
Journal of Engineering Science and Technology
Vol. 14, No. 6 (2019) 3213 - 3233
© School of Engineering, Taylor’s University

3213

MEMETIC APPROACH FOR MULTI-OBJECTIVE OVERTIME
PLANNING IN SOFTWARE ENGINEERING PROJECTS

HAMMED A. MOJEED*, AMOS O. BAJEH,
ABDULLATEEF O. BALOGUN, HAMMID O. ADELEKE

Department of Computer Science, University of Ilorin PMB 1515, Ilorin, Nigeria

*Corresponding Author: mojeed.ha@unilorin.edu.ng

Abstract

Software projects often suffer from unplanned overtime due to uncertainty and

risk incurred due to changing requirement and attempt to meet up with time-to-

market of the software product. This causes stress to developers and can result in

poor quality. This paper presents a memetic algorithmic approach for solving the

overtime-planning problem in software development projects. The problem is

formulated as a three-objective optimization problem aimed at minimizing

overtime hours, project makespan and cost. The formulation captures the

dynamics of error generation and propagation due to overtime using simulation.

Multi-Objective Shuffled Frog-Leaping Algorithm (MOSFLA) specifically

designed for overtime planning is applied to solve the formulated problem.

Empirical evaluation experiments on six real-life software project datasets were

carried out using three widely used multi-objective quality indicators. Results

showed that MOSFLA significantly outperformed the existing traditional

overtime management strategies in software engineering projects in all quality

indicators with 0.0118, 0.3893 and 0.0102 values for Contribution (IC),

Hypervolume (IHV) and Generational Distance (IGD) respectively. The proposed

approach also produced significantly better IHV and IGD results than the state of

the art approach (NSGA-IIV) in 100% of the project instances. However, the

approach could only outperform NSGA-IIV in approximately 67% of projects

instances with respect to IC.

Keywords: Memetic algorithms, Multi-objective optimization, Overtime

planning, Project management, Search-based software engineering.

3214 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

1. Introduction

Software Engineering is concerned with optimization problems that seek to develop

software that is faster, cheaper, more reliable, scalable, responsive, maintainable,

and testable [1]. Consequently, software engineering projects are hardly completed

on schedule and within budget unless good software project management

techniques are enforced [2]. Software Project Management (SPM) involves

carrying out several activities such as cost estimation, project planning (including

Project scheduling and staffing) and quality management, which are critical to the

success of a software project [1]. These activities often involve finding an

appropriate balance between competing and usually conflicting objectives. SPM is

commonly modelled as project scheduling and staffing problem [3], which is

usually solved using Search-Based Software Engineering (SBSE) approach. In

SBSE a software engineering problem is seen as a search problem whose aim is to

find the most appropriate solution that conforms with some adequacy requirements.

It seeks to reformulate software engineering problems as search-based optimization

problems and applies a variety of meta-heuristics algorithms to solve them.

Software Project Scheduling (SPS) is a kind of optimization problem that seeks

to find an optimal schedule for a software project so that the precedence and

resource constraints are satisfied and the final project cost consisting of personnel

salaries and project duration is minimized [4]. SPS has been tackled using meta-

heuristic optimization algorithms [3, 5-8]. Meta-heuristic algorithms search for a

suitable solution in a typically large input space, which is guided by a fitness

function. The fitness function expresses the goals and leads the exploration into

potentially optimal areas of the search space.

These algorithms automate and suggest appropriate schedules and solutions for

software engineers to guide their decision in a planning software project. However,

the assumption that automated tools should produce the initial project plan may not

always be realistic. Ferrucci et al. [9] reported that experience with practitioners

revealed their preference for their own judgments for the initial project plan because

the allocation of staff to work packages requires several human and domain-

specific decisions for which, an automated approach is inadequately equipped to

handle. Nevertheless, unguided initial project plans by engineers often subject

developers to working overtimes- usually without previous plans - in order to meet

up with the project deadlines. Several factors may contribute to the need for

overtime. Some of these factors are; late and changing requirements, compressed

schedules, difficulties associated with project progress measurement, and the need

to meet up with the time-to-market of new features. However, the most reported

factors contributing to unplanned overtime are a late change in requirements and

reduced time to market [1, 10].

Expectedly, it has been shown that excessive and unplanned overtime

allocations have detrimental effects on developers’ health and the software they

build. It was observed by Nishikitani et al. [11] and Karita et al. [12] that overtime

work and long shifts have a positive correlation with stress indexes such as

depression, anger, hostility and increase in equilibrium and motor-related problems

on IT professionals. Also regarding the effect on the software that developers

produce, Akula and Cusick [13] found out that longer overtime work causes

increased stress, which in turn translates to higher defect counts in software

projects. The implication of these effects is bad quality software since developers

Memetic Approach for Multi-Objective Overtime Planning in Software 3215

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

continue to focus more on quick and rapid completion of tasks rather than quality.

These shreds of evidence from the literature underscore the need for an effective

decision support approach for overtime planning that can balance staff productivity,

cost, project duration and product quality against overtime.

To mitigate the bad effects of long overtime on software development projects,

several Overtime Management Strategies (OMS) are deployed by engineers in the

industry. Ferrucci et al. [9] presented three commonly used overtime strategies by

software engineers in the industry: Margarine (MAR) management, Critical Path

Management (CPM) and Second Half (SH) management strategies. In MAR,

overtime hours are spread evenly across all activities in the schedule. CPM, on the

other hand, loads overtime onto the schedule's critical path while in SH, overtime

hours are loaded onto the latter half of the schedule to make up for delays

introduced in the former half. However, few studies have been carried out to

optimally solve Overtime Planning Problem (OPP) through the application of

SBSE approach. Current approaches employ genetic multi-objective evolutionary

algorithms - mainly NSGA-II and its variants [9, 10, 14]. To the best of our

knowledge, no work has been carried out to apply other Multi-Objective

Optimization algorithms to the problem of software projects’ overtime planning.

Therefore, there is a need for more studies on overtime planning techniques that

could completely outperform the current overtime management strategies and the

state of the art approaches.

