequency
and gis the dimensionless amplitude ratio.

Using I-Lq. (9), Eq. (8) becomes

k(T) = A[l +50). (10)

Then, Egs. (1)
form as

{4} are in non-dimensional

du dv

o e — 0
dx ady ( I )
du du ap  Jd*u  d'u
i — = v o= f— e — ok GO —
L dx =1 dy Ax  dx? -! + a
Mu — —-u, (12)
ﬂ Jv = ap . d*u rJ l,’ e (13)
dx dy dy  dx? 0 Qy? K
a0 Jo (r)".‘i rw) . (an)‘f
uZ iy il L5
( dx + rJy) L x & Ay ax 2
AN
S(L) — (14)
dy

with the boundary ¢

conditlons:

u:Dv:OG—lal/—scos(/bc)

u=0,v=0, %—1aty—l¢rcos(/h)
(15)

where w = (1 + 3”45) is the radiation
parameter.

We assume that the solution consists of a
mean part and a perturbed part so that the
velocity and temperature distributions arc
ulx,y) = ugly) + cuy(x, )
v(x,y) = evy(x,y)
P(x,y) = Py(x) + ep,(x,y)
Q(X,y) = 90(}’) 3 591(3‘;)’}

(16)

Substituting Eq. (16) into Egs. (11) - (14)
with boundary conditions (15), we obtain
the following set of equations:

zeroth order equations arc

Z;‘f Mug—2u,+6G0y=C,  (17)
(w+ 56,) 222 & "" g (‘“’") —afy = 0,(i8)
dy
where C = ﬂ,
dy

with boundary conditions

uy =0, 8y =1, y=0 '
d (19
=0, 2% .. =0, y=1 (‘ )
First order equations are
du, , dv : 5
et T (B 20
ax ay 0 (20
Au, dug _ _ dp, d%u, | 8%u,
Yo dx +v dy = ax dx? ay*? +
Ga, ~Mu1—;u1, 20
duy _ apy | d*v, | 3%y, 1
o= " T tar g (22
a0 a6 30, | 9%
(ot ) - o (58459
riug = + 1 o [ P + ay? +
1L
(dy o) —ats, (23)

with boundary conditions
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dug

d 0,
Wy ==t, v, =0, 9,=-Ty“ y=0
u =0, v, =0, ‘%:0, y=1
(24)

Egs. (20) - (23) with boundary conditions
(24) arc simplified by introducing the
stream function 1 (x, y)such that

dy d
w=-F = @3

Therefore, Eqgs. (20) - (23) and boundary
conditions (24) becomes

(aa_q;+ 3%y ) _Qupdy oty oty
0 \axs dxdy? dy? dx  ax* gyt
2 iy % 13%y d6, _ 0

axigy? dy? K ay? dy !
(26)

20, ayp rw.,) . (629, a‘ol)
Fr (un ax i ax dy) ~ W ax? * day?
sy,

28 %5 ab, 27

with boundary conditions

W due B oo i

E_ {ly'ax_U' = dy y—O}
W _ o oo 4o, _ il
Ul e dy~0, y=1

(28)

Due to the nature of the wall motion, we
assume wave-like solutions of the form
Y(x,y) = Re(T, p,A"eitx) 29)
01(x,y) = Re(%, t,A7e¥x) (30)
wherer =0, 1. i ‘

Substituting Eqs. (29) and (30) into Egs.
(26) and (27) with boundary conditions
(28), the sets of obtained equations are:

o _ ppdo | 1dy . dby _

dy* dy? K dy? G dy — 0. (1)
d2ty df, dt, . _

(@ +560) 52 + 25 (375) aty =0,

(2)

with the boundary conditions

Ao _ _ dug = = %% =
O T T Yo=0 = dy =l
Ao _ - a6 =
2y =0 o=0, Ze=y, y=1
(33)
d*y, ) d*yq - idz‘-fh : d’ug L=
dy* M dy? K dy? + (wo dy?

