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Abstract 

The performance of prediction models in software defect prediction depends on the 

quality of datasets used for training such models. Class imbalance is one of data 

quality problems that affect prediction models. This has drawn the attention of 

researchers and many approaches have been developed to address this issue. In this 

study, an extensive empirical study is presented, which evaluates the performance 

stability of prediction models in SDP. Ten software defect datasets from NASA and 

PROMISE repositories with varying imbalance ratio (IR) values were used as the 

original datasets. New datasets are generated from the original datasets using 

undersampling (Random under Sampling: RUS) and oversampling (Synthetic 

Minority Oversampling Technique: SMOTE) methods with different IR values. 

The sampling techniques were based on the equal proportion (100%) of the 

increment (SMOTE) of minority class label or decrement (RUS) of the majority 

class label until each dataset is balanced. IR is the ratio of the defective instances to 

non-defective instances in a dataset. Each newly generated datasets with different 

IR values based on different sampling techniques were randomized before applying 

prediction models. Nine standard prediction models were used on the newly 

generated datasets. The performance of the prediction models was measured using 

the Area Under Curve (AUC) and Co-efficient of Variation (CV) is used to 

determine the performance stability. Firstly, experimental results showed that class 

imbalance had a negative effect on the performance of prediction models and the 

oversampling method (SMOTE) enhanced the performances of prediction models. 

Secondly, Oversampling method of balancing datasets is better than using 

Undersampling methods as the latter had poor performance as a result of the 

random deletion of useful instances in the datasets. Finally, among the prediction 

models used in this study, it appeared that Logistic Regression (LR) (RUS: 30.05; 

SMOTE: 33.51), Naïve Bayes (NB) (RUS: 34.18; SMOTE: 33.05), and Random 

Forest (RF) (RUS: 29.24; SMOTE: 64.25) with their respective CV values are more 

stable prediction models and they work well with imbalanced datasets. 

Keywords: Class imbalance, Data quality, Software defect prediction. 
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1.  Introduction 

The goal of every software company is to produce software with little or no defects. 

This is a big challenge as defects can be injected at any or every phase of a software 

development cycle. This will, in turn, increase the overhead cost and time in 

completing a software product with expected quality. Identifying and fixing defects 

is time and resource consuming, which makes it practically impossible to remove 

all defects but reducing the magnitude of defects to the lowest level is achievable 

[1, 2]. Standard practices and methods such as unit testing and code inspection are 

used to improve software quality and reliability.  

These methods are regarded as Software Quality Assurance (SQA) activities. 

They are continuous processes within the software development lifecycle (SDLC) 

and periodically check the quality and reliability of the developed software. 

Nonetheless, software engineers must exercise caution in the allocation of 

resources during this phase. As a result of this, prioritization of these activities will 

judiciously allocate limited resources to modules with defects [1, 3]. 

Software Defect Prediction (SDP) is an approach used for identifying defect-

prone software modules or components. It helps software engineers to optimally 

allocate limited resources to defective software modules or components in the 

testing or maintenance phases of SDLC [4, 5]. This will, in turn, helps to assess 

software quality and also monitor software quality assurance [6, 7]. SDP models 

make use of the information such as software source code complexity, developer’s 

information, and development history to predict software modules or component 

that may be defective [8, 9]. This information is quantified using software metrics 

to determine the level of software quality and reliability.  

SDP can be seen as a classification problem since it involves the training of 

models with historical data to identify defect-prone modules [10, 11]. Data used for 

training defect prediction models have a large influence on the performance of 

prediction models. These data are highly complex and skewed, which can be 

attributed to class imbalance problem [10, 12, 13]. An imbalance software defects 

data has an equal representation of its classes with the majority class as the non-

defective instances while the minority class as the defective instances [14, 15]. 

Concerns have been raised on this issue from prior works that models trained with 

imbalanced data tend to produce inaccurate results as prediction models are usually 

biased by identifying mostly the majority class at the expense of the minority class 

[1, 3, 10, 12, 16, 17].  

Many solutions have been developed to solve the class imbalance problem such 

as sampling, cost-sensitive and ensemble methods [15, 18, 19]. However, these 

solutions are not equally effective as most empirical studies do not take into 

consideration the impact of class imbalance on prediction models and which, 

imbalance method works well or help to learn capabilities in software defect 

prediction. Selecting models, which are stable and efficient with class imbalance 

will give a better result. 

