
Journal of Engineering Science and Technology
Vol. 14, No. 6 (2019) 3294 - 3308
© School of Engineering, Taylor’s University

3294

SOFTWARE DEFECT PREDICTION: ANALYSIS OF
CLASS IMBALANCE AND PERFORMANCE STABILITY

ABDULLATEEF O. BALOGUN*,1,2,5, SHUIB BASRI1,5,
SAID J. ABDULKADIR1,6, VICTOR E. ADEYEMO3,

ABDULLAHI A. IMAM1,4,5, AMOS O. BAJEH2

1Department of Computer and Information Sciences,

Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
2Department of Computer Science, University of Ilorin, Ilorin, Nigeria

3School of Computing and IT, Taylor’s University, Subang Jaya, Selangor, Malaysia
4Department of Computer Science, Ahmadu Bello University, Zaria, Nigeria

5Software Quality and Quality Engineering (SQ2E) Research Cluster,

Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
6Centre for Research in Data Science (CERDAS), Universiti Teknologi Petronas,

32610 Seri Iskandar, Perak, Malaysia

*Corresponding Author: abdullateef_16005851@utp.edu.my; bharlow058@gmail.com

Abstract

The performance of prediction models in software defect prediction depends on the

quality of datasets used for training such models. Class imbalance is one of data

quality problems that affect prediction models. This has drawn the attention of

researchers and many approaches have been developed to address this issue. In this

study, an extensive empirical study is presented, which evaluates the performance

stability of prediction models in SDP. Ten software defect datasets from NASA and

PROMISE repositories with varying imbalance ratio (IR) values were used as the

original datasets. New datasets are generated from the original datasets using

undersampling (Random under Sampling: RUS) and oversampling (Synthetic

Minority Oversampling Technique: SMOTE) methods with different IR values.

The sampling techniques were based on the equal proportion (100%) of the

increment (SMOTE) of minority class label or decrement (RUS) of the majority

class label until each dataset is balanced. IR is the ratio of the defective instances to

non-defective instances in a dataset. Each newly generated datasets with different

IR values based on different sampling techniques were randomized before applying

prediction models. Nine standard prediction models were used on the newly

generated datasets. The performance of the prediction models was measured using

the Area Under Curve (AUC) and Co-efficient of Variation (CV) is used to

determine the performance stability. Firstly, experimental results showed that class

imbalance had a negative effect on the performance of prediction models and the

oversampling method (SMOTE) enhanced the performances of prediction models.

Secondly, Oversampling method of balancing datasets is better than using

Undersampling methods as the latter had poor performance as a result of the

random deletion of useful instances in the datasets. Finally, among the prediction

models used in this study, it appeared that Logistic Regression (LR) (RUS: 30.05;

SMOTE: 33.51), Naïve Bayes (NB) (RUS: 34.18; SMOTE: 33.05), and Random

Forest (RF) (RUS: 29.24; SMOTE: 64.25) with their respective CV values are more

stable prediction models and they work well with imbalanced datasets.

Keywords: Class imbalance, Data quality, Software defect prediction.

Software Defect Prediction: Analysis of Class Imbalance and 3295

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

1. Introduction

The goal of every software company is to produce software with little or no defects.

This is a big challenge as defects can be injected at any or every phase of a software

development cycle. This will, in turn, increase the overhead cost and time in

completing a software product with expected quality. Identifying and fixing defects

is time and resource consuming, which makes it practically impossible to remove

all defects but reducing the magnitude of defects to the lowest level is achievable

[1, 2]. Standard practices and methods such as unit testing and code inspection are

used to improve software quality and reliability.

These methods are regarded as Software Quality Assurance (SQA) activities.

They are continuous processes within the software development lifecycle (SDLC)

and periodically check the quality and reliability of the developed software.

Nonetheless, software engineers must exercise caution in the allocation of

resources during this phase. As a result of this, prioritization of these activities will

judiciously allocate limited resources to modules with defects [1, 3].

Software Defect Prediction (SDP) is an approach used for identifying defect-

prone software modules or components. It helps software engineers to optimally

allocate limited resources to defective software modules or components in the

testing or maintenance phases of SDLC [4, 5]. This will, in turn, helps to assess

software quality and also monitor software quality assurance [6, 7]. SDP models

make use of the information such as software source code complexity, developer’s

information, and development history to predict software modules or component

that may be defective [8, 9]. This information is quantified using software metrics

to determine the level of software quality and reliability.

