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Abstract 

Software projects often suffer from unplanned overtime due to uncertainty and 

risk incurred due to changing requirement and attempt to meet up with time-to-

market of the software product. This causes stress to developers and can result in 

poor quality. This paper presents a memetic algorithmic approach for solving the 

overtime-planning problem in software development projects. The problem is 

formulated as a three-objective optimization problem aimed at minimizing 

overtime hours, project makespan and cost. The formulation captures the 

dynamics of error generation and propagation due to overtime using simulation. 

Multi-Objective Shuffled Frog-Leaping Algorithm (MOSFLA) specifically 

designed for overtime planning is applied to solve the formulated problem. 

Empirical evaluation experiments on six real-life software project datasets were 

carried out using three widely used multi-objective quality indicators.  Results 

showed that MOSFLA significantly outperformed the existing traditional 

overtime management strategies in software engineering projects in all quality 

indicators with 0.0118, 0.3893 and 0.0102 values for Contribution (IC), 

Hypervolume (IHV) and Generational Distance (IGD) respectively. The proposed 

approach also produced significantly better IHV and IGD results than the state of 

the art approach (NSGA-IIV ) in 100% of the project instances. However, the 

approach could only outperform NSGA-IIV in approximately 67% of projects 

instances with respect to IC.  

Keywords: Memetic algorithms, Multi-objective optimization, Overtime 

planning, Project management, Search-based software engineering. 
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1.  Introduction 

Software Engineering is concerned with optimization problems that seek to develop 

software that is faster, cheaper, more reliable, scalable, responsive, maintainable, 

and testable [1]. Consequently, software engineering projects are hardly completed 

on schedule and within budget unless good software project management 

techniques are enforced [2]. Software Project Management (SPM) involves 

carrying out several activities such as cost estimation, project planning (including 

Project scheduling and staffing) and quality management, which are critical to the 

success of a software project [1]. These activities often involve finding an 

appropriate balance between competing and usually conflicting objectives. SPM is 

commonly modelled as project scheduling and staffing problem [3], which is 

usually solved using Search-Based Software Engineering (SBSE) approach. In 

SBSE a software engineering problem is seen as a search problem whose aim is to 

find the most appropriate solution that conforms with some adequacy requirements. 

It seeks to reformulate software engineering problems as search-based optimization 

problems and applies a variety of meta-heuristics algorithms to solve them.  

Software Project Scheduling (SPS) is a kind of optimization problem that seeks 

to find an optimal schedule for a software project so that the precedence and 

resource constraints are satisfied and the final project cost consisting of personnel 

salaries and project duration is minimized [4]. SPS has been tackled using meta-

heuristic optimization algorithms [3, 5-8]. Meta-heuristic algorithms search for a 

suitable solution in a typically large input space, which is guided by a fitness 

function. The fitness function expresses the goals and leads the exploration into 

potentially optimal areas of the search space.  

These algorithms automate and suggest appropriate schedules and solutions for 

software engineers to guide their decision in a planning software project. However, 

the assumption that automated tools should produce the initial project plan may not 

always be realistic. Ferrucci et al. [9] reported that experience with practitioners 

revealed their preference for their own judgments for the initial project plan because 

the allocation of staff to work packages requires several human and domain-

specific decisions for which, an automated approach is inadequately equipped to 

handle. Nevertheless, unguided initial project plans by engineers often subject 

developers to working overtimes- usually without previous plans - in order to meet 

up with the project deadlines. Several factors may contribute to the need for 

overtime. Some of these factors are; late and changing requirements, compressed 

schedules, difficulties associated with project progress measurement, and the need 

to meet up with the time-to-market of new features. However, the most reported 

factors contributing to unplanned overtime are a late change in requirements and 

reduced time to market [1, 10].  

Expectedly, it has been shown that excessive and unplanned overtime 

allocations have detrimental effects on developers’ health and the software they 

build. It was observed by Nishikitani et al. [11] and Karita et al. [12] that overtime 

work and long shifts have a positive correlation with stress indexes such as 

depression, anger, hostility and increase in equilibrium and motor-related problems 

on IT professionals. Also regarding the effect on the software that developers 

produce, Akula and Cusick [13] found out that longer overtime work causes 

increased stress, which in turn translates to higher defect counts in software 

projects. The implication of these effects is bad quality software since developers 
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continue to focus more on quick and rapid completion of tasks rather than quality. 

These shreds of evidence from the literature underscore the need for an effective 

decision support approach for overtime planning that can balance staff productivity, 

cost, project duration and product quality against overtime.  

To mitigate the bad effects of long overtime on software development projects, 

several Overtime Management Strategies (OMS) are deployed by engineers in the 

industry. Ferrucci et al. [9] presented three commonly used overtime strategies by 

software engineers in the industry: Margarine (MAR) management, Critical Path 

Management (CPM) and Second Half (SH) management strategies. In MAR, 

overtime hours are spread evenly across all activities in the schedule. CPM, on the 

other hand, loads overtime onto the schedule's critical path while in SH, overtime 

hours are loaded onto the latter half of the schedule to make up for delays 

introduced in the former half. However, few studies have been carried out to 

optimally solve Overtime Planning Problem (OPP) through the application of 

SBSE approach. Current approaches employ genetic multi-objective evolutionary 

algorithms - mainly NSGA-II and its variants [9, 10, 14]. To the best of our 

knowledge, no work has been carried out to apply other Multi-Objective 

Optimization algorithms to the problem of software projects’ overtime planning. 

