HYPOTHALAMIC-PITUITARY-TESTICULAR-AXIS RESPONSE IN WISTAR RAT TREATED WITH CHLORPROMAZINE, *RAUWOLFIA VOMITORIA* LEAF AND COMBINATION OF RESERPINE, ASCORBATE AND ZINC

By

ADELEKE, OPEYEMI SAMSON (12/68LD001)

B.Tech. (Ogbomoso), M.Sc. (Ilorin)

A Thesis Submitted to the Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, in Partial Fulfilment of the Requirements for the Award of the Degree of Doctor of Philosophy in

Anatomy

CERTIFICATION

This is to certify that this research work was done and written by ADELEKE Opeyemi Samson with Matric number 12/68LD001 and it has been read and approved as meeting the requirements of the Department of Anatomy, University of Ilorin, Ilorin, Nigeria for the Award of Doctor of Philosophy degree.

A.O OYEWOPO (B.Sc, M.Sc., Ph.D.)

(Supervisor)

G.O OMOTOSHO (M.B;B.S, M.Sc. Ph.D.)

(Head of Department)

EXTERNAL EXAMINER

DATE

DATE

DATE

DEDICATION

This thesis is dedicated to the Creator of the Universe – God Almighty –who has been helping me in all my endeavours.

DECLARATION

I, <u>ADELEKE Opeyemi Samson with matric number 12/68LD001</u> hereby declare that this thesis entitled <u>Hypothalamic-Pituitary-Testicular-Axis</u> response in <u>Wistar</u> rat treated with <u>Chlorpromazine</u>, *Rauwolfia Vomitoria* leaf and combination of Reserpine, Ascorbate and Zinc is a record of my research work. It has neither been presented nor accepted in any previous application for a higher degree. All sources of information have been specifically acknowledged. In addition, the research work has been ethically approved by the University Ethical Review Committee (UERC/ASN/2017/1067).

Adeleke, O.S

Data

Date

ACKNOWLEDGEMENTS

This project report was embarked upon and completed with the special grace and assistance of God Almighty; I give all glories and adoration to his name.

My great gratitude goes to my amiable supervisor Dr. A.O. Oyewopo, who through his wealth of knowledge impacted in me constructive criticism, patience and professionalism throughout the period of carrying out this project. My prayer is that God will enlarge your coast and proper you more in all your endeavors (Amen).

I am indebted to my darling wife (Mrs. Kehinde Adeleke), Children (Moyosoreoluwa and Moyinoluwa), parent (Elder. and Mrs. J.O Adeleke) and brother (Kunle Adeleke) for their immense contribution in kind, prayers and advise. I love you all.

My special thanks goes to Dr. O.O. Omotuyi of the Chemo-Genomics Research Institute, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria Phyto-Therapeutics Research Unit, Mols and Sims, Ado Ekiti, Ekiti State, Nigeria for providing the laboratory and equipment for this research. My appreciation also goes to all the teaching and non teaching staff member of the Department of Anatomy University of Ilorin, Ilorin, Kwara State. God Bless you all (Amen).

Abstract

Synthetic antipsychotic drugs have been reported to induce reproductive toxicity while psychiatric patients treated with traditionally used herb like *Rauwolfia vomitoria* (*RV*) showed no traces of reproductive toxicity. Molecular mechanisms underlying control of Hypothalamic-Pituitary-Testicular-Axis (HPTA) by synthetic and traditionally used antipsychotic drugs are poorly understood. Thus, this study aimed to compare the effects of chlorpromazine (CPZ), *RV* leaf extracts and combination of reserpine, ascorbic acid and zinc (RAZ) on HPT-Axis of Wistar rats. The objectives of the study were to determine: (i) histological changes in the testes and hypothalamus; (ii) gonadotropin releasing hormone (GnRH), cytokeratin-18, Bcl₂ and ki-67 protein expression; (iii) expression of Cyclic-adenosine-monophosphate Responsive Element Modulator (CREM), protamine (PRM) genes in the testes (iv) andrological parameters; and (v) antioxidant status.

Seventy-two male Wistar rats (weight: $180.00\pm4.67g$) were assigned into nine groups (A-I) (n=8). Group A (control) was administered physiological saline while rats in Groups B and C received 10 and 20 mg/kg body weight (bwt) of chlorpromazine respectively. Groups D and E received 2.5 and 5 mg/kg bwt of reserpine while Groups F and G received 150 and 300 mg/kg bwt of *RV* leaf extract respectively. Groups H and I received (2.5:5:100) mg/kg bwt and (5:10:200) mg/kg of combination of RAZ respectively. The administration lasted for 56 days. On the 57th day, the rats were sacrificed, hypothalamus and testes were excised for histological, genes and immunohistochemical examinations while serum was used for hormonal analysis (follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone, sperm count, motility and morphology) and biochemical analysis (glutathione peroxidase (Gpx), superoxide dismutase (SOD) and malondialdehyde). Data analyses were done by Analysis of Variance followed by *Tukey's post-hoc* test at P<0.05 level of significant.