This study investigates the effectiveness of the memetic multi-objective

evolutionary algorithm in solving software project overtime planning problem

using Multi-Objective Shuffled Frog Leaping Algorithm (MOSFLA). With respect

to optimization problems, memetic algorithms, which can be viewed as a union

between a population-based global technique and a local search made by each

individual in the population - have been shown to be more efficient and more

effective than traditional evolutionary algorithms for some problem domains [2, 15,

16]. As a result, memetic algorithms are gaining wide acceptance, particularly in

well-known combinatorial optimization problems where large instances have been

solved to optimality and where other meta-heuristics have failed to produce

comparable results.

The remaining part of this paper is organized as follows: Section 2 presents

some related works in software projects’ overtime planning. Section 3 focused on

the formulation of the OPP problem. Section 4 is based on the proposed framework,

which presents the employed computational search approach for solving OPP and

the evaluation metrics employed to measure the performance of the approach.

Section 5 presents the experimental setup and discusses the results, and the work is

concluded in Section 6.

2. Related Works

Akula and Cusick [13] carried out a statistical survey on four real-life software

projects to analyze the impact of overtime on software quality. The number of

scheduled work hours, actual overtime hours, and a number of defects were

recorded on each of the projects. Statistical analysis showed that defect count is

directly proportional to the actual overtime hours in all considered projects. It was

observed that defect count increases when overtime is extensive and stress on

workers and the project develops during excessive overtime.

3216 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

In spite of this evidence from the literature, there have been very few studies on

the application of search-based meta-heuristic algorithms to software projects

overtime planning. This study could only find three works that apply SBSE to the

problem. Ferrucci et al. [9] introduced a search-based optimization approach to

software overtime planning. The study presented the formulation of software

project overtime planning as a multi-objective optimization problem. Their

objective is to investigate the effects of choices of overtime allocations on the

project schedule, each of which, seeks to minimize project duration, the amount of

overtime and risk of overrun based on three risk assessment models.

A new variant of NSGA-II called NSGA-IIv that exploits a crossover operator

specifically designed for overtime planning problem was employed as the

computational search method. To analyse the effectiveness of the approach they

reported an empirical study on six real-life software projects. Results from

experiments revealed that the approach is significantly better than standard

NSGA-II in 76% of experiments and significantly outperformed standard

overtime planning strategies used in the industry. However, their formulation

failed to assess the negative effect of overtime on software quality even when

empirical studies in the literature [11, 13] have revealed that the effort required

to correct additional errors introduced by developers working overtime outweighs

the productivity gains.

Recently, Sarro et al. [14] extended the work of Ferrucci et al. [9] by proposing

an adaptive method for meta-heuristic operator selection to improve algorithmic

performance under the same problem formulation. The study presented a new

variant of NSGA-II, namely Adaptivevsc, which systematically combines the

crossover operator proposed by Ferrucci et al. [9] and adaptive genetic operators of

NSGA-IIa, proposed by Nebro et al. [17]. In addition to that, the study introduced

an adaptive strategy for the selection of genetic operators during the search. Results

from experimental studies on eight real-life software projects showed that the

proposed adaptive outperformed the state-of-the-art approaches in 93% of the

experiments and significantly performed better than the current overtime planning

strategies in 100% of the experiments.

Barros and Araujo [10] advanced the formulation proposed by Ferrucci et al.

[9] by considering the reported effect of overtime work on the quality of software.

The study introduced a new formulation for the OPP that make use of simulation

to propagate the effects of an increased number of defects due to overtime to the

project's duration and cost. The main objective of their work is to use

optimization and simulation to learn the effects of different overtime planning

policies on the project duration and cost. NSGA-II was used as the computational

search method to optimally plan over time with the aim of minimizing the overall

project duration, project makespan, and cost.

The approach was compared with overtime strategies used in industry and a

similar model devoid of the negative effects of overtime on product quality.

Experimental results showed that NSGA-II conveniently outperformed the

margarine and critical path overtime strategies. However, the Second-Half

overtime management strategy produced competitive results with NSGA-II under

this formulation. This observation calls for a better search approach that could

completely outperform all the overtime strategies under the same formulation.

Memetic Approach for Multi-Objective Overtime Planning in Software 3217

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

This study is close to the work of Barros and Araujo [10] as it adopts the same

problem formulation but employs different computational search approach

(memetic) using MOSFLA.

3. Problem Formulation

This study adopts a three-objective decision problem model presented by Barros

and Araujo [10] for overtime planning, which captures the dynamics of error

generation and propagation due to overtime using simulation. This approach

estimates the impact of increased defect counts due to overtime on the project

duration and cost.

Let a project schedule be represented as a Directed Acyclic Graph (DAG)

consisting of a node-set WP = {wp1, wp2,pt wpn} of Work Packages and an edge

set DP = { (wpi, wpj) : i :j; 1 ori ≤ n, 1 orj 1n } of dependencies among WPs. Each

wp is characterized by the amount of effort (measured in function points (FP)),

which is required to complete it. Each dependency in DP depicts that development

of a work package (wpj) can only start after the completion of the analysis of

another work package (wpi).

Given the size of a work package in FP and average productivity of 27.8

FP/developer-month as estimated empirically [18] for Information Systems (IS)

projects, the expected duration of the work package can be calculated as:

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑤𝑝𝑖) = 𝑒𝑓𝑓𝑜𝑟𝑡(𝑤𝑝𝑖)/(27.8) (1)

The shortest possible duration of the project is given by any maximal length

path called Critical Path. The critical path has been used for decades to build

software projects schedules. However, the main problem is to analyse the effects

of overtime assignments on the schedule, which seek to minimize project

makespan, cost and the amount of overtime deployed.

