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The Effects of Linearly Varying Distributed Moving Loads

on Beams with Winkler Foundations

M. S. DADA

Department of Mathematics, University of Ilorin, Ilorin, Nigeria
E-mail: dadamsa@gmail.com

The dynamic behaviour of a Bernoulli-Euler beam on a Winkler foundation traversed by a
linearly varying distributed moving load is investigated. Using a series solution for the dynamic
deflection in terms of normal modes, the equation governing the model is reduced to a set of
ordinary differential equations whose solution is obtained in form of a Duhamel integral. Several
numerical results are presented to illustrate these effects.

1 Introduction

The study of the response of structures under moving loads is an interesting problem due to its practical
importance in the arcas of transport and design of machine parts. Some branches of transport have
recorded development that features increase in speed and weight of vehicles as a result of which higher
stresses more than ever before are developed. Moreover, a moving mass produces greater deflection and
stress on the structure over which it moves than an equivalent static mass. Thus, the analyses of the effects
of moving loads on heams have been attracting the attention of considerable numbers of researchers in
applied mathematics, science and engineering who are interested in road and rail transports [1-6].

Many of the publications on the dynamic response of beams under the influence of moving loads
have been centred on concentrated loads. Reviews of ealier research work on the subject were documented
by Kolousek [1]. An extended review was reported by Fryba [7]. Some recent studies on the subject are by
Esmailzadel and Ghorashi [4], Gbadeyan and Dada [2,5, 6], Mahmoud and Abouzaid [3], and Michaltsos
and Kounadis [3].

[t is pertinent to state here that most of the publications on the dynamic response of structures
to moving masses are centred on concentrated masses and a limited number are available for uniformly
distributed moving masses. The analysis was extended to linearly distributed masses by Gbadeyan and
Dada [6].

The motivation for studying this problem originates from the fact that the structures of roadway,
runway concrete and reinforced concrete rest on various foundation models. Consequently, the present
work examines the effects of linearly varying distributed moving mass on beams resting on continuous
elastic foundation.

2 Analytical Formulation

The considered model is a finite elastic uniform thin beam of length L, mass per unit length m and flexural
rigidity ET. The equation of motion describing the lateral vibration of the beam carrying the time varying
force f(z,t) is

oty 3y

EI@ T = flz,t) — h(z, 1), (1)

where 2 is the length coordinate with the origin at left hand end of the beam, ¢ is the time coordinate
with the origin at the instant of the force arriving on the beam, the sub-grade reaction due to the Winkler
foundation is expressed as h{x,t) = ky, k being the modulus of the sub-grade reaction and y the deflection
of the beam measured downward from its equilibrium position when the beam is loaded with its own

weight.
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Figure 1: A beam of span L under a linearly distributed load.

The beam is under a force f(z,t) with mass M, that is linearly distributed partially on the beam
as shown in Figure 1. The force [9] acting on the beam is,

My — My 0 _:"\Ig — M,

Floth=g {Ml <g—g > H——— < —m SUoMy <z —as > —————— <x—as >1}. (2)
s — A1 ao — a1
where Wy = Mg and W, = Mg are forces produced by masses Mz and M, acting, respectively, at thn
right and loft end points of the moving mass, d = as —a; is the length of the distr ibuted mass, as = vt +

a1 = vt — 3, v being the velocity of the moving mass, g is the acceleration due to gravity and the \Iaccml}

e 0 s &<, 3
" a - (zfa.)” . TZQ & J

notation is defined as

3 Method of Solution

Since the time and space functions may be separable for a modal motion, we seek for the overall response
of the beam a series solution in terms of the normal modes in the form

o0

y(z, 1) = 3 Xa(z)Palt) )

n=1

where X,,(z) is the modal shape eigen-funtion for the n-th mode of the frecly vibrating beam with the
corresponding generalised unknown function of time Py (t) that is to be calculated. Introducing (2) and
(4) into (1), we have (Xﬁ”(m) stands for the fourth order derivative of X, (x) with respect to x),