This study presents a method to empirically validate and evaluate the 

prediction performance stability of prediction models using sampling methods in 

addressing class imbalance problem. Undersampling and oversampling methods 

are applied to original imbalance software defect datasets to generate new 

datasets with varying imbalance ratio (IR). IR is the ratio of defective instances 
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to non-defective instances in a given dataset. Each newly generated dataset is 

further randomized for even distribution of class labels.  

Thereafter, nine standard prediction models with different characteristics 

were used to classify the newly generated datasets. The Area Under Curve (AUC) 

was used to evaluate the predictive performance of each prediction models on the 

original and newly generated datasets. In addition, Co-efficient of Variation (CV) 

was used to measure the predictive performance stability of prediction models. 

This is to determine how prediction models behave with datasets with varying IR 

as a result of the class imbalance problem.  

In summary, the main contributions of this study are as follows: 

 A new method to empirically evaluate the predictive performance stability of 

prediction models using both undersampling and oversampling methods in 

addressing class imbalance problem. 

 Evaluation of the impact of sampling (undersampling and oversampling) 

approaches as a re-balancing method on the predictive performance of 

prediction models in SDP. 

The rest of the paper is structured as follows. Section 2 presents a review of 

related work in SDP and class imbalance problem. Section 3 presents the 

methodology of the study, and Section 4 presents a comprehensive experimental 

evaluation and discussion of results. Finally, Section 5 concludes the paper with 

some future research directions. 

2.  Literature Review 

From existing studies, it can be seen that class imbalance greatly affects the 

performance of prediction models. Inaccurate predictions and interpretations are 

generated when prediction models are trained with imbalanced data sets. Many 

researchers have investigated and proposed class re-balancing techniques such as 

data sampling, cost-sensitive analysis and ensemble methods to deal with the class 

imbalance problem.  

For example, Wang and Yao [19], carried out an empirical study on the 

performance of data sampling, cost-sensitive and ensemble method approaches for 

resolving the class imbalance problem. They indicated that ensemble methods 

performed best when compared to others.  

Rodriguez et al. [20] in their study also gave a similar conclusion that ensemble 

methods deal with class imbalance better than data sampling and cost-sensitive 

approaches in software defect prediction. It is also to be noted that ensemble 

methods were not originally proposed to address class imbalance but due to their 

methodology of breaking a subset into small chunks for learning and their after 

aggregating their solution makes them work better on imbalanced datasets [21].  

Recently, Yu et al. [22] carried out an empirical study on the stability of 

prediction models using undersampling approach. They constructed new datasets 

from the imbalanced data based on Imbalance Ratio (IR). From their experimental 

results, Random Forest (RF) and Naïve Bayes (NB) performance were stable with 

class imbalance, unlike the C4.5 decision tree, which was reported to be highly 

unstable with imbalance. However, they only considered the undersampling 

method, which is not the only sampling approach for balancing datasets. 
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Grbac et al. [23] also investigated the stability of prediction models with respect 

to different imbalance data level. They considered the stability of prediction models 

with feature selection techniques and their results indicated that data imbalance 

with high level makes feature selection unstable.  

Wang et al. [24] looked into the stability of feature selection techniques and they 

concluded by highlighting some factors such as feature subset size, perturbation level 

and data imbalance that makes feature selection methods unstable. 

Huda, et al. [25] proposed an ensemble method based on predictions models 

from multiple oversampling techniques. They aim to address the biases of using a 

single oversampling method in addressing the class imbalance problem.  

Bennin, et al. [26] in their study proposed a new over-sampling method 

MAHAKIL to address the class imbalance problem. MAHAKIL was based on the 

biological theory of inheritance and it systematically generates new instance by 

finding the average of the Mahalanobis distance between two instances. The new 

instance will be based on the characteristics of its parent instances. 

Goel, et al. [27] carried out an empirical study to evaluate the impact of SMOTE 

on the performance of prediction models in cross-project defect prediction (CPDP). 

Song, et al. [28] conducted a comprehensive investigation of the class imbalance 

problem in SDP.  

Their study covered sixteen different types of imbalance methods with seven 

prediction models over twenty-seven defect datasets. From their results, they 

concluded that the occurrence of class imbalance has a negative effect on prediction 

models. In addition, they suggested that the right selection of imbalance method 

and prediction model can give good results. 