With respect to error propagation during software development projects, Jones

[18] found out that developers introduced an average of 4 errors/FP through analysis,

design and coding activities of a component. This dynamic affects the duration of

testing activities. Also regarding error generation due to overtime, Abdel-Hamid and

Madnick [19] modelled the relationship between the amount of overtime spent by

developers and the number of defects introduced into the software they produce. This

model estimates an introduction of 20% more errors by a developer working 10

hours/day than those working on regular shifts of 8 hours/day and 50% more errors

by developers working 12 hours/day. This non-linear relationship between overtime

and error generation rates, coupled with the error propagation dynamics form a

compound model on which, an optimization technique driven by simulation is

required. Therefore, this study combines optimization and simulation to optimally

solve the software overtime planning problem.

Optimization objectives

The OPP formulation in this study tries to minimize:

 Amount of Overtime Hours (OH) = ∑ 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖)𝑛
𝑖=1 (2)

 Project MakeSpan (PMS) = ∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑤𝑝𝑖)𝑤𝑝∈𝐶𝑃 (3)

3218 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

 Project Cost (PC) = ∑ 𝐶𝑟(𝑤𝑝𝑖) + 𝐶𝑜(𝑛
𝑖=1 𝑤𝑝𝑖) (4)

Subject to the constraints:

0 ≤ 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖) ≤ max𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖), 1 ≤ i ≤ n

DPviolation< 1.

Overtime Hours (OH) is the sum of overtime hours spent on all activities in the

schedule as calculated by the computational search algorithm. The Project

Makespan (PMS) is defined by the longest precedence-respecting path in the graph

and it is calculated as the sum of the duration of activities in the path. 𝐶𝑃 is the

Critical Path and duration (𝑤𝑝𝑖) is the duration of an activity. The duration of an

activity is computed from the simulation since the error generation and propagation

dynamics is integrated into the project’s schedule. The Project Cost (PC) is the sum

of each activity's cost, which depends on the amount of regular and overtime hours

its developer spends to come up with its expected outcomes. The Brazilian cost law

presented by Barros and Araujo [10] is used to model the cost of an activity. It

follows that if a regular working hour costs C, each of the first two overtime hours

cost 120% of C and each of the next two hours cost 150% of C. 𝐶𝑟 in objective (iii)

is the cost of regular working hours and 𝐶𝑜 is the cost of overtime hours.

A candidate solution to the OPP is modelled as a set of integer values denoting

the number of overtime hours to be spent daily on each Work Package (WP) in the

schedule. It is represented as a linear array of integers representing the overtime hours

to be spent on activities denoted by the corresponding indexes of the array. It is

important to note that the length of regular working hours and the maximum overtime

hours are country-based parameters. In this study by Barros and Araujo [10], the

working hours are set to 8 hours and maximum overtime of 4 hours per day.

4. Proposed Framework

This section presents the computational search approach employed to solve the

overtime planning problem modelled in section 3 and the evaluation metrics to be

used to measure the performance of the proposed computational approach.

4.1. Computational search approach

A Multi-Objective Shuffled Frog-Leaping Algorithm (MOSFLA) - with the same

framework as the original SFLA algorithm proposed by Eusuff and Lansey [20] -

that employs an archiving strategy based on adaptive niche technique proposed by

Cui [21] is employed as the computational search in this study. The niche technique

is used to maintain the non-dominated solutions. The algorithm improves on

population sorting technique and memetic evolution process to adapt to Multi-

Objective Optimization (MOO).

Due to parallel evolution mechanism of the algorithm, the solutions evolve

toward different directions. This makes MOSFLA be specifically fit for MOO

problems like the one considered in this study. The MOSFLA algorithm is

illustrated in Fig. 1 as adapted by Yinghai et al. [22]. MOSFLA has been applied

successfully to various problems in different domains such as standard optimization

test problem instances [23], reservoir flood control problem [22] and robot path

planning problem [24].

Memetic Approach for Multi-Objective Overtime Planning in Software 3219

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Fig. 1. Flowchart of MOSFLA [22].

3220 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

4.2. MOSFLA design for overtime planning problem

To adapt the MOSFLA to overtime planning problem the algorithm is designed

as follows:

 Population creation and sorting strategy

Because MOSFLA is a stochastic algorithm, the population of feasible solutions

(frogs) is generated randomly. The acceptance and rejection criterion for any

solution is the satisfaction of the maximum overtime constraints. In SFLA, frogs

are sorted in decreasing order of their performance values calculated through a

fitness function. For single-objective problems, performance value is usually set

directly as the objective function value. This cannot be applied to multi-objective

problems. Various approaches have been used in the literature to measure the

performance value for multi-objective problems.

Some of the approaches used are Pareto dominance relation of the solutions,

crowding distance of individual solution, a combination of crowding distance

within the non-dominated solutions and the hamming distance between dominated

and non-dominated solutions in the population [22, 23, 25]. In this study, a new

hybrid multi-objective fitness function that is based on both the crowding distance

(of the individual frogs) and the rank (obtained by ordering Pareto fronts) is

employed to measure the fitness of each solution in the population.

More specifically, the rank is calculated using the following procedure:

Step 1. The non-dominated solutions in the initial population are included in the

first rank (i.e., rank 0) and then removed.

Step 2. The next non-dominated solutions are determined from the remaining

solutions, and included in the next rank (rank 1). These solutions are also

removed accordingly.

Step 3. The procedure is continued until no more solutions exist in the population.

After the ranking, crowding distance (𝐶𝑑) is computed for all solutions in the

same rank. Supposing that the MOO has r goals, the crowding distance of each frog

is calculated as:

 𝐶𝑑 = ∑ |𝑃[𝑖 + 1] · 𝑓𝑘 − 𝑃[𝑖 − 1] · 𝑓𝑘|𝑟
𝑘=1 (5)

𝐶𝑑 is the crowding distance of the ith frog in the rank set, P[i+ 1] fk and P[i- 1]

fk are kth objective function values of two adjacent frogs.