LJLX“‘ +mZXﬂ By kZX (z)Pa(t

n=1
Mg—ﬂ’f My — M
= 9{1'\'11 cor—a 304w > My < —ay o0 TR0 T s B b, ()
as — aj : Gz —ay

The n-th normal mode of vibration of a uniform beamn satisfies
Xalz) = Al, sin @z + A2, cos px + A3, sinh &,z + Ady, cosh @y, (6)

where the unkown constants Al,,, A2,., A3,, A4, and @, are determined by applying the boundary
conditions of the heam. For free vibration of the beam, we have

EIX§14)(I) +kXn(z) = m'wan(I}u (7)

with the natural frequencies w? = (®2EI +k)/m (n = 1,2,3,...). Substituting (7) into (5), multiplying
the resultant equation by X, (z) and integrating both sides with respect to = from 0 to L, one obtains,

B)+wlPal) = — L {an(J:) (Ml P Rt al)) } o

KITL Qs — A1

1 g My — M
= / {an(I) (Mg = R Miliea ¥ o,g)) } da., (8)
EM Jq, Gz —ay

fOL Xn(w)Xr(r)dI_{ 0 L n#s

K , =S5

where

and x is a constant.
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Equation (8) is a set of generalised ordinary differential equations that is solved subject to the
boundary conditions of the beam. Many highways and railway bridges consist of simply supported gird-
ers [10]. Therefore, the dynamic response of a simply supported beam under moving mass is considered.
The simply supported boundary conditions of a beam may be written in the form,

Py, t
y(z,t)|z=0 = EI%L;;:U =: 0, (9a)
A*y(z,1)
Yo, leer, = Ef%:r:f, = 0, (9b)
with initial conditions Byl 1)
Tt
y(x,t)=0 = EfyTlmo = 0
Applying these end conditions, we have
. nTx L (nm*EI &k
X () =dm— ) 2 Ml b i 1
(z) = sin 7 fe= 5 W 7 +'m (10)

Subssituting the set of equations (10) into (8), one obtains an equation in a generalised funtion of time for
simply supported conditions. Thus

; - o m VT
Pot) + wZB,(t) = ez {(Ml e e M cos ”ag) + ¢ Gr (sin il PR il )} : (11)
L L £
where M i I 5
ity B AEL == — =9
, d i e T mL

Using Duhamel’s integral, the solution of equation (11) is expressed as,

1t
B.(t)=— / qn(7) sin(wn (t — 7))dT, (12)
W, 0
where,
1 d T d d ¥is
G (T) = 31 [(;\11 cos %T{UT — 5) — My cos%{vr + E)) + Gre (sin %(UT + 5) — sin %('ﬁ:? - g))} .
Using the non-dimensional quantities
I = CE,'fL',‘ U= 'UCU/Ly g = thffa: Wy, = Wnlo,
M = My, /mL, M, = M, /m, My = M, /m, Gr = LGr/m,

the non-dimensional deflection is

Kold) Bt s _ @ 7
._.L(_i__(_) = e sinnax [ ea My (cosnmas — cosby) + esMy (cos by — cosnmis)
—es My (cosnmay — cosby) — es My (cosb; — cosnady)
Gr , _ , _ . .
T (62(511’1 nwas — sinnwa, + sin by — sin bs)
nmw
+e3 (sin by — sin by + sinnwa; — sin mra.g)> &, (13)
where
e, = g/ (@anm), es = 1/(&n + nmd), ez = 1/(—&y, + nut),
by = @nt — n?r(f/l bs = @nt + nﬂd_./Z, tp = my/mL*/EI
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4 Results and Discussion

In this Section, numerical results are presented in tabular and graphical forms. The illustrative example
was computed for a simply supported beam of length L = 50 m, flexural rigidity El = 2.5 X 107 square
metres, and mass per unit length m = 4.5 kg/metres.