SDP can be seen as a classification problem since it involves the training of

models with historical data to identify defect-prone modules [10, 11]. Data used for

training defect prediction models have a large influence on the performance of

prediction models. These data are highly complex and skewed, which can be

attributed to class imbalance problem [10, 12, 13]. An imbalance software defects

data has an equal representation of its classes with the majority class as the non-

defective instances while the minority class as the defective instances [14, 15].

Concerns have been raised on this issue from prior works that models trained with

imbalanced data tend to produce inaccurate results as prediction models are usually

biased by identifying mostly the majority class at the expense of the minority class

[1, 3, 10, 12, 16, 17].

Many solutions have been developed to solve the class imbalance problem such

as sampling, cost-sensitive and ensemble methods [15, 18, 19]. However, these

solutions are not equally effective as most empirical studies do not take into

consideration the impact of class imbalance on prediction models and which,

imbalance method works well or help to learn capabilities in software defect

prediction. Selecting models, which are stable and efficient with class imbalance

will give a better result.

This study presents a method to empirically validate and evaluate the

prediction performance stability of prediction models using sampling methods in

addressing class imbalance problem. Undersampling and oversampling methods

are applied to original imbalance software defect datasets to generate new

datasets with varying imbalance ratio (IR). IR is the ratio of defective instances

3296 A. O. Balogun et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

to non-defective instances in a given dataset. Each newly generated dataset is

further randomized for even distribution of class labels.

Thereafter, nine standard prediction models with different characteristics

were used to classify the newly generated datasets. The Area Under Curve (AUC)

was used to evaluate the predictive performance of each prediction models on the

original and newly generated datasets. In addition, Co-efficient of Variation (CV)

was used to measure the predictive performance stability of prediction models.

This is to determine how prediction models behave with datasets with varying IR

as a result of the class imbalance problem.

In summary, the main contributions of this study are as follows:

 A new method to empirically evaluate the predictive performance stability of

prediction models using both undersampling and oversampling methods in

addressing class imbalance problem.

 Evaluation of the impact of sampling (undersampling and oversampling)

approaches as a re-balancing method on the predictive performance of

prediction models in SDP.

The rest of the paper is structured as follows. Section 2 presents a review of

related work in SDP and class imbalance problem. Section 3 presents the

methodology of the study, and Section 4 presents a comprehensive experimental

evaluation and discussion of results. Finally, Section 5 concludes the paper with

some future research directions.

2. Literature Review

From existing studies, it can be seen that class imbalance greatly affects the

performance of prediction models. Inaccurate predictions and interpretations are

generated when prediction models are trained with imbalanced data sets. Many

researchers have investigated and proposed class re-balancing techniques such as

data sampling, cost-sensitive analysis and ensemble methods to deal with the class

imbalance problem.

For example, Wang and Yao [19], carried out an empirical study on the

performance of data sampling, cost-sensitive and ensemble method approaches for

resolving the class imbalance problem. They indicated that ensemble methods

performed best when compared to others.

Rodriguez et al. [20] in their study also gave a similar conclusion that ensemble

methods deal with class imbalance better than data sampling and cost-sensitive

approaches in software defect prediction. It is also to be noted that ensemble

methods were not originally proposed to address class imbalance but due to their

methodology of breaking a subset into small chunks for learning and their after

aggregating their solution makes them work better on imbalanced datasets [21].

Recently, Yu et al. [22] carried out an empirical study on the stability of

prediction models using undersampling approach. They constructed new datasets

from the imbalanced data based on Imbalance Ratio (IR). From their experimental

results, Random Forest (RF) and Naïve Bayes (NB) performance were stable with

class imbalance, unlike the C4.5 decision tree, which was reported to be highly

unstable with imbalance. However, they only considered the undersampling

method, which is not the only sampling approach for balancing datasets.

Software Defect Prediction: Analysis of Class Imbalance and 3297

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Grbac et al. [23] also investigated the stability of prediction models with respect

to different imbalance data level. They considered the stability of prediction models

with feature selection techniques and their results indicated that data imbalance

with high level makes feature selection unstable.