Alejandro et al. [24] proposed the overall multi-objective fitness function,

which is calculated using the formula. It is defined as:

𝑀𝑂𝐹𝑖𝑡 =
1

2𝑟𝑎𝑛𝑘+
1

1+ 𝐶𝑑

 (6)

 Memplex formation

The sorted frogs are stored in an array X = {P(i), i = 1, . . . ,n}. X is then partitioned

into m memeplexes, i.e., Y1,Y2, . . . ,Ym, each containing n frogs, such that:

𝑌𝑘 = [𝑃(𝑖)𝑘 | 𝑃(𝑖)𝑘 = 𝑃[𝑘 + 𝑚(𝑖 − 1)]], 𝑖 = 1, . . 𝑛 𝑘 = 1, . . 𝑚 (7)

Memetic Approach for Multi-Objective Overtime Planning in Software 3221

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

In this way, for m = 4, frog in position 1 goes to memeplex 1, position 2 to

memeplex 2, position 3 to memeplex 3, position 4 to memeplex 4. Then frog in

position 5 goes to memeplex 1, and so on.

 Memetic evolution in memeplex

Within each memeplex, the virtual frogs go through a memetic evolution where the

worst performing fog is improved via meme transfer and sharing. In the original

SFLA, the worst frog in each memeplex is improved using the evolution step:

𝑑 = 𝑟𝑎𝑛𝑑 ∗ (𝑥𝑏 − 𝑥𝑤), 𝑛𝑒𝑤𝑥𝑤 = 𝑜𝑙𝑑𝑥𝑤 + 𝑑 (8)

where 𝑥𝑏 = local best frog in the memeplex and xw = worst frog in the memeplex.

This evolution step is inefficient as it limits the location of the new frog newxw

in the area between xw and 𝑥𝑏. This only enforces a local bound improvement. In

order to extend the evolution area of newxw out of the local bound, the following

evolution step proposed by Yinghai et al. [22] is employed:

𝑑 = 2 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑥𝑏 − 𝑥𝑤) , 𝑛𝑒𝑤𝑥𝑤 = 𝑜𝑙𝑑𝑥𝑤 + 𝑑 (9)

This step doubles the evolution area so that the position of newxw can reach

2(xb−𝑥𝑤). In essence, the evolution step can produce solutions that are better than

the current best solution within each memplex.

The following steps are taken to achieve local evolution:

 The local best frog (𝑥𝑏) is set as the first frog yk [1] and the worst frog (𝑥𝑤) as

the last frog yk[n] of kth memeplex. For frogs to evolve toward Pareto optimal,

the global best frog (xg) is set as a solution randomly chosen from the current

archive set.

 The position of the worst frog is adjusted using Eq. (9). The objective

function values are calculated and the Pareto dominance relationship

between newxw and oldxw are compared:

 If 𝑛𝑒𝑤𝑥𝑤 dominates 𝑜𝑙𝑑𝑥𝑤, then yk[n] is replaced with newxw.

 If 𝑜𝑙𝑑𝑥𝑤 dominates 𝑛𝑒𝑤𝑥𝑤 , then go to iii;

 Step two is recomputed by substituting 𝑥𝑏 with xg in Eq. (9).

 If 𝑛𝑒𝑤𝑥𝑤 dominates the 𝑜𝑙𝑑𝑥𝑤 , then yk[n] is replaced with newxw and

 If 𝑜𝑙𝑑𝑥𝑤 dominates 𝑛𝑒𝑤𝑥𝑤, then go to iv;

 A new solution is generated randomly to replace the worst frog. To guide

this process towards an evolutionary direction, the new solution is produced

by randomly generating a new frog in the neighbourhood of the global best

frog xg.

 After` the memetic evolution step, the memeplex Yk is updated and resorted.

 For each memeplex, steps i to v are repeated for a specific number of

iterations.

 Shuffling and archiving strategy.

After a number of memetic evolution, the memeplexes are combined and sorted

in descending order of their MOfit value. Non-dominated solutions are determined

and added to the archive set. In many MOO algorithms, the archiving strategy is

used for maintaining the set of non-dominated solutions. Niche method is an

3222 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

effective approach to ensure diversity of the non-dominated solutions within the

set. In the niche-based archiving method, niche radius is used to calculate sharing

fitness of non-dominated solutions. The sharing of fitness is calculated as follows:

 𝐹(𝑖) = 1/ ∑ 𝑠ℎ(𝑑𝑖𝑗)
𝑞
𝑗=1 (10)

where:

𝑠ℎ(𝑑𝑖𝑗) = {
1 − (

 𝑑𝑖𝑗

𝜎𝑠ℎ𝑎𝑟𝑒
)

𝛼

 𝑑𝑖𝑗 < 𝜎𝑠ℎ𝑎𝑟𝑒

 0 𝑑𝑖𝑗 > 𝜎𝑠ℎ𝑎𝑟𝑒
 (11)

F(i) is the sharing fitness of ith non-dominated solution; q is the number of

solutions in the archive set; sh(dij) represents the sharing function of ith and jth non

dominated solution; dij is the Euclidean distance of objective space between ith and jth

non-dominated solutions; α is a constant coefficient and 𝜎𝑠ℎ𝑎𝑟𝑒 is the niche radius.

It can be observed that the niche radius directly affects F(i). An unfitted niche

radius may cause an ununiformed spread of the non-dominated solutions.

Considering the dependence of niche radius (𝜎𝑠ℎ𝑎𝑟𝑒) on the number (and

distribution) of solutions in the archive set, and the difficulty of specifying it a

priori, this study employs a self-adaptive calculation method for 𝜎𝑠ℎ𝑎𝑟𝑒 by

automatically computing and adjusting it in the iteration procedure as proposed by

Chui [21]. The calculation procedure is given in Eqs. (12) and (13).

𝜎𝑠ℎ𝑎𝑟𝑒 = {
𝐶 𝑖𝑓 𝑞 < 2

 ∑
𝑑𝑖

𝑞⁄
𝑞

𝑖=1
 𝑖𝑓 𝑞 ≥ 2

 (12)

𝑑𝑖 = 𝑚𝑖𝑛 (|| 𝐹𝑖(𝑥) − 𝐹𝑗(𝑥) ||) for i, j = 1,2,…,q such that j ≠ I (13)

where q represents the number of solutions in the archive set; di denotes the

minimum Euclidean distance in the objective space between the ith non-dominated

solution and others, and C is a positive constant usually set as 1. With this, the niche

radius is calculated as the mean value of di of all non-dominated solutions in the

archive set.

