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Abstract 

A deterministic mathematical model for the transmission dynamics of infectious disease with 

immunity loss and relapse was built and analyzed. The model was shown to exhibit two 

equilibria, namely, a disease free equilibrium and an endemic equilibrium. The computated 

basic reproductive number  0R  was used to establish that whenever 0 1R  , the disease free 

equilibrium is locally asymptotically stable and the endemic equilibrium is locally asymptotically 

stable whenever 0 1R  . Furthermore the global stability for the two equilibria was investigated 

using Lyapunov function. The model was simulated numerically to validate the analytical results. 

Keywords: Epidemic Model, Relapse, Immunity Loss, Equilibria, Global Stability. 

 

1.0 Introduction 

One of the major issues or events that has always attracted the attentions of large numbers of 

individuals worldwide apart from sport is infectious disease which is caused by pathogenic 

organisms such as bacteria, viruses, parasites or fungi (Shah and Gupta,2013; Akinyemi et al., 

2015). Infectious diseases includes malaria, tuberculosis, cholera, AIDS, bird flu, lassa fever, 

ebola and could be transmitted through direct or indirect contact with contaminated body fluid or 

surface most especially through sex, blood transfusion, breast feeding, etc. (Shah and Gupta, 

2013; James et al., 2015; Nguyen et al., 2015; Adewale et al., 2015; Al- Sheik et al.,2011). The 

emergence and reemergence of infectious diseases such as leprosy, plague, cholera, typhus, 

yellow fever, small pox diphtheria, tuberculosis, measles, ebola, pandemic influenza, severe 

acute respiratory (SARS), bovine tuberculosis, rinderpest, foot-and-mouth and others stated in ( 

Hethcote et al., 2002; Sahu and Dhar, 2015; Safi, 2010), has continuously pose great  challenges 

and threats to public health workers and individuals residing in endemic communities (Sahu and 

Dhar, 2015) since preventive, curative and control measures may not be hundred percent 

effective. Several other factors that may promote the persistence of infectious diseases includes 

absence of cure (e.g. HIV/AIDS), limited access to pharmaceutical interventions, disease 

induced stigma, poverty, etc. It is notable that recovered individuals may have temporal 

immunity which fades away over time or undergoes relapse. Thus capable to trigger disease 

burden. In 2012, it was published that infectious diseases were together responsible for the death 

of more than 8.7 million people worldwide (Global Health Observatory Data Repository, 2012). 

The socio economic impact of infectious diseases has made nations, health organisations, 

researchers and scientist to be at alert with the view to eradicate or contain its spread. Thus to 
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achieve this goal, it becomes imperative to design a framework to determine the optimal 

threshold needed to eradicate the spread of these life threatening diseases. 

It is of great importance to state that in epidemiology, mathematical models  have continously 

play important roles in increasing our understanding on mechanisms that influences the spread of 

infectious diseases ,suggesting the qualitative impact of disease control measures  and 

forecasting disease incidences for both short and long term (Tripathi et al., 2007; Seidu and 

Makinde, 2014). Several epidemic models for infectious disease  transmission dynamics  with 

immunity loss are found in (Moghadas and Gumel,2003; Adda and Bichara,2012; Li et al.,1999, 

Peralta et al., 2015) while those with relapse are found in (Tudor, 1990; Blower, 2004;Van der 

Driessche et al.,2007a; Van der Driessche et al.,2007b).  

The aim of this paper is to design and rigorously analyze a model that extends and complements 

the ones in (Moreira and Wang,1997; Korobeinikov and Wake,2002;Vargas-De-Leon,2009; 

Vargas-De-Leon,2011; Sajid et al., 2013; Freihat and Handam, 2014; Vargas-De-Leon,2013). 
The rest of this paper is organized as follows: Section 2 presents the model formulation. In 

Section 3, equilibria states and stability analysis of the model are presented while Section 4 

presents numerical simulation and discussion of results. Section 5 concludes the paper.  