%o\ _ dy _
up L ¥e) =0, (34)

ey o cdoan

(w + 56,) o+ 28 By & 2=
g e
iPr (uoto + 1, ﬁ) (35)
with the boundary conditions
a0, P1=0, =0 y=0

y
aw - (36)
-#:0,1#1:0, t1 =0, y=1

The Homotopy Analysis Method of
Solution )

The solution of Egs. (17) and (18) with
condition (19) are obtained by constructing
zeroth-order  deformation (Liao (2004);
Cheng er al (2008); Liao (2012)) as

(1= @)Llug; ) — ()] =

hatl (¥)N [y (y, q)] (37
(- QLB (y: q) — 6,(3)] =

hqH(y)N[6,(y, g)] (38)
up(0;9) =0, uy(1:q) = 0 5]

ey = d0e(liq) _
80(0:q) = 0, =2 =,

q € [0,1] is the embedding parameter, L, is
the auxiliary operator , u; and 6; are the
initial  guesses of unknown function
uy(¥:q) and 6,(y;q), h is the auxiliary
parameter, H(y)# 0 is the auxiliary
function and N is the nonlinear operator.
when ¢ =0 and q = 1, the followings are
obtained

up(:0) =up, 6,(y;0) =6,  (40)
Ui 1) =u(), 0, 1) = 8,(y) (41)
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Using the Maclaurin serics, uo(y; q) and
8o(¥: q9) = u; can be expanded with respect
to g

u()(yf 0) = u; + El;r;:1u0nt ()’)qm (42)

Bo(yi0) = 0; + Z5_ ) Bom ()G™  (43).
10" ugy:q)

where g, = Tn_-_a(nm_ and 6y, =
& i q=0

1 M)

m!  aqm q=0

Assuming the Eqgs. (42) and (43) converge
at q = 1, the equations yield

ug(y:0) = w; + Xy Upm (¥) (44)
Bo(¥:0) = 0; + Xty Oom () (45)

Eqgs. (37) and (38) are differchtiated with
respect to g m —times, then setting g = 0
and divided by m! (Cheng, 2008) and (Liao,
2012). The following m —order deformation
equations are obtained
Ugm(¥) = Xmu(i(m = 1)+
L' (hH (y)Rupin), (46)
Oom(¥) = xi(m — 1) +
L7 (hH (y)RBg), (47)

067 m<1
1, m>2

" 1

Rutgm = tgn-1) = Mitgm — < Uom + GOom
(49)
ROy = wOyn_1y + S Tnse Oom Oym-1y +
S an;()l 9(')m 90(:"-1) e aeﬂm (50)

where, y, = { < (48)

In the similar way, the following equations
are obtained for i, ty, P, and t; and
these arc given as follows

U’nm(y) - me::(m == 1) *

15‘1 (h”(J’)Rllfmn)« (5 I)

‘tom(y) = XmCU(m s 1) <

L (hH(YRGm),  (52)

Y1 () = X n — 1) +

L7 (hH (P)Ripym). (53)

Cm()’) . th‘i(m - 1) +

L™ (hH MR, (54)

where

Rwﬂm = TP::'Em-n i Mw;m—l = ',lslplgrn—l +
G o1 ) .59
Rtgm = wtyim_1y + S TN Oom tom-1) +
SZT:OI 9'."Dm ttl)‘(m—l—n) +

28 TR Oom togm-1-ny = @lom  (56)
Rpym = ¢i‘€m-1) i M'l!):,,,-; - %ll:'(;m-i +
Gtym_q = i(T0F ups wg(m—im) =

IS5 ton Yom=1-n)) 67
Rtym = @tyn_gy + SIS 01 Loim-1y)
N T——-_Dl glm l'L1(1v1'1-1‘n) *

25 056 O1m togm—1-m) — Aloin —
E(Z::':ol Uon tom—1-n +
):?:7:1 6m ‘I’o(m—l—n)) B (58)

Fluid pressure
The fluid pressure P(X,Y) for Egs. (2) and
(3) is defined as
. = [ L

P(X,Y) = [dP = [ (3dx + ).
(59) Using Egs. (11), (12), (16), (25), (29)
and (30) in Eq(59), then Eq. (59) becomes
p(x,y) = x(u"ﬂ — Muy.— %un + Gﬂo) +
L o A (e