Tables 1 and 2 show the effects of variation of dimensionless mass distribution gradient G and the
ratio A7 on the maximum dimensionless deflection amplitude with modulus & = 2, and db = 0.001 which
is defined as the ratio of the length of the moving load to that of the beam, db = d/L. For various
values of G = 0,100, 200, 300, 400, the amplitude of deflection increases with an increase in the mass ratio
M. This fact is evidenced in the percentage comparison P = (y, — ¥m)100/y, where y, and y,, are
dimensionless deflections for uniformly and non-uniformly distributed loads. respectively. In the case of
negative gradients G, it shows that as the absolute value of G increases, the maximum amplitude of the
deflection increases. Also, Table 1 as well as Table 2 show that mass ratio increase causes an increase in
the maximum deflection amplitude. It is interesting to note that the uniformly distributed moving mass
where (G = 0 produces the lowest maximum deflection amplitude as evidenced in all the Tables.

LGr/m M, /mL=04 0.6 0.8 1.0
0 o -0.5108 -0.7662 -1.0216 -1.2770
100 Um -0.51101 -0.76618 -1.0216 LT
P 0.042884 1.92e-006 1.44e-006 1.15e-006
200 Y -0.51224 -0.76713 -1.022 <1297
P 0.28482 0.12353 0.043 2.31e-006
300 U -0.51412 -0.76836 -1.0232 -1.2781
P 0.65315 0.28482 0.16385  0.091272
400 i -0.51659 -0.76995 -1.0245 -1.2794
B 1.136 0.4922 0.28482 0.18805

Table 1: Deflection and its percentage comparisons (P) for varving positive gradient and mass ratio.

LGrjm My /mL =04 0.6 0.8 1.0
0 Uy -0.51079 -0.76618 -1.0216 -1.277
-100 Um -0.51101 -0.76618 -1.0216 -1.277
T 0.042878 -1.92e006 -1.4e-006 -1.15e-006
-200 Ym -0.51224 -0.76713 -1.022 -1.277
12 0.28481 0.12352  0.042878 -2.31e-006
-300 Ym -0.51412 -0.76836 -1.0232 -1.2781
72 0.65313 0.28481 0.16385 0.091265
-400 Unrs -0.51659 -0.76995 -1.0245 -1.2794
P 1.136 0.49219 0.28481 0.18801

Table 2: Deflection and its percentage comparisons (P) for varying negative gradient and mass ratio.
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Figure 2: Mid-span dimensionless deflection as a function of dimensionless time.
Ag shown in Table 3 the effects of foundation were investigated for fixed values of ¥ = 6.6643
(v =10 m/s) and db = 0.001. It can be seen that increase in the value of foundation parameter k& decreases
the waximun deflection amplitude. Figure 2 shows the variation of velocity v or v on the mid-span
deflection at various times t with fixed modulus k=2, G =100, M = 0.8 and db = 0.001.

LGr/m k=0 k=1 k=2 k=
0 Uy -2.1193 -1.0234  -0.51079 -0.19458
100 Ym | -2.1201 -1.0238  -0.51101 -0.19468
: P | 0.038496 0.035857 0.042884 0.055442
200 Ym | -2.1247 -1.0259  -0.51224  -0.19529
BE: 0.2557 0.23816 0.28482 0.36825
300 Uiy | =2.1317 -1.029 -0.51412 -0.19622
P | 0.58638  0.54614  0.65315  0.84447
400 Ym | -2.1409  -1.0331 -0.51659 -0.19743
r 1.0199 0.94988 1.136 1.4687

Table 3: Deflection and its percentage comparisons (£) for varying foundation parameter k and gradient.

5 Conclusion

The problem of assessing the dynamic response of a beam resting on a Winkler foundation to a linearly
distributed moving load has been studied. The mathematical model was solved analytically using separa-
tion of variables coupled with Duhamel’s integral techniques. On analysing the solution, one can draw the

following conclusions.
(i) The presence of foundation has significant effects on beam vibration.

(ii) The modulus of mass distribution gradient of the moving load significantly affects the behaviour
of the beam. As the absolute value of the mass distribution gradient G increases, the maximum

anplitude of the deflection increases.

(iii}) Uniformly distributed moving masses produce the lowest maximum deflection amplitude.
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