Therefore, there is a need for more studies on overtime planning techniques that 

could completely outperform the current overtime management strategies and the 

state of the art approaches. 

This study investigates the effectiveness of the memetic multi-objective 

evolutionary algorithm in solving software project overtime planning problem 

using Multi-Objective Shuffled Frog Leaping Algorithm (MOSFLA). With respect 

to optimization problems, memetic algorithms, which can be viewed as a union 

between a population-based global technique and a local search made by each 

individual in the population - have been shown to be more efficient and more 

effective than traditional evolutionary algorithms for some problem domains [2, 15, 

16]. As a result, memetic algorithms are gaining wide acceptance, particularly in 

well-known combinatorial optimization problems where large instances have been 

solved to optimality and where other meta-heuristics have failed to produce 

comparable results. 

The remaining part of this paper is organized as follows: Section 2 presents 

some related works in software projects’ overtime planning. Section 3 focused on 

the formulation of the OPP problem. Section 4 is based on the proposed framework, 

which presents the employed computational search approach for solving OPP and 

the evaluation metrics employed to measure the performance of the approach. 

Section 5 presents the experimental setup and discusses the results, and the work is 

concluded in Section 6.   

2.  Related Works  

Akula and Cusick [13] carried out a statistical survey on four real-life software 

projects to analyze the impact of overtime on software quality. The number of 

scheduled work hours, actual overtime hours, and a number of defects were 

recorded on each of the projects. Statistical analysis showed that defect count is 

directly proportional to the actual overtime hours in all considered projects. It was 

observed that defect count increases when overtime is extensive and stress on 

workers and the project develops during excessive overtime. 
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In spite of this evidence from the literature, there have been very few studies on 

the application of search-based meta-heuristic algorithms to software projects 

overtime planning. This study could only find three works that apply SBSE to the 

problem. Ferrucci et al. [9] introduced a search-based optimization approach to 

software overtime planning. The study presented the formulation of software 

project overtime planning as a multi-objective optimization problem. Their 

objective is to investigate the effects of choices of overtime allocations on the 

project schedule, each of which, seeks to minimize project duration, the amount of 

overtime and risk of overrun based on three risk assessment models.  

A new variant of NSGA-II called NSGA-IIv that exploits a crossover operator 

specifically designed for overtime planning problem was employed as the 

computational search method. To analyse the effectiveness of the approach they 

reported an empirical study on six real-life software projects. Results from 

experiments revealed that the approach is significantly better than standard 

NSGA-II in 76% of experiments and significantly outperformed standard 

overtime planning strategies used in the industry. However, their formulation 

failed to assess the negative effect of overtime on software quality even when 

empirical studies in the literature [11, 13] have revealed that the effort required 

to correct additional errors introduced by developers working overtime outweighs 

the productivity gains. 

Recently, Sarro et al. [14] extended the work of Ferrucci et al. [9] by proposing 

an adaptive method for meta-heuristic operator selection to improve algorithmic 

performance under the same problem formulation. The study presented a new 

variant of NSGA-II, namely Adaptivevsc, which systematically combines the 

crossover operator proposed by Ferrucci et al. [9] and adaptive genetic operators of 

NSGA-IIa, proposed by Nebro et al. [17]. In addition to that, the study introduced 

an adaptive strategy for the selection of genetic operators during the search. Results 

from experimental studies on eight real-life software projects showed that the 

proposed adaptive outperformed the state-of-the-art approaches in 93% of the 

experiments and significantly performed better than the current overtime planning 

strategies in 100% of the experiments. 

Barros and Araujo [10] advanced the formulation proposed by Ferrucci et al. 

[9] by considering the reported effect of overtime work on the quality of software. 

The study introduced a new formulation for the OPP that make use of simulation 

to propagate the effects of an increased number of defects due to overtime to the 

project's duration and cost. The main objective of their work is to use 

optimization and simulation to learn the effects of different overtime planning 

policies on the project duration and cost. NSGA-II was used as the computational 

search method to optimally plan over time with the aim of minimizing the overall 

project duration, project makespan, and cost.  

The approach was compared with overtime strategies used in industry and a 

similar model devoid of the negative effects of overtime on product quality. 

Experimental results showed that NSGA-II conveniently outperformed the 

margarine and critical path overtime strategies. However, the Second-Half 

overtime management strategy produced competitive results with NSGA-II under 

this formulation. This observation calls for a better search approach that could 

completely outperform all the overtime strategies under the same formulation. 
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This study is close to the work of Barros and Araujo [10] as it adopts the same 

problem formulation but employs different computational search approach 

(memetic) using MOSFLA. 

3.  Problem Formulation 

This study adopts a three-objective decision problem model presented by Barros 

and Araujo [10] for overtime planning, which captures the dynamics of error 

generation and propagation due to overtime using simulation. This approach 

estimates the impact of increased defect counts due to overtime on the project 

duration and cost.   