4.3. Multi-objective evaluation measures used

This study employs the use of three quantitative solution set quality measures:

Contributions (IC), Hypervolume (IHV), and Generational Distance (IGD)

adopted by Ferrucci, et al. [9] and Barros and Araujo [10]. They are measured

in the [0, 1] interval.

IC: Is a convergence measure that computes the proportion of solutions produced

by an algorithm, A, that lies on the reference front RS. It calculated as the ratio of

the solutions in RS produced by A [26] and it is defined as follows:

 𝐼𝐶(𝐴 𝑅𝑆⁄) =
|𝐶|

2
 + |𝑊𝐴| + |𝑁𝐴|

|𝑅𝑆|
 (14)

where C is the Pareto solution set common to both A and RS, 𝑊𝐴 is the solutions

sets in A, which dominate other solutions in RS and 𝑁𝐴 is the set of solutions in A

have dominance relation with no solution in RS. A good Pareto front should have

high IC value and contribute greatly to the reference front.

Memetic Approach for Multi-Objective Overtime Planning in Software 3223

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

IHV: Calculates the volume within the objective space covered the set of non-

dominated solutions from an algorithm of interest. This measure mixes

convergence and diversity. Optimal 3D Hypervolume Algorithm described by

Paquete et al. [27] is employed in this study. The algorithm sweeps along a front

sorted in one objective, maintaining an overall 2D area for the points considered so

far. For each point, p, in the front, a height-balanced binary tree is queried to

determine the position of p in the remaining objectives. If p is dominated, it is

discarded. If p dominates other points, they are deleted from the tree. If needed, the

2D area is then updated in constant time. The height from p to the next point down

(i.e., the slice depth) is then multiplied by the area and the result is added to the

overall volume. The pseudo-code for the algorithm is shown in Fig. 2. The higher

the value of IHV, the better the algorithm.

IGD: Is a convergence measure that calculates the average distance between

solution set S, from the algorithm of interest and the reference set RS. The distance

between S and RS in an N objective space is computed as the average N-

dimensional Euclidean distance between each point in S and its nearest

neighbouring point in RS. It is defined as follows [28]:

𝐼𝐺𝐷(𝑆) =
1

|𝑅𝑆|
∑ 𝑚𝑖𝑛 {𝑑𝑥𝑦 𝑦 ∈𝑅𝑆

| 𝑥 ∈ 𝑆} (15)

The 𝑑𝑥𝑦 is the distance between a solution x in S and a reference solution y in

RS in the N-dimensional objective space as defined in Eq. (16):

𝑑𝑥𝑦 = √(𝑓1 (𝑦) − 𝑓1 (𝑥))2 + ⋯ + (𝑓𝑁(𝑦) − 𝑓𝑁(𝑥))2 (16)

where 𝑓𝑖 (x) is the ith objective function values of a solution x. Good fronts possess

low IGD and thus, are closer to the reference front.

Fig. 2. Optimal 3D hypervolume algorithm [27].

INPUT: Pareto Front (PS) from an algorithm of interest

OUTPUT: Hypervolume Value IHV

Begin:
Step 1: Initialize tree, sort PS in 3rd objective and set Volume to 0
Step 2: Set p = head (PS), ps = tail (PS), area = p[0] * p[1], z = p
Step 3: For each p in PS
Step 4: Search tree for point q to the right of p
Step 5: If p is not dominated
Step 6: Increase volume by slice between z and p

Step 7: z = p
Step 8: For each point s in tree dominated by p
Step 9: Remove s from tree
Step 10: Decrease area by contribution of s
Step 11: End for
Step 12: Increase area by contribution of p
Step 13: Insert p in tree
Step 14: Increase volume by area * z[2]

Step 15: End for

End

3224 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

5. Results and Discussion

This section discusses the design of our empirical experimental study comprising

of the dataset used, parameter settings, and the results of experiments.

5.1. Software project data used

This study makes use of six (6) real-life software project data collected by Barros and

Araujo [10] and made publicly available for study replication and validation. The

dataset is summarized in Table 1. OMET is an application that manages

meteorological information. WAMS is an air traffic routing control system that

manages traffic control messages. PARM stores and manages user profiles

configuration settings used by many applications.

PSOA is a personnel management system that manages users’ authentication and

authorization from enterprise systems. ACAD is an academic portal system that

manages university students and staff records. WMET manages meteorological

information in a database.

Table 1. Instances used for empirical studies.

Name Activities Dependencies Function points

OMET 84 63 635

WAMS 60 45 381

PARM 108 91 451

PSOA 72 84 290

ACAD 40 39 185

WMET 44 33 225

5.2. Parameter setting

Due to the non-deterministic nature of MOSFLA, three major parameters were set

experimentally. The values of the parameters were varied in subsequent runs and

the best performing values were selected for the actual experiment.

The shuffling iteration that determines the stopping criteria is tested with values

500, 1000, 1500 and 2000. The randomness incumbent to MOSFLA was catered

for by executing the optimization process 30 times for each value and instance.

Thereafter, a reference front was built from non-dominated solutions collated from

all the 30 cycles for each instance. Then, IGD was computed for the front generated

from each cycle to determine the most appropriate and effective value.

 For the most adequate initial population size, a similar method was used. The

population sizes of 2m, 3m, and 4m, (m is the number of activities for each instance)

were compared. Table 2 shows the preliminary result of this experiment on instance

ACAD. For all experiments, the number of memeplexes was set to 5. For the

number of iteration of memetic evolution within each memeplex, the same

procedure was also applied for each instance. Since the value is dependent on the

number of frogs’ n in each memeplex, the value is set to 2n, 4n, and 8n. Table 3

shows the preliminary result of this experiment on instance ACAD.

From the preliminary results, it can be inferred that the shuffling iteration 1500,

population size 4m (m is the number of activities of the instance) and evolution

iteration value 4n (n is the number of frogs in each memeplex) produced best results

Memetic Approach for Multi-Objective Overtime Planning in Software 3225

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

in all the considered combinations. Therefore, the three major parameters are set

accordingly for the actual experiment.