Wang et al. [24] looked into the stability of feature selection techniques and they

concluded by highlighting some factors such as feature subset size, perturbation level

and data imbalance that makes feature selection methods unstable.

Huda, et al. [25] proposed an ensemble method based on predictions models

from multiple oversampling techniques. They aim to address the biases of using a

single oversampling method in addressing the class imbalance problem.

Bennin, et al. [26] in their study proposed a new over-sampling method

MAHAKIL to address the class imbalance problem. MAHAKIL was based on the

biological theory of inheritance and it systematically generates new instance by

finding the average of the Mahalanobis distance between two instances. The new

instance will be based on the characteristics of its parent instances.

Goel, et al. [27] carried out an empirical study to evaluate the impact of SMOTE

on the performance of prediction models in cross-project defect prediction (CPDP).

Song, et al. [28] conducted a comprehensive investigation of the class imbalance

problem in SDP.

Their study covered sixteen different types of imbalance methods with seven

prediction models over twenty-seven defect datasets. From their results, they

concluded that the occurrence of class imbalance has a negative effect on prediction

models. In addition, they suggested that the right selection of imbalance method

and prediction model can give good results.

Indeed, some studies have looked into the issue of prediction models

performance stability with class imbalance. However, it is still an area that can still

be explored more to guide software engineers, researchers, and further empirical

studies in the selection of prediction models in SDP.

This study proposes to empirically evaluate the performance stability of

prediction models considering both undersampling and oversampling methods

in addressing the class imbalance problem and to evaluate the impact of these

re-balancing methods on the performance of the prediction models in software

defects prediction.

3. Methodology

In this paper, we adopted and extended the approach made by Yu et al. [22] as it a

recent study, which addressed the class imbalance in SDP.

Suppose 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛 } with 𝑛 number of instances in dataset 𝑋 and
{𝑎1, 𝑎2} represents the number of defective and non-defective instances in dataset

 𝑋 respectively.

The Imbalance Ratio (IR) of 𝑋 is given as:

𝐼𝑅 =
𝑎2

𝑎1
⁄ (1)

where 𝑎2 > 𝑎1 and 𝐼𝑅 > 1

3298 A. O. Balogun et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Based on Fig. 1, with the original imbalance dataset X with a finite number of

instances, new datasets are generated from original imbalanced by using data

sampling methods. Random Under-Sampling (RUS) and Synthetic Minority

Oversampling Technique (SMOTE) are used for the sampling technique

respectively. The new dataset generation is based on the value of IR.

Unlike in the work of Yu et al. [22], this study considered both the

undersampling and oversampling method in the generation of new datasets. For the

SMOTE technique, an increment of 100% is used in the generation of new datasets

and each generated dataset is randomized to avoid over-fitting.

While RUS is used for the undersampling technique in the generation of new

datasets with respect to the IR value. The sampling techniques were based on the

equal proportion (100%) of the increment (SMOTE) of minority class label or

decrement (RUS) of the majority class label until each dataset is balanced.

Figure 2 gives a detailed algorithmic description of the experimental process

used in this study.

Fig. 1. Experimental framework.

Software Defect Prediction: Analysis of Class Imbalance and 3299

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Fig. 2. Pseudocode for experimental process.

3.1. Prediction models

For the prediction models, nine models were selected, which are widely used for

prediction processes in SDP. As shown in Table 1, four more prediction models

(RIPPER, Bayesian Network, Random Tree, and Logistic Model Tree) were

added to that of Yu et al. [22] since we are considering mostly models that have

been used in empirical studies. In addition, these prediction models are picked

based on different underlining classification characteristics with the aim of

introducing heterogeneity.

Table 1. Prediction models.

Name References

Decision Tree C4.5 [29-32]

Random Forest (RF) [29, 30, 33, 34]

Random Tree (RT) [35-37]

RIPPER [36, 38]

Bayesian Network (BN) [30, 39]

Naïve Bayes (NB) [29-31, 33, 34]

K Nearest Neighbour (kNN) [33, 40, 41]

Logistic Model Tree (LMT) [36, 42]

Logistics Regression (LR) [30, 31, 40]

3300 A. O. Balogun et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

3.2. Datasets

For empirical evaluation, 10 software defect datasets were selected from NASA

and PROMISE repositories to conduct the experiment. These datasets have

different levels of imbalance ratio, which makes them suitable for our study and

they have been widely used by researchers for the same process. We used the

cleaned version of NASA and Promise dataset provided by [35, 36, 43].