The findings of the study were that:

- i. chlorpromazine and reserpine treated rats showed hypothalamic arcuate neurons and testicular germ cells degeneration;
- ii. chlorpromazine and reserpine treated rats showed negative immunoreactivity to GnRH and ki-67 and weak positive immunoreactivity to cytokeratin and Bcl₂ proteins while

RV and combination of RAZ treated rats showed weak positive immunoreactivity to all the proteins;

- iii. chlorpromazine and reserpine treated rats when compared with control and RAZ groups showed significant (p<0.001) down regulation of CREM (0.32 ± 0.05), protamine-I (0.14 ± 0.02) and II (0.13 ± 0.02) genes expression;
- iv. serum FSH (0.19±0.03 ng/ml), LH (0.33±0.06 ng/ml), testosterone (0.15±0.02 ng/ml), percentage of normal sperm count (17.40±2.59), motility (19.60±2.86) and morphology (16.60±2.91) were significantly (p<0.001) decreased in chlorpromazine and reserpine treated animals while prolactin (0.11±0.03 ng/ml) level was significantly (p<0.01) increased when compared with control and RAZ groups; and
- v. serum GPx (21.00 ± 3.50 U/L), SOD (0.54 ± 0.12 u/mL) levels were significantly (p<0.001) reduced in chlorpromazine and reserpine treated rats while malondialdehyde (0.79 ± 0.15) level was significantly (p<0.001) increased compared with control and RAZ groups.

The study concluded that HPT-Axis was impaired by chlorpromazine and reserpine while *RV* and combination of RAZ (2.5:5:100) mg/kg bwt administration enhanced the axis. The study recommended that combination of RAZ should be prescribed in order to improve reproductive toxicity associated with antipsychotic drugs.

TABLE OF CONTENTS

Titl	e	Page	S
Title	page	i	
Certi	ification	ii	
Dedi	ication	iii	
Decl	laration	iv	
Ackr	nowledgements	V	
Abst	ract	vi	
Table	e of Contents	viii	
List	of Figures	xiv	
List of Abbreviation		xvi	
CHA	APTER ONE		
1.0	Introduction		1
1.1	Background to the study		1
1.2	Research Justification		7
1.3	Statement of the Research Problem		8
1.4	Significant of study		9
1.5	Broad Objectives of the Study		9
1.6	The specific objectives		9
1.7	Scope of the Study		10
CHA	APTER TWO		
2.0	Literature review		11

2.1	The Hypothalamic-Pituitary-Gonadal Axis	11
2.1.1	The Hypothalamus	13
2.1.2	The Pituitary Gland	14
2.1.2.1	Anterior Pituitary	15
2.1.3	Feedback Control of Gonadotropins	15
2.2	Anatomyof the Testes	16
2.2.1	The Convoluted Seminiferous Tubules	18
2.2.2	Spermatozoa	18
2.2.3	Sertoli Cells	19
2.2.4	Vascular Supply of the Testes	20
2.2.5	Spermatogenesis	21
2.2.5.1	Stages of spermatogenesis	21
2.3	Ascorbic Acid	23
2.3.1	Molecular Structure	24
2.3.2	Biosynthesis of L-ascorbic acid	25
2.3.3	Metabolism of L-ascorbic acid	26
2.3.4	Ascorbic acid redox metabolism	26
2.3.5	Ascorbic acid availability and transport	27
2.3.6	Biological pathways of L-ascorbic acid	28
2.3.7	Vitamin E regeneration by Vitamin C	32
2.3.8	Pro-oxidant effect of vitamin C	32
2.3.9	Vitamin C in humandisease:	33
2.3.10	Dietary requirement of ascorbate	34

2.3.11	Role of Ascorbate in Male Reproduction	35
2.4	Zinc	37
2.4.1	Roles of Zn in health	39
2.4.2	Zinc's functions in male reproductive system	40
2.4.3	Mechanism of Zn transport in cells and at molecular level	43
2.5	Chlorpromazine	46
2.5.1	Systemic Effects of Chlorpromazine	47
2.5.2	Chlorpromazine mechanism of action	48
2.5.3	Roles of Chlorpromazine in male reproduction	50
2.6	Plant of study (Rauwolfia vomitoria)	51
2.6.1	Study of Rauwolfia vomitoria on body organs	52
2.7	Reserpine	55
2.7.1	Mechanism of action of Reserpine	56
2.7.2	Reserpine's role in male reproduction	57
2.8	Role of dopamine in the testes	58
2.9	Role of CREM and Protamine Genes in Spermatogenesis	60
CHAI	PTER THREE	
3.0	Materials and Methods	63
3.1	Animal models	63
3.2	Experimental design	63
3.3	Materials	64
3.3.1	Authentication and Ethanolic extraction of Rauwolfia vomitoria leaves	64