' 1 .- i " .
MY oW+ Gy )+ (g MY+
1 ¢ . "
20+ Geo) +iA [ (g — Mo +
<o) dy] e (60)
Eq. (60) can be expresssed as Ap =
p(x,y) — p(x,1) where Ap is the pressure
drop which is the pressure at point y in the
fluid flow with respect to x (Fasogbon

(2010)). The pressure drop (Ap) is at 27 or
At=0 :

Skin Friction

The shear stress at the walls y = € cos(Ax)
and y = 1 + € cos(Ax) are given as

T =1(0) + e(—1,(0) cos(Ax) +

AY;(0) sin(Ax)) (68)

7 =u'(1) + e(—, (1) cos(Ax) +

AY;(1) sin(Ax)) (69)
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Nusselt Number

The rate of heat transfers at the walls y =
€cos(Ax) and y = 1 + € cos(Ax)

Nu = —6'(0) — (—t,.(0) cos(Ax) +

At;(0) sin(Ax)) (70)
Nu = -8'(1) — 6(—t;—(0) cos(Ax) +
At{(1) sin(Ax)) (71)

Discussion of Results

Egs. 49) - (50), (59) - (62) are
implemented and solved on Maple 18. The
following series-of computations are carried
out to determine the effects of variable
conductivity parameter (S), heat source (a),
radiation parameter (w), magnetic
parameter (M), Grashof number (G),
permeability parameter (K), frequency (1),
and amplitude (£), on the velocity,
temperature, skin friction as well as Nusselt
number. The analysis of the fluid flow and
heat transfer distribution profiles were
carried out with the following fixed values
for the parameters: S =0.1, M = 1.0,K =
1.0, =10, w=0.1,6 =50, =
0.1,4=0.01 andx = 1.0. All the graphs
use the default values expect otherwise
stated.

The cffect of the magnetic parameter (M)
on the velocity profiles is depicted in Figure
2. The presence of the magnetic field
normal to the fluid flow in an electrically
conducting fluid introduced a Lorentz force
which act against the flow. This resistive
force slow down the the flow and hence the
fluid velocity decreases with increase of
magnetic field parameter. Figure 3 presents
the variation of velocity profiles with
permeability parameter. It is observed that
the presence of permeability parameter
reduces the resistance of the porous medium
thereby enhance the fluid velocity. Figure 4
depicts the variation of velocity distribution
with different value of Grashof number. It

 ISSN 11181931

can be seen that an increase in Grashof
number leads to a rise in velocity profiles.
Figure 5 illustrates the effects of
thermal  conductivity on  the  velocity
profiles. It is noted that as S increase (as
thermal increases  with
temperature), the velocity increases.

variable
conductivity

Figures 6 and 7 represent the influence of
heat source (&) and thermal radiation
parameter (w) respectively on the velocity
profiles. It is observed that an increase in
heat source parameter causes a reduction in
the buoyancy effeet which reduces the fluid
velocity. It can be seen that the velocity
profile increases as the radiation parameter
(w)  increases, thereby increasing the
momentum boundary layer thickness. This
is because the intensity of heat produced
through thermal radiation increases thereby
breaking the bond holding the components
of the fluid particles together and as the
fluid velocity increases.

Figure 8 shows the temperature profiles for
different values of thermal conductivity
parameter(S). It can be seen that an increase
in thermal conductivity parameter increases
the temperature profiles. Figure 9 illustrates
the influence of heat source parameter (@)
on temperature profiles. It is observed that
the temperature of the fluid deereases with
an increase in the values of the heat source.
The variation of temperature profiles for
different  values  of thermal  radiation
parameter (w) is shown in Figure 10. The
results show that the temperature profile
increasc in the thermal radiation parameter
and hence increasing the thermal boundary
layer thickness