Detailed information on the selected datasets is in Table 2, which consists of

the 10 datasets with 5 columns describing the name of the dataset, number of

instances, number of defective instances, number of the non-defective instance and

their respective imbalance ratio (the of defective instances to non-defective

instances in the dataset).

Table 2. Software defect datasets.

Dataset
Number of

samples

Number of

defective

samples

Number of

non-defective

samples

Imbalance

ratio (IR)

CM1 327 42 285 6

JM1 7720 1612 6108 3

KC3 194 36 158 4

MW1 250 25 225 8

PC1 679 55 624 11

PC3 1053 130 923 7

PC4 1270 176 1094 6

ANT 1.5 292 32 260 8

JEDIT 4.2 367 48 319 6

TOMCAT 852 77 775 10

3.3. Performance metrics

The selection of evaluation metric is very important since it has already been

proven that using some conventional measures such as accuracy rate often leads to

an inaccurate interpretation of results due to the characteristic of the dataset

(imbalance) [44, 45].

Based on this, Area Under Curve (AUC) is selected as our performance metric

due to its wide usage [29-31, 33, 39] and proven to be more accurate and reliable

[29]. AUC represents the Receiver Operating Characteristics (ROC). ROC is a

measure of True Positive Rate and False Positive Rate [46].

For determining the performance stability of prediction models, Co-efficient of

Variation (CV) was applied to the results of the prediction models. CV, which is

the percentage ratio of standard deviation (SD) and average (AVE) is used to

remove the effect of average difference on the comparison stability [16, 22]. The

formula for CV is given as thus:

𝐶. 𝑉 = 𝑆𝐷
𝐴𝑉𝐸⁄ × 100% (2)

Prediction models with high CV values are regarded to be unstable.

Software Defect Prediction: Analysis of Class Imbalance and 3301

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

4. Results and Discussion

The experiments were carried out according to the experimental framework (Fig.

1) and experimental process (Fig. 2). A dataset is selected from Table 2 and its IR

value is derived by finding the ratio of defective to non-defective instances in the

dataset. New datasets are generated from the original dataset by applying the RUS

and SMOTE algorithms with different IR values.

Each newly generated dataset is randomized before each prediction model

from Table 1 is applied in to avoid overfitting in case of datasets generated by

SMOTE technique.

All experiments are carried out based on 10-fold cross-validation, which is a

standard approach [22, 47, 48]. In this study, we took into consideration the

distribution difference between the original and the newly generated datasets.

Each experiment is repeated 10 times to ensure reliable results and the average

AUC value is recorded for each IR value. According to Yu et al. [22], Mabayoje et

al. [48] and Petric et al. [49], WEKA environment was used to conduct all

experiments. Default parameters of prediction models as specified in WEKA were

used in this study.

From the experimental results, we compared the performances of the prediction

models on the normal and balanced datasets. Prediction models used on SMOTE

generated datasets gave the best results when compared with the Normal and the

RUS generated datasets.

As presented in Fig. 3, the RUS method depleted the performance of the

prediction models due to the random removal of instances in the generation of

its datasets.

That is, good instances have been removed by RUS in the line of balancing the

datasets and hence, the poor performance of predictive models. This further

strengthens the position that using the oversampling method for resolving class

imbalance is better than undersampling method.

Fig. 3. Comparison of average AUC of prediction

models on normal and balanced datasets (SMOTE and RUS).

3302 A. O. Balogun et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

From Figs. 4 and 5, Random Forest (RF) performed best in both cases (RUS

and SMOTE generated datasets) compared with other prediction models. Bayesian

Network (BN), Logistic Model Tree (LMT) and k Nearest Neighbour (kNN)

performed well on both cases with no much difference while RandomTree

algorithm performed worst averagely in both cases. As presented in Figs. 5 and 6,

the respective performance of prediction models on balanced datasets was

analyzed. Most of the prediction models had a good result with the SMOTE

balanced datasets with Random Forest ranking best and Naïve Bayes coming last

even with an average AUC of 82.84%.