Indeed, some studies have looked into the issue of prediction models 

performance stability with class imbalance. However, it is still an area that can still 

be explored more to guide software engineers, researchers, and further empirical 

studies in the selection of prediction models in SDP.  

This study proposes to empirically evaluate the performance stability of 

prediction models considering both undersampling and oversampling methods 

in addressing the class imbalance problem and to evaluate the impact of these 

re-balancing methods on the performance of the prediction models in software 

defects prediction. 

3.  Methodology 

In this paper, we adopted and extended the approach made by Yu et al. [22] as it a 

recent study, which addressed the class imbalance in SDP. 

Suppose 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛 }  with 𝑛  number of instances in dataset 𝑋  and 
{𝑎1, 𝑎2} represents the number of defective and non-defective instances in dataset 

 𝑋 respectively. 

The Imbalance Ratio (IR) of 𝑋 is given as:   

𝐼𝑅 =  
𝑎2

𝑎1
⁄                   (1) 

where  𝑎2  >  𝑎1 and 𝐼𝑅 > 1  
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Based on Fig. 1, with the original imbalance dataset X with a finite number of 

instances, new datasets are generated from original imbalanced by using data 

sampling methods. Random Under-Sampling (RUS) and Synthetic Minority 

Oversampling Technique (SMOTE) are used for the sampling technique 

respectively. The new dataset generation is based on the value of IR.  

Unlike in the work of Yu et al. [22], this study considered both the 

undersampling and oversampling method in the generation of new datasets. For the 

SMOTE technique, an increment of 100% is used in the generation of new datasets 

and each generated dataset is randomized to avoid over-fitting.  

While RUS is used for the undersampling technique in the generation of new 

datasets with respect to the IR value. The sampling techniques were based on the 

equal proportion (100%) of the increment (SMOTE) of minority class label or 

decrement (RUS) of the majority class label until each dataset is balanced.  

Figure 2 gives a detailed algorithmic description of the experimental process 

used in this study. 

 

Fig. 1. Experimental framework. 
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Fig. 2. Pseudocode for experimental process. 

3.1.  Prediction models 

For the prediction models, nine models were selected, which are widely used for 

prediction processes in SDP. As shown in Table 1, four more prediction models 

(RIPPER, Bayesian Network, Random Tree, and Logistic Model Tree) were 

added to that of Yu et al. [22] since we are considering mostly models that have 

been used in empirical studies. In addition, these prediction models are picked 

based on different underlining classification characteristics with the aim of 

introducing heterogeneity.  

Table 1. Prediction models. 

Name References 

Decision Tree C4.5 [29-32] 

Random Forest (RF) [29, 30, 33, 34] 

Random Tree (RT) [35-37] 

RIPPER [36, 38] 

Bayesian Network (BN) [30, 39] 

Naïve Bayes (NB) [29-31, 33, 34] 

K Nearest Neighbour (kNN) [33, 40, 41] 

Logistic Model Tree (LMT) [36, 42] 

Logistics Regression (LR) [30, 31, 40] 
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3.2.  Datasets 

For empirical evaluation, 10 software defect datasets were selected from NASA 

and PROMISE repositories to conduct the experiment. These datasets have 

different levels of imbalance ratio, which makes them suitable for our study and 

they have been widely used by researchers for the same process. We used the 

cleaned version of NASA and Promise dataset provided by [35, 36, 43].  

Detailed information on the selected datasets is in Table 2, which consists of 

the 10 datasets with 5 columns describing the name of the dataset, number of 

instances, number of defective instances, number of the non-defective instance and 

their respective imbalance ratio (the of defective instances to non-defective 

instances in the dataset).  

Table 2. Software defect datasets. 

Dataset 
Number of 

samples 

Number of 

defective 

samples 

Number of 

non-defective 

samples 

Imbalance 

ratio (IR) 

CM1 327 42 285 6 

JM1 7720 1612 6108 3 

KC3 194 36 158 4 

MW1 250 25 225 8 

PC1 679 55 624 11 

PC3 1053 130 923 7 

PC4 1270 176 1094 6 

ANT 1.5 292 32 260 8 

JEDIT 4.2 367 48 319 6 

TOMCAT 852 77 775 10 

3.3.  Performance metrics 

The selection of evaluation metric is very important since it has already been 

proven that using some conventional measures such as accuracy rate often leads to 

an inaccurate interpretation of results due to the characteristic of the dataset 

(imbalance) [44, 45].  