2.0 Model Formulation 

A non-linear deterministic model for the transmission dynamics of infectious diseases in the 

presence of immunity loss and relapse is built by dividing the total human population at time t, 

denoted by  N t into three disjoint epidemiological subpopulations, which are the susceptible 

population  S t , infected population  I t  and the recovered population  R t . Thus

       N t S t I t R t   . 

The following assumptions were considered to construct the model 

1. Individuals are only recruited into the susceptible class. 

2. The studied population varies with time and is homogenous. 

3. Birth rate is not equal to death rate. 

4. The force of infection is expressed as    S t I t . 

The model is therefore governed by the following system of non-linear differential equations. 

( )

( )

dS
SI S R

dt

dI
SI I R

dt

dR
I R

dt

   

    

   

   

    

   

                  

(1) 

For convenience, we rewrite      , ,S t I t R t  and  N t  as , ,S I R  and N  respectively. 

Table 1: Parameters Description and Hypothetical Values 
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Parameters Symbols Hypothetical 

Values 

Source 

Recruitment rate   5 Assumed 

Disease transmission 

coefficient 

  0.001  Sajid et al., 2013; Freihat and 

Handam, 2014. 

Natural death rate   0.02 Safiel et al.,2012; Ibrahim et al.,2015. 

Disease induced death rate   0.09 Rahman and Zou, 2012. 

Recovery rate   0.1 Sajid et al., 2013 

Relapse rate   0.02 Assumed 

Immunity loss rate   0.05 Assumed 

Lemma 1: The close set 
4( , , , ) :S I Q R S I Q R






 
       

 
  is positively invariant and 

attracting with respect to the system (1) 

Proof 

From (1), we note that
dN

N
dt

    and establish that ( ) (0) 1t tN t N e e 



       by a 

standard comparism theorem (Lakshmikantham et al., 1989). ( )N t approaches 



 as t  , thus 

the system (1) is positively-invariant and attracting in .Thus the model is mathematically and 

epidemiologically meaningful in   (Hethcote,2000), and it is sufficient to consider solutions in

 . 

3.0 Equilibria States and Stability Analysis 

The disease free equilibrium of the model is obtained as  * * *

0 , , ,0,0E S I R




 
   

 
 

The stability of 0E  can be analyzed by the method of Reproductive Number 0( )R  which is 

determined by using the next generation method, on system (1) in the form of matrices F(non-

negative) and V(non-singular) (Heffernan et al., 2005).Where F  denote the new infection terms 

and V  the transition term at 0E . Therefore  

 

1

2

0
and

0 0

K
F V

K







 
        

  

 

The reproduction number is given by the spectral radius (the dominant eigenvalue) of the matrix 
1FV   denoted by 1( )FV  .Thus 

 
1 2

0

1 2

( )
K

R FV
K K




 

 


        (2) 

Where 1K           and     2K       
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The threshold 0R  is called the basic reproductive number, which is defined as the average 

number of secondary infections generated by a single infected individual in a totally susceptible 

population. 

The endemic equilibrium of the model denoted by  ** ** **

1 , ,E S I R  as expressed in terms of 0R , 

is obtained as  

 
  

 

**
1 2 0** ** **

0 1 2 2

1
, ,

( )

K K R I
S I R

R K K K

  

    

 
  

 
 

Thus establishing the following results. 

Proposition 1: If 0 1R  , then the point 1E  does not exist and 1 0E E , when 0 1R  . 

Local Stability:  First we investigate the local stability of the disease free equilibrium 0E . 

Theorem 1: The disease-free equilibrium of system (1) is locally asymptotically stable whenever 

0 1R  and unstable otherwise. 