Let a project schedule be represented as a Directed Acyclic Graph (DAG) 

consisting of a node-set WP = {wp1, wp2,pt wpn} of Work Packages and an edge 

set DP = { (wpi, wpj) : i  :j; 1 ori ≤ n, 1 orj  1n } of dependencies among WPs. Each 

wp is characterized by the amount of effort (measured in function points (FP)), 

which is required to complete it. Each dependency in DP depicts that development 

of a work package (wpj) can only start after the completion of the analysis of 

another work package (wpi). 

Given the size of a work package in FP and average productivity of 27.8 

FP/developer-month as estimated empirically [18] for Information Systems (IS) 

projects, the expected duration of the work package can be calculated as: 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑤𝑝𝑖) = 𝑒𝑓𝑓𝑜𝑟𝑡(𝑤𝑝𝑖)/(27.8 )                 (1) 

The shortest possible duration of the project is given by any maximal length 

path called Critical Path. The critical path has been used for decades to build 

software projects schedules. However, the main problem is to analyse the effects 

of overtime assignments on the schedule, which seek to minimize project 

makespan, cost and the amount of overtime deployed. 

With respect to error propagation during software development projects, Jones 

[18] found out that developers introduced an average of 4 errors/FP through analysis, 

design and coding activities of a component. This dynamic affects the duration of 

testing activities. Also regarding error generation due to overtime, Abdel-Hamid and 

Madnick [19] modelled the relationship between the amount of overtime spent by 

developers and the number of defects introduced into the software they produce. This 

model estimates an introduction of 20% more errors by a developer working 10 

hours/day than those working on regular shifts of 8 hours/day and 50% more errors 

by developers working 12 hours/day. This non-linear relationship between overtime 

and error generation rates, coupled with the error propagation dynamics form a 

compound model on which, an optimization technique driven by simulation is 

required. Therefore, this study combines optimization and simulation to optimally 

solve the software overtime planning problem. 

Optimization objectives 

The OPP formulation in this study tries to minimize: 

 Amount of Overtime Hours (OH) = ∑ 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖)𝑛
𝑖=1            (2)  

 Project MakeSpan (PMS)  = ∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑤𝑝𝑖)𝑤𝑝∈𝐶𝑃            (3)  
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 Project Cost (PC) = ∑ 𝐶𝑟(𝑤𝑝𝑖) + 𝐶𝑜(𝑛
𝑖=1 𝑤𝑝𝑖)            (4)  

Subject to the constraints: 

0 ≤ 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖) ≤ max𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖),  1 ≤   i ≤    n 

DPviolation< 1. 

Overtime Hours (OH) is the sum of overtime hours spent on all activities in the 

schedule as calculated by the computational search algorithm. The Project 

Makespan (PMS) is defined by the longest precedence-respecting path in the graph 

and it is calculated as the sum of the duration of activities in the path. 𝐶𝑃  is the 

Critical Path and duration (𝑤𝑝𝑖) is the duration of an activity. The duration of an 

activity is computed from the simulation since the error generation and propagation 

dynamics is integrated into the project’s schedule. The Project Cost (PC) is the sum 

of each activity's cost, which depends on the amount of regular and overtime hours 

its developer spends to come up with its expected outcomes. The Brazilian cost law 

presented by Barros and Araujo [10] is used to model the cost of an activity. It 

follows that if a regular working hour costs C, each of the first two overtime hours 

cost 120% of C and each of the next two hours cost 150% of C. 𝐶𝑟 in objective (iii) 

is the cost of regular working hours and 𝐶𝑜 is the cost of overtime hours. 

A candidate solution to the OPP is modelled as a set of integer values denoting 

the number of overtime hours to be spent daily on each Work Package (WP) in the 

schedule. It is represented as a linear array of integers representing the overtime hours 

to be spent on activities denoted by the corresponding indexes of the array. It is 

important to note that the length of regular working hours and the maximum overtime 

hours are country-based parameters. In this study by Barros and Araujo [10], the 

working hours are set to 8 hours and maximum overtime of 4 hours per day. 

4.  Proposed Framework 

This section presents the computational search approach employed to solve the 

overtime planning problem modelled in section 3 and the evaluation metrics to be 

used to measure the performance of the proposed computational approach. 

4.1.  Computational search approach 

A Multi-Objective Shuffled Frog-Leaping Algorithm (MOSFLA) - with the same 

framework as the original SFLA algorithm proposed by Eusuff and Lansey [20] - 

that employs an archiving strategy based on adaptive niche technique proposed by 

Cui [21] is employed as the computational search in this study. The niche technique 

is used to maintain the non-dominated solutions. The algorithm improves on 

population sorting technique and memetic evolution process to adapt to Multi-

Objective Optimization (MOO).  

Due to parallel evolution mechanism of the algorithm, the solutions evolve 

toward different directions. This makes MOSFLA be specifically fit for MOO 

problems like the one considered in this study. The MOSFLA algorithm is 

illustrated in Fig. 1 as adapted by Yinghai et al. [22]. MOSFLA has been applied 

successfully to various problems in different domains such as standard optimization 

test problem instances [23], reservoir flood control problem [22] and robot path 

planning problem [24].  
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Fig. 1. Flowchart of MOSFLA [22]. 
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4.2.  MOSFLA design for overtime planning problem 

To adapt the MOSFLA to overtime planning problem the algorithm is designed 

as follows: 

 Population creation and sorting strategy 

Because MOSFLA is a stochastic algorithm, the population of feasible solutions 

(frogs) is generated randomly. The acceptance and rejection criterion for any 

solution is the satisfaction of the maximum overtime constraints. In SFLA, frogs 

are sorted in decreasing order of their performance values calculated through a 

fitness function. For single-objective problems, performance value is usually set 

directly as the objective function value. This cannot be applied to multi-objective 

problems. Various approaches have been used in the literature to measure the 

performance value for multi-objective problems. 