3.3.1	Chlorpromazine, Reserpine, Zinc and Ascorbic acid (Vitamin C) Preparation	64
3.4	Procedures	64
3.4.1	Animal Body weights index	64
3.4.2	Animal Sacrifies and Samples Collection	65
3.4.3	Reverse Transcriptase Polymerase Chain Reaction Analysis	66
3.4.4	Hormone Measuring Assay	68
3.4.4.1	Prolactin hormone assay	68
3.4.4.2	Follicle stimulating hormone assay	69
3.4.4.3	Luteinizing hormone assay	69
3.4.4.4	Testosterone hormone assay	69
3.4.4.5	GnRH hormone assay	71
3.4.5	Biochemical examination	72
3.4.5.1	Protocol for Dopamine Assay	72
3.4.5.2	Protocol for Superoxide Dismutase Assay	74
3.4.5.3	Protocol for Lipid Peroxidation	75
3.4.5.4	Protocol for Glutathione Peroxidase	77
3.4.6	Sperm Analysis	78
3.4.6.1	Sperm count	78
3.4.6.2	Sperm motility	79
3.4.6.3	Sperm Morphology	80
3.4.7	Histological examination	80
3.4.8	Immunohistochemical examination	82

3.4.9	Germinal Cell Count	82
3.5	Statistical analysis	83
CHAI	PTER FOUR	
4.0	Results Analysis	84
4.1	Moephometric Analysis	84
4.2	Reverse Transcriptase-PCR Gene Analysis	85
4.2.1	RT-PCR Crem Gene Result	85
4.2.2	RT-PCR PRM-1 Gene Result	86
4.2.3	RT-PCR PRM-2 gene Result	87
4.3	Hormonal Analysis	89
4.3.1	Serum Follicle Stimulating Hormone Concentration	89
4.3.2	Serum Luteinizing Hormone Concentration	90
4.3.3	Serum Testosterone Hormone Concentration	91
4.3.4	Serum Prolactin Hormone Concentration	92
4.3.5	Hypothalamic GnRH Concentration	93
4.4	Biochemical Analysis	94
4.4.1	Serum Malondialdehyde Concentration	94
4.4.2	Serum Superoxide Dismutase Concentration	95
4.4.3	Serum Glutathione Peroxidase Concentration	96
4.4.4	Serum Dopamine Concentration	97
4.5	Sperm Analysis	98
4.5.1	Total Sperm Count Grading	98

Normal Sperm Morphology Grading	99
Motile Sperm Grading	100
Histplogical Examination OF Testes And Hypothalamus	101
Testes Stained with Hematoxylin and Eosin dye	101
Hypothalamus Stained with Hematoxylin and Eosin dye	107
Immunohistological Examination OF Testes	112
Ki-67 Protein expression in Rats' Testes	112
Cytokeratin-18 Protein expression in Rats' Testes	118
Bcl ₂ Protein expression in Rats' Testes	123
Germinal Cell Count	128
Germ Cell Apoptotic Index	129
Sertoli Cell Index	130
DISCUSSION	131
SUMMARY	140
Conclusion	142
Recommendation	142
Contributions to the body of knowledge	142
Suggestion for further study	143
	Motile Sperm GradingHistplogical Examination OF Testes And HypothalamusTestes Stained with Hematoxylin and Eosin dyeHypothalamus Stained with Hematoxylin and Eosin dyeImmunohistological Examination OF TestesKi-67 Protein expression in Rats' TestesCytokeratin-18 Protein expression in Rats' TestesBcl2 Protein expression in Rats' TestesGerminal Cell CountGerm Cell Apoptotic IndexSertoli Cell IndexDISCUSSIONSUMMARYConclusionRecommendationContributions to the body of knowledge