Table 2. IGD value for different combination of shuffling iteration and population size.

Population/

iterations
500 1000 1500 2000

2m 0.122 0.134 0.023 0.102

3m 0.022 0.130 0.022 0.026

4m 0.024 0.025 0.012 0.023

Table 3. IGD value for different combination

of shuffling iteration and evolution iteration.

Evolution iterations

/shuffle iterations
500 1000 1500 2000

2n 0.041 0.044 0.102 0.122

4n 0.031 0.035 0.002 0.032

8n 0.044 0.042 0.22 0.034

5.3. Experimental results

MOSFLA implemented in java was applied to all the project instances with all

parameters set as discussed in the previous subsection. Each experiment is run 30

times to cater for the stochastic nature of the algorithm and results are averaged.

The multi-objective quality indicators Contributions (IC), Hypervolume (IHV), and

Generational Distance (IGD) are measured for each instance. The reference front is

built from all the fronts generated from each run. Table 4 shows the results of IC,

IHV, and IGD for all the instances considered.

From Table 4, it is obvious that the proposed memetic algorithm performed

effectively with very high hypervolume value close to 0.7, a high contribution value

close to 0.4 and considerably low Generational distance, which underscores the

robustness and effectiveness of the algorithm. It can also be deduced that the

algorithm performed better for large projects as it produces the best hypervolume

and generational distance value for the instances with the highest number of

activities of 108 (PARM), except for Contribution where it produced the best result

in a medium-scale project with 84 activities (OMET).

It can be concluded that MOSFLA is most suitable for overtime planning

problem in large-scale software engineering projects. To further evaluate the

effectiveness of the algorithm, its performance was compared with the typical

overtime management strategies in software industries. The OPP formulation

with MOSFLA as search method is compared with three OMS strategies

presented by Ferruci et al. [9]: “margarine” (MAR), Critical Path (CPM) and

Second Half (SH). Fronts produced by MOSFLA over 30 optimization cycles

were compared with the front generated by each OMS based on the quality

indicators. The reference front was built from all the Pareto fronts generated by

all the OMS strategies and the MOSFLA. Results of the OMS strategies are

adapted from [10]. Table 5 presents the results of MOSFLA compared with all

OMS strategies.

3226 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Table 4. Quality indicators results of MOSFLA for all instances.

Instances IC IHV IGD

OMET 0.3851 0.5512 0.0010

WAMS 0.3014 0.5210 0.0012

PARM 0.2185 0.6502 0.0009

PSOA 0.2654 0.4870 0.0048

ACAD 0.1320 0.6740 0.0023

WMET 0.2170 0.6098 0.0023

Table 5. Quality indicator values for MOSFLA and OMS.

Instances
IC IHV IGD

MOSFLA MAR SH CPM MOSFLA MAR SH CPM MOSFLA MAR SH CPM

OMET 0.0119 0.0076 0.0115 0.0076 0.4342 0.2545 0.3544 0.2089 0.0101 0.2346 0.0300 0.1356

WAMS 0.0086 0.0053 0.0079 0.0053 0.3722 0.2547 0.3547 0.1718 0.0076 0.1511 0.0418 0.5151

PARM 0.0354 0.0137 0.0342 0.0137 0.4489 0.2308 0.3579 n/a 0.0104 0.1518 0.0215 n/a

PSOA 0.0073 0.0063 0.0063 0.0063 0.3303 0.1496 0.2069 n/a 0.0123 0.2309 0.2309 n/a

ACAD 0.0016 0.0024 0.0048 0.0072 0.3402 0.2303 0.3589 n/a 0.0145 0.1783 0.0488 n/a

WMET 0.0060 0.0055 0.0055 0.0055 0.4102 0.2544 0.3538 0.1913 0.0065 0.2420 0.0418 0.1530

With respect to Contributions (IC) quality indicator, it can be seen that MOSFLA

outperforms all the overtime management strategies in all the six instances except

for ACAD instance where it recorded the lowest value of 0.0016. Figure 3 shows a

comparison of the results of the Contribution (IC) indicator.

For Hypervolume (IHV) quality indicator, it can be observed that MOSFLA

performs significantly better than all the overtime management strategies across all

the instances except for ACAD instance where SH recorded the highest value of

0.3589 with MOSLA trailing closely with 0.3402 value. This is clearly presented

in Fig. 4.

The low performance of MOSFLA in ACAD instance might be due to the small

size of the project as the algorithm ultimately performs better as with the larger

project as shown in Table 4. Considering Generational Distance (IGD), MOSFLA

completely outperforms all the overtime management strategies recording the

lowest values in all the six project instances.

Figure 5 shows the Generational Distances (IGD) of MOSFLA and overtime

management strategies. MOSFLA produces significantly better values in IGD and

IHV for all instances. For IC MOSFLA only produced slightly better values

compared to the other OMS.

For proper comparison, the average Contribution (IC), Hypervolume (IHV) and

Generational Distance (IGD) values recorded by MOSFLA and other OMS

strategies are presented in Table 6.

Memetic Approach for Multi-Objective Overtime Planning in Software 3227

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Fig. 3. Contributions of MOSFLA and other OMS.

Fig. 4. Hypervolumes of MOSFLA and other OMS.

Fig. 5. Generational Distances of MOSFLA and other OMS.

3228 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Table 6. Comparison of MOSFLA with

other OMS based on average IC, IHV, and IGD.

Average

contribution (IC)

Average

hypervolume (IHV)

Average

generational

distance (IGD)

MOSFLA 0.0118 0.3893 0.0102

MAR 0.0068 0.2291 0.1981

SH 0.0117 0.3311 0.0761

CPM 0.0076 0.1906 0.2679

It can be observed that the proposed algorithm MOSFLA under the current

formulation outperformed all other overtime strategies. On the average, it had the

highest values of 0.0118 and 0.389 in Contribution(IC) and Hypervolume (IHV)

quality indicators respectively and the lowest value of 0.0102 in Generational

Distance (IGD) quality indicator.