In Figs. 6 and 7, the performance of the prediction models on RUS generated

datasets is not as high as the SMOTE generated datasets. This is as a result of

inherent information loss with random undersampling. Logistic Model Tree (LMT)

and Random Forest (RF) performed well while Random Tree performed poorly.

Fig. 4. The average performance of prediction models

on SMOTE generated datasets based on different IR.

Fig. 5. Average performance of prediction models

on RUS generated datasets based on different IR.

Software Defect Prediction: Analysis of Class Imbalance and 3303

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Fig. 6. Average performance of prediction

models on balanced SMOTE generated datasets.

Fig. 7. Average performance of prediction

models on balanced RUS generated datasets.

Tables 3 and 4 shows the CV values of prediction models on the generated

datasets. Evidently, the CV values of all the prediction models are of high value

and this is due to our consideration of distribution differences between the original

and newly generated datasets.

Yu et al. [22] in their study also mentioned that considering distribution

differences may affect the CV value of the prediction models. C4.5 had the highest

CV values in both (RUS and SMOTE generated) sets of generated datasets, which

makes it highly unstable for the class imbalance problem. LR (33.51) and NB

(34.18) had the lowest CV values in SMOTE datasets while LR (30.05) and RF

(29.24) had the lowest CV values in RUS generated datasets.

3304 A. O. Balogun et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Table 3. CV value of prediction models on SMOTE generated datasets.

Datasets NB C4.5 LR RF KNN RP BN RT LMT

CM1 6.03 13.26 5.29 9.87 10.62 14.55 7.70 13.83 8.09

JM1 0.49 11.69 0.79 11.39 7.81 15.00 10.54 11.06 9.43

KC3 6.88 13.16 8.50 9.23 7.38 11.37 13.72 7.60 6.62

MW1 3.64 17.21 6.71 7.84 8.63 11.19 6.96 9.72 3.66

PC1 3.36 7.63 2.83 3.58 4.52 10.67 5.44 8.62 4.28

PC3 1.28 12.09 1.46 4.66 4.65 15.01 5.48 10.37 4.96

PC4 2.68 5.58 1.00 1.73 3.19 7.45 5.26 7.64 1.92

ANT 1.5 4.50 10.84 2.47 6.98 5.98 8.25 4.52 11.08 3.94

JEDIT 4.2 2.03 8.67 2.07 4.53 5.81 11.44 3.62 7.12 3.91

TOMCAT 3.30 7.73 2.40 4.44 4.33 12.53 5.10 9.82 4.93

TOTAL 34.18 107.87 33.51 64.25 62.93 117.46 68.35 96.86 51.75

Table 4. CV value of prediction models on RUS generated datasets.

Datasets NB C4.5 LR RF KNN RP BN RT LMT

CM1 6.10 8.70 3.09 3.56 6.36 12.91 4.01 6.47 1.50

JM1 2.53 0.92 1.52 0.63 1.46 5.86 1.90 1.07 1.55

KC3 3.07 12.51 3.59 5.26 5.29 5.58 15.55 3.92 5.45

MW1 1.28 16.21 5.10 3.15 5.26 5.06 2.17 5.34 2.56

PC1 4.23 5.44 2.97 2.72 3.53 6.56 3.18 4.07 1.75

PC3 2.75 4.46 1.93 1.00 5.07 12.28 1.22 5.96 10.83

PC4 0.59 4.68 1.17 0.41 1.88 6.55 0.48 5.00 1.62

ANT 1.5 3.21 16.56 4.16 4.72 4.83 7.90 2.20 5.31 3.74

JEDIT 4.2 2.25 12.54 1.33 3.60 6.40 11.38 1.45 8.30 3.42

TOMCAT 7.05 15.03 5.20 4.20 9.73 13.13 3.37 10.41 5.29

TOTAL 33.05 97.06 30.05 29.24 49.82 87.23 35.52 55.84 37.71

5. Conclusion

Data quality problem has always undermined prediction processes and software

defect prediction is no exception. Datasets in SDP are highly skewed and this is

a form of class imbalance. This paper empirically evaluates the performance

stability of nine widely used prediction models in SDP based on undersampling

(RUS) and oversampling (SMOTE) approaches. The results reveal that SDP

datasets suffer class imbalance problem and it showed a negative impact on

prediction models in SDP. Oversampling method (SMOTE) should be used in

balancing such datasets. LR, NB, and RF are good prediction models and should

be used for empirical studies as they are more stable in the presence of class

imbalance than other models used in this study. This study only considers class

imbalance as a data quality problem, other kinds of data quality problem can be

looked into in further studies.