Some of the approaches used are Pareto dominance relation of the solutions, 

crowding distance of individual solution, a combination of crowding distance 

within the non-dominated solutions and the hamming distance between dominated 

and non-dominated solutions in the population [22, 23, 25]. In this study, a new 

hybrid multi-objective fitness function that is based on both the crowding distance 

(of the individual frogs) and the rank (obtained by ordering Pareto fronts) is 

employed to measure the fitness of each solution in the population. 

More specifically, the rank is calculated using the following procedure: 

Step 1. The non-dominated solutions in the initial population are included in the 

first rank (i.e., rank 0) and then removed. 

Step 2. The next non-dominated solutions are determined from the remaining 

solutions, and included in the next rank (rank 1). These solutions are also 

removed accordingly. 

Step 3. The procedure is continued until no more solutions exist in the population. 

After the ranking, crowding distance (𝐶𝑑) is computed for all solutions in the 

same rank. Supposing that the MOO has r goals, the crowding distance of each frog 

is calculated as: 

  𝐶𝑑   =  ∑ |𝑃[𝑖 +  1] ·  𝑓𝑘  −  𝑃[𝑖 −  1] ·  𝑓𝑘|𝑟
𝑘=1               (5) 

𝐶𝑑  is the crowding distance of the ith frog in the rank set, P[i+ 1] fk and P[i- 1] 

fk are kth objective function values of two adjacent frogs. 

Alejandro et al. [24] proposed the overall multi-objective fitness function, 

which is calculated using the formula. It is defined as:  

𝑀𝑂𝐹𝑖𝑡 =  
1

2𝑟𝑎𝑛𝑘+
1

1+ 𝐶𝑑

                 (6) 

 Memplex formation 

The sorted frogs are stored in an array X = {P(i), i = 1, . . . ,n}. X is then partitioned 

into m memeplexes, i.e., Y1,Y2, . . . ,Ym, each containing n frogs, such that: 

𝑌𝑘  =  [ 𝑃(𝑖)𝑘 | 𝑃(𝑖)𝑘  =  𝑃[ 𝑘 +  𝑚(𝑖 −  1) ] ], 𝑖 =  1, . . 𝑛  𝑘 =  1, . . 𝑚          (7) 
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In this way, for m = 4, frog in position 1 goes to memeplex 1, position 2 to 

memeplex 2, position 3 to memeplex 3, position 4 to memeplex 4. Then frog in 

position 5 goes to memeplex 1, and so on. 

 Memetic evolution in memeplex 

Within each memeplex, the virtual frogs go through a memetic evolution where the 

worst performing fog is improved via meme transfer and sharing. In the original 

SFLA, the worst frog in each memeplex is improved using the evolution step: 

𝑑 =  𝑟𝑎𝑛𝑑 ∗  (𝑥𝑏  −  𝑥𝑤),      𝑛𝑒𝑤𝑥𝑤 =  𝑜𝑙𝑑𝑥𝑤  +  𝑑             (8) 

where 𝑥𝑏 = local best frog in the memeplex and xw = worst frog in the memeplex. 

This evolution step is inefficient as it limits the location of the new frog newxw 

in the area between xw and 𝑥𝑏. This only enforces a local bound improvement. In 

order to extend the evolution area of newxw out of the local bound, the following 

evolution step proposed by Yinghai et al. [22] is employed: 

𝑑 =  2 ∗  𝑟𝑎𝑛𝑑 ∗  (𝑥𝑏  − 𝑥𝑤) ,    𝑛𝑒𝑤𝑥𝑤  =  𝑜𝑙𝑑𝑥𝑤 +  𝑑             (9) 

This step doubles the evolution area so that the position of newxw can reach 

2(xb−𝑥𝑤). In essence, the evolution step can produce solutions that are better than 

the current best solution within each memplex. 

The following steps are taken to achieve local evolution: 

 The local best frog (𝑥𝑏) is set as the first frog yk [1] and the worst frog (𝑥𝑤) as 

the last frog yk[n] of kth memeplex. For frogs to evolve toward Pareto optimal, 

the global best frog (xg) is set as a solution randomly chosen from the current 

archive set. 

 The position of the worst frog is adjusted using Eq. (9). The objective 

function values are calculated and the Pareto dominance relationship 

between newxw and oldxw are compared: 

 If 𝑛𝑒𝑤𝑥𝑤 dominates 𝑜𝑙𝑑𝑥𝑤, then yk[n] is replaced with newxw. 

 If 𝑜𝑙𝑑𝑥𝑤  dominates 𝑛𝑒𝑤𝑥𝑤 , then go to iii; 

 Step two is recomputed by substituting 𝑥𝑏 with xg in Eq. (9).  