Generally, on average, each run of MOSFLA contributed to the reference front

with 5.8 solutions and OMS contributed overall of 6.83 solutions. This indicates

that the proposed approach contributed up to 46% of all the solutions generated and

approximately just 1 solution less than those produced by the OMS strategies

altogether, which depict the superiority of the MOSFLA algorithm overall currently

practised overtime management strategies in industries.

Lastly, in order for the proposed memetic approach to be adopted, it must also

outperform the state of the art approach for the problem in hand. In this case, current

solution approaches in SBSE for the problem of planning software projects’

overtime employ NSGA-II and its variance [9, 10, 14]. As a means of evaluation,

the results of MOSFLA are compared with NSGA-IIV results recorded by Barros

and Araujo [10] since our work is based on the same dataset. Table 7 presents the

results of the comparison.

With respect to Contribution (Ic), it can be observed that NSGA-IIv produced

higher values of 0.2636 and 0.0848 in ACAD and WMET instances. However, as

the size of the project instances increase, MOSFLA overtakes NSGA-IIv in terms

of performance value as it recorded higher values of Contribution (Ic) in WAMS,

PSOA, OMET and PARM with the margin increasing in direct proportion.

It can be observed that as the project size increases the performance of

MOSFLA increases while the contrary is the case of NSGA-IIv, which diminishes

in value as the projects grow bigger. The observed change is graphically presented

in Fig. 6. This result underscores the effectiveness of MOSFLA in handling large

scale problems.

Considering Hypervolume (IHV) and Generational Distance (IGD) MOSFLA

significantly outperformed NSGA-IIv in all project instances recording highest IHV

of 0.4489 in PARM and lowest IGD value of 0.0065 in WMET. Figure 7 presents

the graphical representation of the IHV of MOFLA and NSGA-IIv.

Memetic Approach for Multi-Objective Overtime Planning in Software 3229

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Table 7. Comparison of MOSFLA and NSGA-IIv.

Instances
IC IHV IGD

MOSFLA NSGA-IIV [10] MOSFLA NSGA-IIV [10] MOSFLA NSGA-IIV [10]

OMET 0.0119 0.0006 0.4342 0.2729 0.0101 2.0360

WAMS 0.0086 0.0060 0.3722 0.3080 0.0076 2.0528

PARM 0.0354 0.0006 0.4489 0.4211 0.0104 2.8130

PSOA 0.0073 0.0024 0.3303 0.2320 0.0123 0.8928

ACAD 0.0016 0.2636 0.3402 0.3075 0.0145 1.5962

WMET 0.0060 0.0848 0.4102 0.3136 0.0065 2.3436

Fig. 6. Contributions of MOSFLA and NSGA-I.

Fig. 7. Hypervolumes of MOSFLA and NSGA-IIv

6. Conclusion

A memetic algorithm based on MOSFLA for multi-objective overtime planning in

software engineering projects has been developed. The Overtime Planning Problem

is formulated as a three-objective optimization problem capturing error generation

and propagation dynamics due to overtime using simulation. A variant of MOSFLA

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28

C
o

n
tr

ib
u

ti
o

n
 (

IC
)

MOSFLA

NSGA-II

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

H
yp

e
rV

o
lu

m
e

(I
H

V
)

MOSFLA

NSGA-II

3230 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

specifically designed for overtime planning is applied to solve the formulated

problem. The algorithm incorporates a self-adaptive niche-based archiving strategy

to maintain the non-dominated solution. An effective sorting and memetic evolution

procedures were applied to adapt the algorithm to MOO. The performance of the

algorithm was evaluated empirically on real-life software project dataset and results

showed that the approach is effective for managing medium and large-scale software

development as it outperformed all currently used overtime management strategies

in all quality indicators. The memetic approach also outperforms competitively the

state of the art approach (NSGA-IIv) in all quality indicators. In the future, we

planned to further investigate the effect size and significance of the result using some

inferential statistical methods for in-depth analysis. We also plan to measure

empirically the effect of overtime on the quality of the software being built using

software quality prediction techniques [29-31].

Nomenclatures

Cd Crowding distance

Co Cost of overtime hours

Cr Cost of regular hours

dij Euclidean distance of objective space between the ith and

jth non-dominated solutions

F(i) Sharing Fitness

IC Contribution

IGD Generational Distance

IHV Hypervolume

MOFit Multiobjective Fitness Function

Sh(dij) Sharing function of ith and jth non-dominated solutions

xb Local best frog

xg Global best frog

xw Worst frog

Yk Kth memeplex

Greek Symbols

 Sharing constant-coefficient

𝜎𝑠ℎ𝑎𝑟𝑒 Niche radius

Abbreviations

CPM Critical Path Management

DAG Directed Acyclic Graph

DP DePendency

FP Function Points

MAR MARgarine Management

MOO Multi-Objective Optimization

MOSFLA Multi-Objective Shuffled Frog-Leaping Algorithm

NSGA-II Non-dominated Sorting Genetic Algorithm II

OH Overtime Hours

OMS Overtime Management Strategies

OPP Overtime Planning Problem

Memetic Approach for Multi-Objective Overtime Planning in Software 3231

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

PC Project Cost

PMS Project Make Span

SBSE Search Based Software Engineering

SH Second Half Management

SPM Software Project Management

SPS Software Project Scheduling

WP Work Packages

References

1. Ferrucci, F.; Harman, M.; and Sarro, F. (2014). Search-based software project

management. Software Project Management in a Changing World. Chapter 15,

373-399.

2. Oladele, R.O.; and Mojeed, H.A. (2014). A shuffled frog-leaping algorithm for

optimal software project planning. African Journal of Computing and ICTs,

7(1), 147-152.

3. Ren, J. (2013). Search based software project management. Ph.D. Thesis.

University College London, London, United Kingdom.

4. Patil, N.; Sawanti, K.; Warade, P.; and Shinde, Y. (2014). Survey paper for

software project scheduling and staffing problem. International Journal of

Advanced Research in Computer and Communication Engineering, 3(1), 215-324.