Based on this, Area Under Curve (AUC) is selected as our performance metric 

due to its wide usage [29-31, 33, 39] and proven to be more accurate and reliable 

[29]. AUC represents the Receiver Operating Characteristics (ROC). ROC is a 

measure of True Positive Rate and False Positive Rate [46]. 

For determining the performance stability of prediction models, Co-efficient of 

Variation (CV) was applied to the results of the prediction models. CV, which is 

the percentage ratio of standard deviation (SD) and average (AVE) is used to 

remove the effect of average difference on the comparison stability [16, 22]. The 

formula for CV is given as thus: 

𝐶. 𝑉 =  𝑆𝐷
𝐴𝑉𝐸⁄  × 100%                 (2) 

Prediction models with high CV values are regarded to be unstable.   
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4.  Results and Discussion 

The experiments were carried out according to the experimental framework (Fig. 

1) and experimental process (Fig. 2). A dataset is selected from Table 2 and its IR 

value is derived by finding the ratio of defective to non-defective instances in the 

dataset. New datasets are generated from the original dataset by applying the RUS 

and SMOTE algorithms with different IR values.  

Each newly generated dataset is randomized before each prediction model 

from Table 1 is applied in to avoid overfitting in case of datasets generated by 

SMOTE technique.  

All experiments are carried out based on 10-fold cross-validation, which is a 

standard approach [22, 47, 48]. In this study, we took into consideration the 

distribution difference between the original and the newly generated datasets.  

Each experiment is repeated 10 times to ensure reliable results and the average 

AUC value is recorded for each IR value. According to Yu et al. [22], Mabayoje et 

al. [48] and Petric et al. [49], WEKA environment was used to conduct all 

experiments. Default parameters of prediction models as specified in WEKA were 

used in this study. 

From the experimental results, we compared the performances of the prediction 

models on the normal and balanced datasets. Prediction models used on SMOTE 

generated datasets gave the best results when compared with the Normal and the 

RUS generated datasets. 

As presented in Fig. 3, the RUS method depleted the performance of the 

prediction models due to the random removal of instances in the generation of 

its datasets.  

That is, good instances have been removed by RUS in the line of balancing the 

datasets and hence, the poor performance of predictive models. This further 

strengthens the position that using the oversampling method for resolving class 

imbalance is better than undersampling method. 

 

Fig. 3. Comparison of average AUC of prediction  

models on normal and balanced datasets (SMOTE and RUS). 
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From Figs. 4 and 5, Random Forest (RF) performed best in both cases (RUS 

and SMOTE generated datasets) compared with other prediction models. Bayesian 

Network (BN), Logistic Model Tree (LMT) and k Nearest Neighbour (kNN) 

performed well on both cases with no much difference while RandomTree 

algorithm performed worst averagely in both cases. As presented in Figs. 5 and 6, 

the respective performance of prediction models on balanced datasets was 

analyzed. Most of the prediction models had a good result with the SMOTE 

balanced datasets with Random Forest ranking best and Naïve Bayes coming last 

even with an average AUC of 82.84%. 

In Figs. 6 and 7, the performance of the prediction models on RUS generated 

datasets is not as high as the SMOTE generated datasets. This is as a result of 

inherent information loss with random undersampling. Logistic Model Tree (LMT) 

and Random Forest (RF) performed well while Random Tree performed poorly. 

 

Fig. 4. The average performance of prediction models  

on SMOTE generated datasets based on different IR. 

 

Fig. 5. Average performance of prediction models  

on RUS generated datasets based on different IR. 
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Fig. 6. Average performance of prediction  

models on balanced SMOTE generated datasets. 

 

Fig. 7. Average performance of prediction  

models on balanced RUS generated datasets. 

Tables 3 and 4 shows the CV values of prediction models on the generated 

datasets. Evidently, the CV values of all the prediction models are of high value 

and this is due to our consideration of distribution differences between the original 

and newly generated datasets.  