 If 𝑛𝑒𝑤𝑥𝑤 dominates the 𝑜𝑙𝑑𝑥𝑤 , then yk[n] is replaced with newxw and  

 If 𝑜𝑙𝑑𝑥𝑤 dominates 𝑛𝑒𝑤𝑥𝑤, then go to iv; 

 A new solution is generated randomly to replace the worst frog. To guide 

this process towards an evolutionary direction, the new solution is produced 

by randomly generating a new frog in the neighbourhood of the global best 

frog xg. 

 After` the memetic evolution step, the memeplex Yk is updated and resorted. 

 For each memeplex, steps i to v are repeated for a specific number of 

iterations.  

 Shuffling and archiving strategy. 

After a number of memetic evolution, the memeplexes are combined and sorted 

in descending order of their MOfit value. Non-dominated solutions are determined 

and added to the archive set. In many MOO algorithms, the archiving strategy is 

used for maintaining the set of non-dominated solutions. Niche method is an 
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effective approach to ensure diversity of the non-dominated solutions within the 

set. In the niche-based archiving method, niche radius is used to calculate sharing 

fitness of non-dominated solutions. The sharing of fitness is calculated as follows:  

 𝐹(𝑖) =  1/ ∑ 𝑠ℎ( 𝑑𝑖𝑗)
𝑞
𝑗=1                 (10) 

where: 

𝑠ℎ(𝑑𝑖𝑗) =   {
1 − (

 𝑑𝑖𝑗

𝜎𝑠ℎ𝑎𝑟𝑒 
)

𝛼

              𝑑𝑖𝑗 <  𝜎𝑠ℎ𝑎𝑟𝑒

  0                                     𝑑𝑖𝑗 >  𝜎𝑠ℎ𝑎𝑟𝑒  
            (11) 

F(i) is the sharing fitness of ith non-dominated solution; q is the number of 

solutions in the archive set; sh(dij) represents the sharing function of ith and jth non 

dominated solution; dij  is the Euclidean distance of objective space between ith and jth 

non-dominated solutions; α is a constant coefficient and 𝜎𝑠ℎ𝑎𝑟𝑒  is the niche radius.  

It can be observed that the niche radius directly affects F(i). An unfitted niche 

radius may cause an ununiformed spread of the non-dominated solutions. 

Considering the dependence of niche radius ( 𝜎𝑠ℎ𝑎𝑟𝑒 ) on the number ( and 

distribution) of solutions in the archive set, and the difficulty of specifying it a 

priori, this study employs a self-adaptive calculation method for 𝜎𝑠ℎ𝑎𝑟𝑒  by 

automatically computing and adjusting it in the iteration procedure as proposed by 

Chui [21]. The calculation procedure is given in Eqs. (12) and (13). 

𝜎𝑠ℎ𝑎𝑟𝑒    =             {
𝐶                     𝑖𝑓  𝑞 <  2

 ∑  
𝑑𝑖

𝑞⁄
𝑞

𝑖=1 
         𝑖𝑓  𝑞 ≥ 2 

             (12) 

𝑑𝑖  =  𝑚𝑖𝑛 ( || 𝐹𝑖(𝑥)   −   𝐹𝑗(𝑥) || )  for i, j = 1,2,…,q  such that j ≠ I           (13) 

where q represents the number of solutions in the archive set; di denotes the 

minimum Euclidean distance in the objective space between the ith non-dominated 

solution and others, and C is a positive constant usually set as 1. With this, the niche 

radius is calculated as the mean value of di of all non-dominated solutions in the 

archive set. 

4.3.  Multi-objective evaluation measures used 

This study employs the use of three quantitative solution set quality measures: 

Contributions (IC), Hypervolume (IHV), and Generational Distance (IGD) 

adopted by Ferrucci, et al. [9] and Barros and Araujo [10]. They are measured 

in the [0, 1] interval. 

IC: Is a convergence measure that computes the proportion of solutions produced 

by an algorithm, A, that lies on the reference front RS. It calculated as the ratio of 

the solutions in RS produced by A [26] and it is defined as follows: 

 𝐼𝐶(𝐴 𝑅𝑆⁄ )    =       
|𝐶|

2
   +   |𝑊𝐴|   +   |𝑁𝐴|

|𝑅𝑆|
              (14) 

where C is the Pareto solution set common to both A and RS, 𝑊𝐴 is the solutions 

sets in A, which dominate other solutions in RS and 𝑁𝐴 is the set of solutions in A 

have dominance relation with no solution in RS. A good Pareto front should have 

high IC value and contribute greatly to the reference front. 
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IHV: Calculates the volume within the objective space covered the set of non-

dominated solutions from an algorithm of interest. This measure mixes 

convergence and diversity. Optimal 3D Hypervolume Algorithm described by 

Paquete et al. [27] is employed in this study. The algorithm sweeps along a front 

sorted in one objective, maintaining an overall 2D area for the points considered so 

far. For each point, p, in the front, a height-balanced binary tree is queried to 

determine the position of p in the remaining objectives. If p is dominated, it is 

discarded. If p dominates other points, they are deleted from the tree. If needed, the 

2D area is then updated in constant time. The height from p to the next point down 

(i.e., the slice depth) is then multiplied by the area and the result is added to the 

overall volume. The pseudo-code for the algorithm is shown in Fig. 2. The higher 

the value of IHV, the better the algorithm. 