Proof. The variational matrix  0J E  of the system (1) corresponding to equilibrium 0E  is 

obtained as 

 0 1

2

0

0

J E K

K


 










 
  
 
 

  
 

 
 
 

 

The characteristics equation corresponding of  0J E  is  

    2

1 1 2 0f a a          

where 

1 1 2

2
2 1 2

a K K

K
a K K










  

  

 

Expressing 1 2and a a in terms of 0R , with the aid of (2) to have 

 

  

2

2 0 1 2 0

1

2

2 1 2 0

1

1

K R K K R
a

K

a K K R





  


  

 

Thus by Routh Hurwitz criterion, we conclude that the system (1) is locally asymptotically stable 

since 0ia  , 1, 2i   if and only if 0 1R  . 
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The epidemiological implication of Theorem 1 is that the spread of an infectious disease can be 

effectively controlled in the community (when 0 1R  ) if the initial sizes of the sub-populations of 

the model are in the basin of attraction of the disease-free equilibrium 0E . 

Theorem 2: The endemic equilibrium of system (1) is locally asymptotically stable whenever 

0 1R  and unstable otherwise. 

Proof. Linearizing the system at 1E , to obtain the variational matrix  1J E  as 

 

** **

**
**

1 **

**

**

( )

0

I S

R
J E I

I

I

R

   


 




 
   
 

 
 
 

 
  

 

where
** **

**

1 2** **
, and

R I
S K K

I R

 


 
    . 

The characteristics equation of  1J E  is 

   3 2

2 2 1 0 0f b b b         

where 

 

 

 

2 2 2

3 2 2 2

** * ** ** ** **

2 ** **

** ** ** ** 2 ** ** **

1 ** **

** ** ** **

0 **

I R R I R I
b

R I

I I R I R I S
b

R I

I I S R
b

R

   

     

  

  


   





 

 

It is obvious to note that 2b  and 1b  are greater than zero since components of the endemic 

equilibrium are positive provided 0 1R  . We note that
 0** ** ** **

0

1R
I S R S

R


   


    , 

thus establishing that 0 0b   whenever 0 1R  . Hence concluding the proof since Routh Hurwitz 

criterion is satisfied. 

Theorem 3: The disease-free equilibrium of system (1) is globally asymptotically stable 

whenever 0 1R  and unstable otherwise. 

Proof. Consider the Lyapunov function 

1 2V K I R             (3) 

Differentiating (3) with respect to time to obtain 

1 2V K I R             

   1 2 1 2V K SI K I R I K R               (4) 

Simplifying (4) to get 
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 1 2 1 2V SK K K I             (5) 

Since S



 , (5) becomes 

  1 1 2 0 1V K K R I    

Clearly, 
1 0V  when 

0 1R   and 
1 0V   if and only if 0.I   It follows from Lasalle’s Invariance 

Principle (La Salle and Lefschetz,1961), that every solution to the system (1) with initial 

conditions in   approaches 0E  as t . Thus, since the region   is positively-invariant, the 

disease free equilibrium is globally asymtotically stable in   if 
0 1R  . 

Theorem 4: The endemic equilibrium of system (1) is globally asymptotically stable whenever 

0 1R  and unstable otherwise. 

Proof. Consider the Lyapunov function 

 

      

   
 

2
** ** ** ** **

2 **

**
2

** ** **

** **

1 2

2

2 2

2

I
V S S I I R R I I I In

I

R R
R R R In R R

I R

 



    

 

  
          

 

  
    

 

    (6) 

Differentiating (6) with respect to time to obtain 

      
 

 

**** **
** ** **2

**

**

22
1 1

2

RdV dN I dI R dR
S S I I R R

dt dt I dt I R dt

dR
R R

dt

   

 

 



   
             

   




 

             

 
    

**
** ** **2

1

** **
**

2 2**

2
1

2 2
1

dV I
S S I I R R S R I SI K I R

dt I

R R
I K R R R I K R

I R

 
     



    
 

 

 
               

 

   
     

 

(7) 
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Using    
** **

** ** ** **

1 2** **
, ,

R I
S R I K S K

I R

 
            to simplify (7) as

               

   
 

      

** ** ** ** ** **2

**** ** **
** **

** ** **

** ** **

2

22
1

2

dV
S S I I R R S S R R I I

dt

RR R R RI
I I S S I

I I I R R

R R I I K R R

  

    
  

 