Nomenclatures

a1 Defective instances

a2 Non-defective instances

M Number of iterations

N

Number of folds

X Defect datasets

Software Defect Prediction: Analysis of Class Imbalance and 3305

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

Abbreviations

AUC Area Under Curve

BN Bayesian Network

CV Coefficient of Variation

IR Imbalance Ratio

NASA National Aeronautics and Space Administration

ROC Receiver Operation Characteristics

RP Ripper

RT Random Forest

RUS Random Under Sampling

SDLC Software Development Life Cycle

SDP Software Defect Prediction

SMOTE Synthetic Minority Over-sampling TEchnique

SQA Software Quality Assurance

WEKA Waikato Environment for Knowledge Analysis

References

1. Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; and Counsell, S. (2012). A

systematic literature review on fault prediction performance in software

engineering. IEEE Transactions on Software Engineering, 38(6), 1276-1304.

2. Akintola, A.G.; Balogun, A.O.; Lafenwa-Balogun, F.B.; and Mojeed, H.A.

(2018). Comparative analysis of selected heterogeneous classifiers for

software defects prediction using filter-based feature selection methods.

FUOYE Journal of Engineering and Technology, 3(1), 133-137.

3. Menzies, T.; Greenwald, J.; and Frank, A. (2007). Data mining static code

attributes to learn defect predictors. IEEE Transactions on Software

Engineering, 33(1), 2-13.

4. Ali, M.M.; Huda, S.; Abawajy, J.; Alyahya, S.; Al-Dossari, H.; and Yearwood,

J. (2017). A parallel framework for software defect detection and metric

selection on cloud computing. Cluster Computing, 20(3), 2267-2281.

5. Yadav, H.B.; and Yadav, D.K. (2015). A fuzzy logic based approach for phase-

wise software defects prediction using software metrics. Information and

Software Technology, 63, 44-57.

6. Huda, S.; Alyahya, S.; Ali, M. M.; Ahmad, S.; Abawajy, J.; Al-Dossari, H.;

and Yearwood, J. (2018). A framework for software defect prediction and

metric selection. IEEE Access, 6, 2844-2858.

7. Li, Z.; Jing, X.-Y.; and Zhu, X. (2018). Progress on approaches to software

defect prediction. IET Software, 12(3), 161-175.

8. Jing, X.-Y.; Wu, F.; Dong, X.; and Xu, B. (2017). An improved SDA based

defect prediction framework for both within-project and cross-project

class-imbalance problems. IEEE Transactions on Software Engineering,

43(4), 321-339.

9. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; and Matsumoto, K. (2017).

An empirical comparison of model validation techniques for defect prediction

models. IEEE Transactions on Software Engineering, 43(1), 1-18.

10. Sun, Z.; Song, Q.; Zhu, X.; Sun, H.; Xu, B.; and Zhou, Y. (2015). A novel

ensemble method for classifying imbalanced data. Pattern Recognition, 48(5),

1623-1637.

3306 A. O. Balogun et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

11. Oluwagbemiga, B.A.; Shuib, B.; Abdulkadir, S.J.; and Sobri, A. (2019). A

hybrid multi-filter wrapper feature selection method for software defect

predictors. International Journal of Supply Chain Management, 8(2), 916-922.

12. Peng, L.; Zhang, H.; Yang, B.; and Chen, Y. (2014). A new approach for

imbalanced data classification based on data gravitation. Information Sciences,

288, 347-373.

13. Al-Tashi, Q.; Rais, H.; and Jadid, S. (2018). Feature selection method based

on grey wolf optimization for coronary artery disease classification.