5. Chang, C.; Christensen, M.; and Zhang, T. (2001). Genetic algorithms for

project management. Annals of Software Engineering, 11(1), 107 - 139.

6. Alba, E.; and Chicano, F. (2007). Software project management with GA’s.

Information Sciences, 177(11), 2380-2401.

7. Gueorguiev, S.; Harman, M.; and Antoniol, G. (2009). Software project

planning for robustness and completion time in the presence of uncertainty

using multi objective search based software engineering. Proceedings of the

11th Annual Conference on Genetic and Evolutionary Computation (GECCO).

Montral, Canada, 1673-1680.

8. Stylianou, C.; and Andreou, A.S. (2013.) A multi-objective genetic algorithm

for intelligent software project scheduling and team staffing. Intelligent

Decision Technologies, 7(1), 59-80.

9. Ferrucci, F.; Harman, M.; Ren, J.; and Sarro, F. (2013). Not going to take this

anymore: Multi-objective overtime planning for software engineering projects.

Proceedings of the International Conference on Software Engineering (ICSE).

Piscataway, New Jersey, United States of America, 462-471.

10. Barros, M.d.O.; and Araujo, L.A.O.d.J. (2016). Learning overtime dynamics

through multiobjective optimization. Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO). Denver, Colorado, United

States of America, 1061-1068.

11. Nishikitani, M.; Nakao, M.; Karita, K.; Nomura, K.; and Yano, E. (2005).

Influence of overtime work, sleep duration, and perceived job characteristics

on the physical and mental status of software engineers. Industrial Health,

43(4), 623-629.

12. Karita, K.; Nakao, M.; Nishikitani, M.; Iwata, T.; Murata, K.; and Yano, E. (2006).

Effect of overtime work and insufficient sleep on postural sway information-

technology workers. Journal of Occupational Health, 48(1), 65-68.

3232 H. A. Mojeed et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

13. Akula, B.; and Cusick, J. (2008). Impact of overtime and stress on software

quality. Proceedings of the 4th International Symposium on Management,

Engineering, and Informatics (MEI). Orlando, Florida, United States of

America, 9 pages.

14. Sarro, V.; Ferrucci, F.; Harman, M.; Mannay, A.; and Ren, J. (2017). Adaptive

multi-objective evolutionary algorithms for overtime planning in software

projects. IEEE Transactions on Software Engineering, 43(10), 898-917.

15. Deng, J.; and Wang, L. (2017). A competitive memetic algorithm for multi-

objective distributed permutation flow shop scheduling problem. Swarm and

Evolutionary Computation, 32, 121-131.

16. Poonam, G. (2009). A comparison between memetic algorithm and genetic

algorithm for the cryptanalysis of simplified data encryption standard

algorithm. International Journal of Network Security and its Applications

(IJNSA), 1(1), 34-42.

17. Nebro, A.J.; Durillo, J.J.; Machin, M.; Coello, C.A.C.; and Dorronsoro, B.

(2013). A study of the combination of variation operators in the NSGA-II

algorithm. Lecture Notes in Computer Science, 8109.

18. Jones, C. (2000). Software assessments, benchmarks, and best practices.

Boston, Massachusetts, United States of America: Addison-Wesley Longman

Publishing Co.

19. Abdel-Hamid, T.; and Madnick, S.E. (1991). Software project dynamics: An

integrated approach. Upper Saddle River, New Jersey, United States of

America: Prentice-Hall.

20. Eusuff, M.; and Lansey, K. (2003). Optimization of water distribution network

design using the shuffled frog leaping algorithm. Journal of Water Resources.

Planning and Management, 129(3), 210-225.

21. Cui, X.X. (2006). Multi-objective evolutionary algorithms and their

applications. Beijing, China: National Defence Industry Press.

22. Yinghai, L.; Jianzhong, Z.; Yongchuan, Z.; Hui, Q.; and Li, L. (2010). Novel

multiobjective shuffled frog leaping algorithm with application to reservoir

flood control operation. Journal of Water Resources Planning and

Management, 136(2), 217-226.

23. Jie, Z.; and Wei, N. (2014). Novel multi-objective optimization algorithm.

Journal of Systems Engineering and Electronics, 25(4), 697-710

24. Alejandro, H.; Miguel, A.V.; Joaquín, F.; and Nieves, P. (2015). MOSFLA-

MRPP: Multi-objective shuffled frog-leaping algorithm applied to mobile robot

path planning. Engineering Applications of Artificial Intelligence, 44, 123-136.

25. Rahimi-Vahed, A.; and Mirzaei, A.H. (2007). A hybrid multi-objective

shuffled frog-leaping algorithm for a mixed-model assembly line sequencing

problem. Computer & Industrial Engineering, 53(4), 642-666.

26. Talbi, E.G. (1999). Métaheuristiques pour l'optimisation combinatoire multi-

objectif. Etat de l'art, C.N.E.T Report (France Telecom).

27. Paquete, L.; Fonseca, C.M.; and Lopez-Ibanez, M. (2006). An optimal

algorithm for a special case of klee's measure problem in three dimensions.

Technical Report CSI-RT-I-01, CSI, Universidade do Algarve.

28. Elena, S.N. (2007). Performance measures for multi-objective optimization

algorithms. Matematică - Informatică - Fizică, 109(1), 19-28.

Memetic Approach for Multi-Objective Overtime Planning in Software 3233

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

29. Orenyi, B.A.; Basri, S.; and Jung, L.T. (2012). Object-oriented software

maintainability measurement in the past decade. Proceedings of the

International Conference on Advanced Computer Science Applications and

Technologies (ACSAT). Kuala Lumpur, Malaysia, 257-262 .

30. Bajeh, A.O. (2015). Object-oriented software design maintainability

measurement. PhD Thesis. Universiti Teknologi Petronas, Perak, Malaysia.

31. Balogun, A.O.; Bajeh, A. O.; Orie, V.A.; and Yusuf-Asaju, A.W. (2018).

Software defect prediction using ensemble learning: An ANP based

evaluation method. FUOYE Journal of Engineering and Technology

(FUOYEJET), 3(2); 50-55.