IGD: Is a convergence measure that calculates the average distance between 

solution set S, from the algorithm of interest and the reference set RS. The distance 

between S and RS in an N objective space is computed as the average N-

dimensional Euclidean distance between each point in S and its nearest 

neighbouring point in RS. It is defined as follows [28]: 

𝐼𝐺𝐷(𝑆) =  
1

|𝑅𝑆|
∑ 𝑚𝑖𝑛 {𝑑𝑥𝑦 𝑦 ∈𝑅𝑆

| 𝑥 ∈ 𝑆}             (15) 

The 𝑑𝑥𝑦  is the distance between a solution x in S and a reference solution y in 

RS in the N-dimensional objective space as defined in Eq. (16): 

𝑑𝑥𝑦 =   √(𝑓1 (𝑦) − 𝑓1 (𝑥))2 + ⋯ + (𝑓𝑁(𝑦) − 𝑓𝑁(𝑥))2             (16) 

where 𝑓𝑖  (x) is the ith objective function values of a solution x. Good fronts possess 

low IGD and thus, are closer to the reference front. 

Fig. 2. Optimal 3D hypervolume algorithm [27]. 

 

INPUT: Pareto Front (PS) from an algorithm of interest 

OUTPUT: Hypervolume Value IHV 

Begin: 
Step 1: Initialize tree, sort PS in 3rd objective and set Volume to 0 
Step 2: Set p = head (PS), ps = tail (PS), area = p[0] * p[1], z = p 
Step 3: For each p in PS 
Step 4: Search tree for point q to the right of p 
Step 5: If p is not dominated 
Step 6: Increase volume by slice between z and p 

Step 7:  z = p 
Step 8: For each point s in tree dominated by p 
Step 9: Remove s from tree 
Step 10: Decrease area by contribution of s 
Step 11: End for 
Step 12: Increase area by contribution of p 
Step 13: Insert p in tree 
Step 14: Increase volume by area * z[2] 

Step 15: End for 
 

End 
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5.  Results and Discussion 

This section discusses the design of our empirical experimental study comprising 

of the dataset used, parameter settings, and the results of experiments. 

5.1.  Software project data used 

This study makes use of six (6) real-life software project data collected by Barros and 

Araujo [10] and made publicly available for study replication and validation. The 

dataset is summarized in Table 1. OMET is an application that manages 

meteorological information. WAMS is an air traffic routing control system that 

manages traffic control messages. PARM stores and manages user profiles 

configuration settings used by many applications. 

PSOA is a personnel management system that manages users’ authentication and 

authorization from enterprise systems. ACAD is an academic portal system that 

manages university students and staff records. WMET manages meteorological 

information in a database. 

Table 1. Instances used for empirical studies. 

Name Activities Dependencies Function points 

OMET 84 63 635 

WAMS 60 45 381 

PARM 108 91 451 

PSOA 72 84 290 

ACAD 40 39 185 

WMET 44 33 225 

5.2.  Parameter setting 

Due to the non-deterministic nature of MOSFLA, three major parameters were set 

experimentally. The values of the parameters were varied in subsequent runs and 

the best performing values were selected for the actual experiment.  

The shuffling iteration that determines the stopping criteria is tested with values 

500, 1000, 1500 and 2000. The randomness incumbent to MOSFLA was catered 

for by executing the optimization process 30 times for each value and instance. 

Thereafter, a reference front was built from non-dominated solutions collated from 

all the 30 cycles for each instance. Then, IGD was computed for the front generated 

from each cycle to determine the most appropriate and effective value. 

 For the most adequate initial population size, a similar method was used. The 

population sizes of 2m, 3m, and 4m, (m is the number of activities for each instance) 

were compared. Table 2 shows the preliminary result of this experiment on instance 

ACAD. For all experiments, the number of memeplexes was set to 5. For the 

number of iteration of memetic evolution within each memeplex, the same 

procedure was also applied for each instance. Since the value is dependent on the 

number of frogs’ n in each memeplex, the value is set to 2n, 4n, and 8n. Table 3 

shows the preliminary result of this experiment on instance ACAD. 

From the preliminary results, it can be inferred that the shuffling iteration 1500, 

population size 4m (m is the number of activities of the instance) and evolution 

iteration value 4n (n is the number of frogs in each memeplex) produced best results 
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in all the considered combinations. Therefore, the three major parameters are set 

accordingly for the actual experiment. 

Table 2. IGD value for different combination of shuffling iteration and population size. 

Population/ 

iterations 
500 1000 1500 2000 

2m 0.122 0.134 0.023 0.102 

3m 0.022 0.130 0.022 0.026 

4m 0.024 0.025 0.012 0.023 

Table 3. IGD value for different combination 

of shuffling iteration and evolution iteration. 

Evolution iterations 

/shuffle iterations 
500 1000 1500 2000 

2n 0.041 0.044 0.102 0.122 

4n 0.031 0.035 0.002 0.032 

8n 0.044 0.042 0.22 0.034 

5.3.  Experimental results 

MOSFLA implemented in java was applied to all the project instances with all 

parameters set as discussed in the previous subsection. Each experiment is run 30 

times to cater for the stochastic nature of the algorithm and results are averaged. 