Proceedings of the International Conference of Reliable Information and

Communication Technology (IRICT). Kuala Lumpur, Malaysia, 257-266.

14. Forkman, J. (2009). Estimator and tests for common coefficients of variation

in normal distributions. Communications in Statistics-Theory and Methods,

38(2), 233-251.

15. López, V.; Fernández, A.; García, S.; Palade, V.; and Herrera, F. (2013).

An insight into classification with imbalanced data: Empirical results and

current trends on using data intrinsic characteristics. Information Sciences,

250, 113-141.

16. Japkowicz, N.; and Stephen, S. (2002). The class imbalance problem: A

systematic study. Intelligent Data Analysis, 6(5), 429-449.

17. Al-Tashi, Q.; Kadir, S.J.A.; Rais, H.M.; Mirjalili, S.; and Alhussian, H. (2019).

Binary optimization using hybrid grey wolf optimization for feature selection.

IEEE Access, 7, 39496-39508.

18. Arar, Ö.F.; and Ayan, K. (2015). Software defect prediction using cost-

sensitive neural network. Applied Soft Computing, 33, 263-277.

19. Wang, S.; and Yao, X. (2013). Using class imbalance learning for software

defect prediction. IEEE Transactions on Reliability, 62(2), 434-443.

20. Rodriguez, D.; Herraiz, I.; Harrison, R.; Dolado, J.; and Riquelme, J.C. (2014).

Preliminary comparison of techniques for dealing with imbalance in software

defect prediction. Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering (EASE). London,

England, 10 pages.

21. Laradji, I.H.; Alshayeb, M.; and Ghouti, L. (2015). Software defect prediction

using ensemble learning on selected features. Information and Software

Technology, 58, 388-402.

22. Yu, Q.; Jiang, S.; and Zhang, Y. (2017). The performance stability of defect

prediction models with class imbalance: An empirical study. IEICE

Transactions on Information and Systems, 100(2), 265-272.

23. Grbac, T.G.; Mausa, G.; and Basic, B.D. (2013). Stability of Software defect

prediction in relation to levels of data imbalance. Proceedings of the Second

Workshop on Software Quality Analysis, Monitoring, Improvement and

Applications (SQAMIA). Novi Sad, Serbia, 10 pages.

24. Wang, H.; Khoshgoftaar, T.M.; and Napolitano, A. (2012). An empirical

study on the stability of feature selection for imbalanced software

engineering data. Proceedings of the 11th International Conference on

Machine Learning and Applications (ICMLA). Boca Raton, Florida, United

States of America, 317-323.

Software Defect Prediction: Analysis of Class Imbalance and 3307

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

25. Huda, S.; Liu, K.; Abdelrazek, M.; Ibrahim, A.; Alyahya, S.; Al-Dossari, H.;

and Ahmad, S. (2018). An ensemble oversampling model for class imbalance

problem in software defect prediction. IEEE Access, 6, 24184-24195.

26. Bennin, K.E.; Keung, J.; Phannachitta, P.; Monden, A.; and Mensah, S. (2018).

Mahakil: Diversity based oversampling approach to alleviate the class

imbalance issue in software defect prediction. IEEE Transactions on Software

Engineering, 44(6), 534-550.

27. Goel, L.; Sharma, M.; Khatri, S.K.; and Damodaran, D. (2018).

Implementation of data sampling in class imbalance learning for cross project

defect prediction: An empirical study. Proceedings of the Fifth International

Symposium on Innovation in Information and Communication Technology

(ISIICT). Amman, Jordan, 1-6.

28. Song, Q.; Guo, Y.; and Shepperd, M. (2018). A comprehensive investigation

of the role of imbalanced learning for software defect prediction. IEEE

Transactions on Software Engineering, 45(12), 1253-1269.

29. Catal, C.; and Diri, B. (2009). Investigating the effect of dataset size, metrics

sets, and feature selection techniques on software fault prediction problem.

Information Sciences-Informatics and Computer Science, Intelligent Systems,

Applications, 179(8), 1040-1058.

30. He, P.; Li, B.; Liu, X.; Chen, J.; and Ma, Y. (2015). An empirical study on

software defect prediction with a simplified metric set. Information and

Software Technology, 59, 170-190.