Figure 11 depicts the fluid pressure with
different values of magnetic parameter(M).
It is observed that an increase in magnetic
parameter Tuid

decreases  the pressure
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profile. Figure 12 represents the variation of
fTuid
pressure. It is observed that an increase in
the  permeabitity

permeability  parameter on the

parameter
reduction in the uid pressure. 1 can be

causes a

seen that the aid pressure increases with an
increasc in the Grashof parameier in Figure
I3. Figure 14 illustrates the influence of
thermal radiation parameter (@) on the Nuid
pressure. It that  fluid
pressure radiation

cén  be noticed

decreases  as  the

500

e
2 2 CO T T R

Figure 2: Effects of M on Velocity profiles

parameter increases. Figure 15 presents the
trend of the fluid pressure with variation of
heat source parameter(a). It can be seen
that an increase in heat source parameter
produces a rise in the fluid pressure. Figure
16 represents the variation of thermal
conductivity parameter (5) on the fluid
pressure profiles. It is observed that an
increase in thermal conductivity increases
the fluid pressure profiles.

Figure 3: Effects of & on velocity profiles
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Figure 4: Effects of G on Velocity profiles  Figure 5: Effects of § on Velocity profiles
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Figure 6: Effects of @ on Velocity profiles Figure 7: Effects of w on Velocity profiles
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Figure 8: Effects of § on Temperature profiles Figure 9: Effects of aon Temperature profiles
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Figure 12: Effects of M on Fluid pressure profiles Figure 13: Effects of G on Fluid pressure profiles




99

Scientia Africana, Vol. 17 (No. I), June 2018. Pp 89-102

© Faculty of Science, University of Port Harcourt, Printed in Nigeria

ISSN 1118~ 1931
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Figure 19: Effects of § on Fluid pressure profiles

The skin friction coefficient and Nusselt
number are expressed in equations (68) - -
(71) are shown in Table | and Table 2 for
the fluid parameters. The entire fluid
parameter take their fixed values expect, the
varied parameter. Table 1 shows that
increase in value of ®, G, K or S causes a

fall in the skin friction while increase in «
or M produces a rise in the skin (riction
coefficient. Table 2 presents that the
increase in value ® or S increases the
Nusselt number while increase in S reduces
the Nusselt number.
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Table 1: The skin friction for different values of the fluid parameters

Fluid parameter

=01
S=03
S=05
M =0.1
M=0.3
M=0.5
K= 0.1
K=03
K=0.5
G=0.1
G=0.3
G=0.5
a=01
a=03
a=05
w=01
w=03
w = 0.5

Skin friction
-0.1116760
-0.1345073
-0.1507360
-0.1116760
-0.1070134
-0.1042505
-0.1116760
-0.1275513
-0.1322307
-0.1116760
-0.1275513
-0.1322307
-0.1116760
-0.1060528
-0.1012977

-0.1116760
-0.1060535
-0.1012977

Table 2: The Musselt number for different values of the fluid parameters

I'luid parameter

§=01
§=03
§=105
a=0.1
a=03
a=105
v w =01
w=03
w=0.5

The effcets of the thermal conductivity on
MHD radiative flow in a porous medium
between lwo  vertical
investigated.  The
were drawn:

wavy walls s
following  conclusions

cffects  of  thermal
conductivity is taken into account,
the  flow  characteristics  changed
significantly;

i. when the

ii.  increase in the thermal conductivity
paramelter (S), radiation parameter
(), permeability parameter (K) and
Cirashol” pumber (G) increases the

Nusselt number
4.999996
3.354092
2.687392

4.999996
5.400617
5.777358
4.999996
5.300647
7.773500

fluid flow while increase in
magnetic ficld parameter (M) and
heat sourcc parameter () stow down
the fluid motion;

ili.  temperature of the fluid increases
with increase in the thermal
conductivity parameter (§) and
radiation parameter (w). But the
temperature  decreases with the
increases with increcase in heat
source parameler (a);

iv.  fluid pressure increases with the
increase In values ol G, @ or § while
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it decreases with the increase in
value of M, K or w;
v.  increase in the value of G,aorS
ingreases the skin friction while
"increase in M, or w reduces in the
skin friction; and
vi. increase in the value of o or w
increase the Nusselt number whereas
increase in the value of S reduces
the Nusselt number.
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