The multi-objective quality indicators Contributions (IC), Hypervolume (IHV), and 

Generational Distance (IGD) are measured for each instance. The reference front is 

built from all the fronts generated from each run. Table 4 shows the results of IC, 

IHV, and IGD for all the instances considered. 

From Table 4, it is obvious that the proposed memetic algorithm performed 

effectively with very high hypervolume value close to 0.7, a high contribution value 

close to 0.4 and considerably low Generational distance, which underscores the 

robustness and effectiveness of the algorithm. It can also be deduced that the 

algorithm performed better for large projects as it produces the best hypervolume 

and generational distance value for the instances with the highest number of 

activities of 108 (PARM), except for Contribution where it produced the best result 

in a medium-scale project with 84 activities (OMET).  

It can be concluded that MOSFLA is most suitable for overtime planning 

problem in large-scale software engineering projects. To further evaluate the 

effectiveness of the algorithm, its performance was compared with the typical 

overtime management strategies in software industries. The OPP formulation 

with MOSFLA as search method is compared with three OMS strategies 

presented by Ferruci et al. [9]: “margarine” (MAR), Critical Path (CPM) and 

Second Half (SH). Fronts produced by MOSFLA over 30 optimization cycles 

were compared with the front generated by each OMS based on the quality 

indicators. The reference front was built from all the Pareto fronts generated by 

all the OMS strategies and the MOSFLA. Results of the OMS strategies are 

adapted from [10]. Table 5 presents the results of MOSFLA compared with all 

OMS strategies. 
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Table 4. Quality indicators results of MOSFLA for all instances. 

Instances IC IHV IGD 

OMET 0.3851 0.5512 0.0010 

WAMS 0.3014 0.5210 0.0012 

PARM 0.2185 0.6502 0.0009 

PSOA 0.2654 0.4870 0.0048 

ACAD 0.1320 0.6740 0.0023 

WMET 0.2170 0.6098 0.0023 

Table 5. Quality indicator values for MOSFLA and OMS. 

Instances 
IC IHV IGD 

MOSFLA MAR SH CPM MOSFLA MAR SH CPM MOSFLA MAR SH CPM 

OMET 0.0119 0.0076 0.0115 0.0076 0.4342 0.2545 0.3544 0.2089 0.0101 0.2346 0.0300 0.1356 

WAMS 0.0086 0.0053 0.0079 0.0053 0.3722 0.2547 0.3547 0.1718 0.0076 0.1511 0.0418 0.5151 

PARM 0.0354 0.0137 0.0342 0.0137 0.4489 0.2308 0.3579 n/a 0.0104 0.1518 0.0215 n/a 

PSOA 0.0073 0.0063 0.0063 0.0063 0.3303 0.1496 0.2069 n/a 0.0123 0.2309 0.2309 n/a 

ACAD 0.0016 0.0024 0.0048 0.0072 0.3402 0.2303 0.3589 n/a 0.0145 0.1783 0.0488 n/a 

WMET 0.0060 0.0055 0.0055 0.0055 0.4102 0.2544 0.3538 0.1913 0.0065 0.2420 0.0418 0.1530 

With respect to Contributions (IC) quality indicator, it can be seen that MOSFLA 

outperforms all the overtime management strategies in all the six instances except 

for ACAD instance where it recorded the lowest value of 0.0016. Figure 3 shows a 

comparison of the results of the Contribution (IC) indicator.  

For Hypervolume (IHV) quality indicator, it can be observed that MOSFLA 

performs significantly better than all the overtime management strategies across all 

the instances except for ACAD instance where SH recorded the highest value of 

0.3589 with MOSLA trailing closely with 0.3402 value. This is clearly presented 

in Fig. 4.  

The low performance of MOSFLA in ACAD instance might be due to the small 

size of the project as the algorithm ultimately performs better as with the larger 

project as shown in Table 4. Considering Generational Distance (IGD), MOSFLA 

completely outperforms all the overtime management strategies recording the 

lowest values in all the six project instances.  

Figure 5 shows the Generational Distances (IGD) of MOSFLA and overtime 

management strategies. MOSFLA produces significantly better values in IGD and 

IHV for all instances. For IC MOSFLA only produced slightly better values 

compared to the other OMS.  

For proper comparison, the average Contribution (IC), Hypervolume (IHV) and 

Generational Distance (IGD) values recorded by MOSFLA and other OMS 

strategies are presented in Table 6. 
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Fig. 3. Contributions of MOSFLA and other OMS. 

 

Fig. 4. Hypervolumes of MOSFLA and other OMS. 

 

Fig. 5. Generational Distances of MOSFLA and other OMS. 
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Table 6. Comparison of MOSFLA with  

other OMS based on average IC, IHV, and IGD. 

 
Average 

contribution (IC) 

Average 

hypervolume (IHV) 

Average 

generational 

distance (IGD) 

MOSFLA 0.0118 0.3893 0.0102 

MAR 0.0068 0.2291 0.1981 

SH 0.0117 0.3311 0.0761 

CPM 0.0076 0.1906 0.2679 

It can be observed that the proposed algorithm MOSFLA under the current 

formulation outperformed all other overtime strategies. On the average, it had the 

highest values of 0.0118 and 0.389 in Contribution(IC) and Hypervolume (IHV) 

quality indicators respectively and the lowest value of 0.0102 in Generational 

Distance (IGD) quality indicator. 