31. He, Z.; Shu, F.; Yang, Y.; Li, M.; and Wang, Q. (2012). An investigation on

the feasibility of cross-project defect prediction. Automated Software

Engineering, 19(2), 167-199.

32. Mabayoje, M.A.; Balogun, A.O.; Bajeh, A.O.; and Musa, B.A. (2018).

Software defect prediction: Effect of feature selection and ensemble

methods. FUW Trends in Science & Technology Journal, 3(2), 518-522.

33. Gao, K.; Khoshgoftaar, T.M.; Wang, H.; and Seliya, N. (2011). Choosing

software metrics for defect prediction: an investigation on feature selection

techniques. Software-Practice and Experience, 41(5), 579-606.

34. Khoshgoftaar, T.M.; Gao, K.; Napolitano, A.; and Wald, R. (2014). A

comparative study of iterative and non-iterative feature selection

techniques for software defect prediction. Information Systems Frontiers,

16(5), 801-822.

35. Kalai Magal, R.; Jacob, S.G. (2015). Improved random forest algorithm for

software defect prediction through data mining techniques. International

Journal of Computer Applications, 117(23), 18-22.

36. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; and Matsumoto, K. (2018).

The impact of automated parameter optimization on defect prediction models.

IEEE Transactions on Software Engineering, 45(7), 683-711.

37. Jimoh, R.G.; Balogun, A.O.; Bajeh, A.O.; and Ajayi, S. (2018). A promethee

based evaluation of software defect predictors. Journal of Computer Science

and its Application, 25(1), 106-119.

38. Cohen, W.W. (1995). Fast effective rule induction. Proceedings of the Twelfth

International Conference on International Conference on Machine Learning,

Tahoe City, California, United States of America, 115-123.

3308 A. O. Balogun et al.

Journal of Engineering Science and Technology December 2019, Vol. 14(6)

39. Okutan, A.; and Yıldız, O.T. (2014). Software defect prediction using

Bayesian networks. Empirical Software Engineering, 19(1), 154-181.

40. Li, L.; and Leung, H. (2011). Mining static code metrics for a robust prediction

of software defect-proneness. Proceedings of the International Symposium on

Empirical Software Engineering and Measurement. Banff, Alberta, Canada,

207-214.

41. Balogun, A.O.; Bajeh, A.O.; Orie, V.A.; and Yusuf-Asaju, W.A. (2018).

Software defect prediction using ensemble learning: An ANP based

evaluation method. FUOYE Journal of Engineering and Technology, 3(2),

50-55.

42. Ratzinger, J.; Sigmund, T.; and Gall, H.C. (2008). On the relation of

refactorings and software defect prediction. Proceedings of the

International Working Conference on Mining Software Repositories.

Leipzig, Germany, 35-38.

43. Kakkar, M.; and Jain, S. (2016). Feature selection in software defect

prediction: A comparative study. Proceedings of the 6th International

Conference on Cloud System and Big Data Engineering (Confluence). Noida,

India, 658-663.

44. He, H.; and Garcia, E.A. (2008). Learning from imbalanced data. IEEE

Transactions on Knowledge and Data Engineering, 21(9), 1263-1284.

45. Shepperd, M.; Song, Q.; Sun, Z.; and Mair, C. (2013). Data quality: Some

comments on the NASA software defect datasets. IEEE Transactions on

Software Engineering, 39(9), 1208-1215.

46. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition

Letters, 27(8), 861-874.

47. Abdulkadir, S.J.; and Yong, S.-P. (2015). Scaled UKF–NARX hybrid model

for multi-step-ahead forecasting of chaotic time series data. Soft Computing,

19(12), 3479-3496.

48. Mabayoje, M.A.; Balogun, A.O.; Bello, M.S.; Atoyebi, J.O.; Mojeed, H.A.;

and Ekundayo, A. (2019). Wrapper feature selection based heterogeneous

classifiers for software defect prediction. Adeleke University Journal of

Engineering and Technology, 2(1), 1-11.

49. Petrić, J.; Bowes, D.; Hall, T.; Christianson, B.; and Baddoo, N. (2016).

Building an ensemble for software defect prediction based on diversity

selection. Proceedings of the 10th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement. Ciudad Real,

Spain, 1-10.