Yu et al. [22] in their study also mentioned that considering distribution 

differences may affect the CV value of the prediction models. C4.5 had the highest 

CV values in both (RUS and SMOTE generated) sets of generated datasets, which 

makes it highly unstable for the class imbalance problem. LR (33.51) and NB 

(34.18) had the lowest CV values in SMOTE datasets while LR (30.05) and RF 

(29.24) had the lowest CV values in RUS generated datasets. 
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Table 3. CV value of prediction models on SMOTE generated datasets. 

Datasets NB C4.5 LR RF KNN RP BN RT LMT 

CM1 6.03 13.26 5.29 9.87 10.62 14.55 7.70 13.83 8.09 

JM1 0.49 11.69 0.79 11.39 7.81 15.00 10.54 11.06 9.43 

KC3 6.88 13.16 8.50 9.23 7.38 11.37 13.72 7.60 6.62 

MW1 3.64 17.21 6.71 7.84 8.63 11.19 6.96 9.72 3.66 

PC1 3.36 7.63 2.83 3.58 4.52 10.67 5.44 8.62 4.28 

PC3 1.28 12.09 1.46 4.66 4.65 15.01 5.48 10.37 4.96 

PC4 2.68 5.58 1.00 1.73 3.19 7.45 5.26 7.64 1.92 

ANT 1.5 4.50 10.84 2.47 6.98 5.98 8.25 4.52 11.08 3.94 

JEDIT 4.2 2.03 8.67 2.07 4.53 5.81 11.44 3.62 7.12 3.91 

TOMCAT 3.30 7.73 2.40 4.44 4.33 12.53 5.10 9.82 4.93 

TOTAL 34.18 107.87 33.51 64.25 62.93 117.46 68.35 96.86 51.75 

Table 4. CV value of prediction models on RUS generated datasets. 

Datasets NB C4.5 LR RF KNN RP BN RT LMT 

CM1 6.10 8.70 3.09 3.56 6.36 12.91 4.01 6.47 1.50 

JM1 2.53 0.92 1.52 0.63 1.46 5.86 1.90 1.07 1.55 

KC3 3.07 12.51 3.59 5.26 5.29 5.58 15.55 3.92 5.45 

MW1 1.28 16.21 5.10 3.15 5.26 5.06 2.17 5.34 2.56 

PC1 4.23 5.44 2.97 2.72 3.53 6.56 3.18 4.07 1.75 

PC3 2.75 4.46 1.93 1.00 5.07 12.28 1.22 5.96 10.83 

PC4 0.59 4.68 1.17 0.41 1.88 6.55 0.48 5.00 1.62 

ANT 1.5 3.21 16.56 4.16 4.72 4.83 7.90 2.20 5.31 3.74 

JEDIT 4.2 2.25 12.54 1.33 3.60 6.40 11.38 1.45 8.30 3.42 

TOMCAT 7.05 15.03 5.20 4.20 9.73 13.13 3.37 10.41 5.29 

TOTAL 33.05 97.06 30.05 29.24 49.82 87.23 35.52 55.84 37.71 

5.  Conclusion 

Data quality problem has always undermined prediction processes and software 

defect prediction is no exception. Datasets in SDP are highly skewed and this is 

a form of class imbalance. This paper empirically evaluates the performance 

stability of nine widely used prediction models in SDP based on undersampling 

(RUS) and oversampling (SMOTE) approaches. The results reveal that SDP 

datasets suffer class imbalance problem and it showed a negative impact on 

prediction models in SDP. Oversampling method (SMOTE) should be used in 

balancing such datasets. LR, NB, and RF are good prediction models and should 

be used for empirical studies as they are more stable in the presence of class 

imbalance than other models used in this study. This study only considers class 

imbalance as a data quality problem, other kinds of data quality problem can be 

looked into in further studies. 

 

Nomenclatures 
 

a1 Defective instances 

a2 Non-defective instances 

M Number of iterations 

N
 

Number of folds 

X Defect datasets 
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Abbreviations 

AUC Area Under Curve 

BN Bayesian Network 

CV Coefficient of Variation 

IR Imbalance Ratio 

NASA National Aeronautics and Space Administration 

ROC Receiver Operation Characteristics 

RP Ripper 

RT Random Forest 

RUS Random Under Sampling 

SDLC Software Development Life Cycle 

SDP Software Defect Prediction 

SMOTE Synthetic Minority Over-sampling TEchnique 

SQA Software Quality Assurance 

WEKA Waikato Environment for Knowledge Analysis 
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