Generally, on average, each run of MOSFLA contributed to the reference front 

with 5.8 solutions and OMS contributed overall of 6.83 solutions. This indicates 

that the proposed approach contributed up to 46% of all the solutions generated and 

approximately just 1 solution less than those produced by the OMS strategies 

altogether, which depict the superiority of the MOSFLA algorithm overall currently 

practised overtime management strategies in industries.  

Lastly, in order for the proposed memetic approach to be adopted, it must also 

outperform the state of the art approach for the problem in hand. In this case, current 

solution approaches in SBSE for the problem of planning software projects’ 

overtime employ NSGA-II and its variance [9, 10, 14]. As a means of evaluation, 

the results of MOSFLA are compared with NSGA-IIV results recorded by Barros 

and Araujo [10] since our work is based on the same dataset. Table 7 presents the 

results of the comparison.  

With respect to Contribution (Ic), it can be observed that NSGA-IIv produced 

higher values of 0.2636 and 0.0848 in ACAD and WMET instances. However, as 

the size of the project instances increase, MOSFLA overtakes NSGA-IIv  in terms 

of performance value as it recorded higher values of Contribution (Ic) in WAMS, 

PSOA, OMET and PARM with the margin increasing in direct proportion.  

It can be observed that as the project size increases the performance of 

MOSFLA increases while the contrary is the case of NSGA-IIv, which diminishes 

in value as the projects grow bigger. The observed change is graphically presented 

in Fig. 6. This result underscores the effectiveness of MOSFLA in handling large 

scale problems.  

Considering Hypervolume (IHV) and Generational Distance (IGD) MOSFLA 

significantly outperformed NSGA-IIv in all project instances recording highest IHV 

of 0.4489 in PARM and lowest IGD value of 0.0065 in WMET. Figure 7 presents 

the graphical representation of the IHV of MOFLA and NSGA-IIv. 
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Table 7. Comparison of MOSFLA and NSGA-IIv. 

Instances 
IC IHV IGD 

MOSFLA NSGA-IIV [10] MOSFLA NSGA-IIV [10] MOSFLA NSGA-IIV [10] 

OMET 0.0119 0.0006 0.4342 0.2729 0.0101 2.0360 

WAMS 0.0086 0.0060 0.3722 0.3080 0.0076 2.0528 

PARM 0.0354 0.0006 0.4489 0.4211 0.0104 2.8130 

PSOA 0.0073 0.0024 0.3303 0.2320 0.0123 0.8928 

ACAD 0.0016 0.2636 0.3402 0.3075 0.0145 1.5962 

WMET 0.0060 0.0848 0.4102 0.3136 0.0065 2.3436 

 

 

Fig. 6. Contributions of MOSFLA and NSGA-I. 

 

Fig. 7. Hypervolumes of MOSFLA and NSGA-IIv 

6.  Conclusion 

A memetic algorithm based on MOSFLA for multi-objective overtime planning in 

software engineering projects has been developed. The Overtime Planning Problem 

is formulated as a three-objective optimization problem capturing error generation 

and propagation dynamics due to overtime using simulation. A variant of MOSFLA 
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specifically designed for overtime planning is applied to solve the formulated 

problem. The algorithm incorporates a self-adaptive niche-based archiving strategy 

to maintain the non-dominated solution. An effective sorting and memetic evolution 

procedures were applied to adapt the algorithm to MOO. The performance of the 

algorithm was evaluated empirically on real-life software project dataset and results 

showed that the approach is effective for managing medium and large-scale software 

development as it outperformed all currently used overtime management strategies 

in all quality indicators. The memetic approach also outperforms competitively the 

state of the art approach (NSGA-IIv) in all quality indicators. In the future, we 

planned to further investigate the effect size and significance of the result using some 

inferential statistical methods for in-depth analysis. We also plan to measure 

empirically the effect of overtime on the quality of the software being built using 

software quality prediction techniques [29-31]. 

 

Nomenclatures 
 

Cd Crowding distance 

Co Cost of overtime hours 

Cr Cost of regular hours 

dij Euclidean distance of objective space between the ith and 

jth non-dominated solutions 

F(i) Sharing Fitness 

IC Contribution 

IGD Generational Distance 

IHV Hypervolume 

MOFit Multiobjective Fitness Function 

Sh(dij) Sharing function of ith and jth non-dominated solutions 

xb Local best frog 

xg Global best frog 

xw Worst frog 

Yk Kth memeplex 
 

Greek Symbols 

 Sharing constant-coefficient 

𝜎𝑠ℎ𝑎𝑟𝑒     Niche radius 
 

Abbreviations 

CPM Critical Path Management 

DAG Directed Acyclic Graph 

DP DePendency 

FP Function Points 

MAR MARgarine Management 

MOO Multi-Objective Optimization 

MOSFLA Multi-Objective Shuffled Frog-Leaping Algorithm 

NSGA-II Non-dominated Sorting Genetic Algorithm II 

OH Overtime Hours 

OMS Overtime Management Strategies 

OPP Overtime Planning Problem 
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PC Project Cost 

PMS Project Make Span 

SBSE Search Based Software Engineering 

SH Second Half Management 

SPM Software Project Management 

SPS Software Project Scheduling 

WP Work Packages 
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