REFERENCES

LIST OF FIGURES

Figure	Title	Page
2.1:	Shown schematic illustration of HPG-axis regulation	12
2.2:	Shown Cross section of the testis and epididymis	17
2.3:	Shown schematic anatomy of the mature spermatozoa	19
2.4:	Showing the stages of spermatogenesisSpermiogenesis	22
2.5	Shown image and chemical structure of dehydroascorbic acid	25
2.6:	Scheme for zinc dissemination in cells	45
2.7	Shown image and chemical structure of Chlorpromazine	47
2.8	Shown image of Rauwolfia vomitoria	55
2.9	Shown image and Chemical structure of Reserpine	56
3.1:	Shown separation of hypothalamic nuclei	66
4.1.1	Shown comparison in animals' body weight gain	84
4.2.1:	Showed comparison in CREM gene expression among the groups	85
4.2.2:	Showed comparison in PRM-1 gene expression among the groups	86
4.2.3:	Showed comparison in PRM-2 gene expression among the groups	87
4.3.1:	Showed comparison in Serum FSH Concentration among the groups	89
4.3.2:	Showed comparison in Serum LH Concentration among the groups	90
4.3.3:	Showed comparison in Serum Testosterone Concentration among the group	ups 91
4.3.4:	Showed comparison in Serum Prolactin Concentration among the groups	92
4.3.5:	Showed comparison in hypothalamic GnRH Concentration among the gro	oups 93
4.4.1:	Showed comparison in Serum MDA Concentration among the groups	94

4.4.2:	Showed comparison in Serum SOD Concentration among the groups	95
4.4.3:	Showed comparison in Serum GPx Concentration among the groups	96
4.4.4:	Showed comparison in Serum Dopamine Concentration among the group	s 97
4.5.1:	Showed comparison in total sperm count grading among the groups	98
4.5.2:	Showed comparison in normal sperm morphology among the groups	99
4.5.3:	Showed comparison in Motile Sperm Grading among the groups	100
4.6.1	Testes stained with Hematoxylin and Eosin dyes	101
4.6.2:	Hypothalamus Stained with Hematoxylin and Eosin dyes	107
4.7.1:	Ki-67 Protein expression in Rats' Testes	112
4.7.2:	Cytokeratin-18 Protein expression in Rats' Testes	118
4.7.3	Bcl ₂ Protein expression in Rats' Testes	123
4.8.1:	Showed comparison in germ cell proliferation index among the groups	128
4.8.2:	Showed comparison in germ cell apoptotic index among the groups	129
4.8.3:	Showed comparison in sertoli cell index among the groups	130
5.1	Shown FSH, CREM and Protamines signaling pathways	141

List of Abbreviations

5-HT1 and 5-HT2	Serotonin receptors	
ACT	Activator of CREM in testis	
AFR	ascorbate free radical	
AMH	anti-müllerian hormone	
Arc	arcuate	
AVPV	anteroventral periventricular	
Bwt	Body weight	
cAMP	Cyclic adenosine monophosphate	
COMT	Catechol-O-methyltransferase	
CPZ	Chlorpromazine	
CRE	cAMP responsive elements	
CREB1	cAMP response element-binding protein	
CREM	Cyclic-adenosine-monophosphate Responsive Element Modulator	
CVD	cardiovascular disease	
D	Dopamine	
DHA	Dehydroascorbic acid	
DHT	dihydrotestosterone	
DMSO	dimethyl sulfoxide	
DNA	Deoxyribonucleic acid	
ELISA	Enzyme-linked immunosorbent assay	
Fe2+	ferrous	

Fe3+	ferric
FSH	Follicle stimulating hormone
FSHR	Follicle stimulating hormone receptor
GATA4	GATA Binding Protein 4
GLUT	glucose transporter
GnRH	Gonadotrophin releasing hormone
GPx	Glutathione peroxidase
H ₂ O ₂	hydrogen peroxide
HCG	human chorionic gonadotropin
H & E	Hematoxyline and Eosin
HED	human equivalent dose
HIV	human immunodeficiency virus
НРТА	Hypothalamic-Pituitary-Testicular-Axis
HRP	Horse Radish Peroxidase
KIF17	Kinesin family member 17
LDL	low density lipoproteins
L-DOPA	levodopa
LH	Luteinizing hormone
MAO	monoamine oxidase
MDA	Malondialdehyde
NO	nitric oxide
oxLDL	oxidatively modified low density lipoprotein

РКА	Protein Kinase A	
pNPP	p-nitrophenylphosphate	
POA	preoptic area	
PRL	prolactine	
RAZ	Reserpine, Ascorbate and Zinc	
RDA	Recommended Dietary Allowance	
REM	Rapid eye movement	
RES	Reserpine	
RNA	ribonucleic acid	
ROS	reactive oxygen species	
RT-PCR	Reverse Transcriptase Polymerase Chain Reaction Analysis	
RV	Rauwolfia vomitoria	
SLE	systemic lupus erythematosus	
SOD	Superoxide dismutase	
SOX9	sex determining region Y	
SRY	Sex region Y	
SVCT	sodium-dependent vitamin C transporter-type 1 ascorbate transporter	
TH	tyrosine hydroxylase	
TSH	thyroid-stimulating hormone	
TUNEL	Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling	
UERC	University of Ilorin ethical review committee	
Vit C	Vitamin C	

VMAT	vesicular monoamine transporter
VSMC	Vascular smooth muscle cell
Zfp	zinc finger protein
Zn	Zinc