 




             

      
            

     


   

 

               

   
   

      

2 2
** ** ** ** ** **2

** **** **
** **

** ** ** ** ** **

** ** **

2

2

2 2
2 1 1

2

dV
S S R R I I S S R R I I

dt

R RR I RI R I IR
I I S S

R I R I R I I R

R R I I K R R

   

     
 

 

 




              

    
             

   


    

Thus after many tedious algebraic simplifications, we get 

       
   

 
2

** ** **
2 2 2

2** ** ** **2

** **

2 2R KdV RI IR
S S R R I I R R

dt R I I R

    
 

 

  
            

 
 

 Thus, for 0 1R  , 2 0V  , where 2 0V   holds only when ** **,S S I I   and **R R . The only 

largest invariant set in   2, , : 0S I R V  is the endemic equilibrium. Therefore the endemic 

equilibrium 1E is globally asymptotically stable in the interior , by LaSalle’s invariance 

theorem principle (La Salle and Lefschetz,1961). 

 

4.0 Numerical Simulation and Discussion 
In this section, some numerical solutions of the model for different initial population sizes is 

presented using the various values of the parameters stated in Table.1 and to validate that these 

solutions are in agreement with the qualitative behaviours of the model obtained in section 

2.Thus ,we choose different initial population sizes such that  the total population, 

250S I R    as follows 

1____      0 200, 0 30, 0 20,S I R    

2____      0 195, 0 40, 0 15,S I R    

3____      0 183.1, 0 43.6, 0 23.3,S I R    

4____      0 179.38, 0 60.67, 0 9.95.S I R    

In Fig.1, the three figures depict the numerical solution curve of the system (1) for

0 7.7219 1R   . Figure 1(a) shows that the population of susceptible individuals  S t  at first 

decreases, then it increases and later decreases to approach **.S In figure 1(b), the population  of 
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infected individuals  I t   decreases at first, then it increases to approach **.I In figure 1(c) the 

population of infective individuals  R t increases at first, then decreases and later increases to 

approach **.R We note that the solution curves of these figures tends to the equilibrium 1E   for 

any initial values when 0 1R  . Thus, the system (1) is locally-globally asymptotically stable 

about 1E  for the aforementioned parameter value. 

 

 

 
    a  
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 b  

 

 c  
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Fig. 1. Time plots of system (1) with different initial conditions for 0 1R  : (a) Susceptible 

population; (b) Infected Population; (c) Recovered Population. 

 

In Fig.2, the three figures depict the numerical solution curve of the system (1) for 0.0001 

and 0 0.7722 1R   .Figure 2(a) shows that the population of susceptible individuals  S t   

increases to approach *S  . . 250i e




 
 

 
.In figure 2(b), the population  of infected individuals 

 I t   decreases to to approach  * . . .I i e zero In figure 2(c) the population of recovered 

individuals  R t increases at first, then decreases to approach  * . . .R i e zero We note that the 

solution curves of these figures tends to the equilibrium 0E   for any initial values when 0 1R  . 

Thus, the system (1) is locally-globally asymptotically stable about 0E  for the aforementioned 

parameter value. 

 

 

 

 a  
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 b  

 
        c  
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Fig. 2. Time plots of system (1) with different initial conditions for 0 1R  : (a) Susceptible 

population; (b) Infected Population; (c) Recovered Population. 

 

5.0 Conclusion 

 A three-dimensional deterministic mathematical model for the transmission dynamics of 

infectious diseases in the presence of relapse and immunity loss is formulated and rigorously 

studied using stability theory of nonlinear system. Some of the main epidemiological and 

mathematical findings are summarized as follows. 

1. The model has a locally disease free equilibrium whenever the associated reproductive number 

0R  is less than unity. 

2. The disease free equilibrium is globally asymptotically stable whenever 0 1.R   

3. The endemic equilibrium exist whenever  0 1R   and then locally asymptotically stable. 

4.  The model’s endemic equilibrium is globally asymptotically stable whenever 0 1.R   
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