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Abstract 
Data is subject to corruption through the communication channel. In other words, it is prone to error as it traverses the source to 
destination link.  Noise in the communication channel makes it difficult to reproduce a message at the destination end system. While 
some applications can absorb minimal amount of error, during transmission,  for example,  when transmitting multimedia data such 
as video and audio, random errors may be overlooked, but such is not allowed in some applications like text that requires high level 
of accuracy. For this reason, during transmission, efforts need be made towards the detection and correction of these inevitable 
errors. Channel coding  (divided into convolutional and block codes), especially the block codes, is used to address problems of 
error detection and correction in data. The popular block coding techniques available are BCH code, Hamming code, Reed-solomon 
code and Golay code. Problems of channel coding can be addressed by automatic repeat-request (ARQ) approach and forward error 
correction (FEC) approach. This research work deals with forward error correcting code, specifically Hamming code under the 
umbrella of channel coding. This work, initially, explains the working of a block code and then Hamming coding is demonstrated 
both practically, using Visual basic and theoretically, using mathematical equations. The tool which was used to simulate this 
algorithm is Visual Basic; it was adopted because most Visual Studio IDE features are also used in the same context with Microsoft 
Visual C++, Microsoft Visual C# and Visual Basic. The algorithm was designed for Hamming (7, 4) which is capable of detecting 
and correcting one bit error in the received vector using the concept of syndrome decoding. When four bits of information (x = 4) is 
transmitted simultaneously over the noisy channel and if one bit is in error in the received vector, then this code can detect and 
correct one bit error in the receive vector. A codeword length of 7 bits (y = 7) was used and also presented were generator matrix 
(4×7), a parity check matrix (3×7) and a decoding matrix ( 4×7) to achieve the required Hamming distance. 
  
 Introduction 
The Communication system is generally subject to corruption as data traverses the source to destination system. Usually, the 
chances of error occurring during data transmission are high, and therefore, reducing error in this system is a huge priority. To 
achieve an error free data, communication over a channel that is error prone such as a noisy communication channel, error 
needs to be detected and corrected. Error correcting codes (ECCs) are common tools of attaining reliable system 
communication and maintaining high data integrity because, they are capable of protecting the system against soft errors that 
are encountered during communication of data from the sender to the receiver. As a result, it is important to ensure error 
control in these applications. When transmitting and storing digital data, the performance evaluation of the system could be 
measured by the bit error rate (BER). The bit error rate can be obtained by dividing the number of error bits by the number of 
total bits. The presence of noise in the transmission medium may cause obstruction in signal, which is capable of causing data 
corruption (Heller and Jacobs, 1971). The value of signal -to- noise ratio (SNR), a measure of the relationship between the 
signal and noise power, of a communication system, usually obtained by dividing the signal power by that of the noise power, 
is inversely proportional to bit error rate. This indicates that, the lesser the value of the bit error rate, the higher the value of the 
signal-to-noise ratio and the better the quality of service (QoS) of the transmission process (Sklar, 2001). One of the most 
widely adopted methods of error-correction is the block coding. In coding theory, channel coding is categorized into 
convolutional and block codes (Viterbi, 1967). Block codes allow data to be encoded in blocks,  common examples of which 
are, Hamming codes, Golay codes, Reed muller codes, Reed Solomon codes, Hadamar codes, Expander codes. All these types 
of block codes mentioned earlier are widely adopted because they can be implemented practically and also because generally 
speaking, block codes permit different fields such as mathematics, computer science and code theory to study error detection 
and correction ability and rate, bounds of different block codes parameter, etc, of all block codes in a unified manner (Sklar, 
2001). During transmission, the chances of error occurring is inevitable; detection and correction of these errors are carried out 
by some applications while some can absorb minimal amount of error when transmitting. For example, when transmitting 
multimedia data such as video and audio random errors may be overlooked but such is not allowed in some application like 
text that requires high level of accuracy.  
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As mentioned earlier, different block codes are available for error detection and correction but this paper only considers the 
Hamming code technique, for detecting and correcting error, during data transmission. Hamming codes is needed if more than 
one bit changes at a time. Hamming code adopts the technique of parity and parity bits,  that is, each data is assigned a bit and 
this serves as validity check for data when it is read or after being received, during a data communication. Assigning more 
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than one parity bit in the hamming code method does not only identify the single bit error; the position of the error in the data 
unit is also identified. During data transmission, the method adopted by the receiver station in, correcting error, is referred to 
as forward error correction (FEC) and this approach increases the throughput of the transmission, in the case of lots of noise in 
the system. This method can be enabled by adding additional data known as error correction bits during the transmission 
process. Two-bit errors are detected in Hamming code, by assigning more than one parity bit, which are computed on a 
separate combination of bits during transmission process. The Hamming codeword can be generated by combining the data 
bits and parity bits. This can be obtained by the equation  
 

Codeword, C = 푍 · 퐺      
 
Literature Review 

The Noisy-channel coding theorem stated by Shannon describes the total efficiency of error-correcting techniques versus the 
degree of noise interference and data corruption. Shannon theorem states that given a noisy channel with channel capacity C 
and information transmitted at a rate R, and then if 푅 < 퐶, there exist a code that allow the probability of error at the receiver 
to be made arbitrarily small. This means that, theoretically, it is possible to transmit information, almost, without error at any 
rate below a limiting rate, C. The maximum rate at which we can transmit information is set by the bandwidth, the signal level, 
and the noise level. C is therefore called the channel's information carrying Capacity. 
 
 

C = 2B 푙표푔 { 1 + }      

C = B푙표푔 1 +      

 
Analysis and Design of the Algorithm 

The Hamming error detection and correction algorithm encode the four bits data that the user enters into the source encoder. 
Once the encode button is clicked, the encoder uses the generator matrix and the four bits user data to compute the codeword. 
This algorithm is a computer-based type that makes use of a computer system to achieve the aim of the Hamming (7, 4) 
algorithm. The Hamming code is simple to understand, compared with the other error correcting-codes. It adopts the approach 
of extra redundant bits for checking errors, by making use of special check equations. This research work involves the use of 
matrices such as Generator matrix, Check matrix and decoding matrix. The decoding matrix is used to get back the original 
four bits data from the corrected received codeword. The demonstration of how this code works is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 

Fig.1: A system Block diagram showing how devices are connected. 
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Fig. 2: The program flow chart 
 
 
Hamming code with matrix manipulation 
Consider the four un-encoded information bits 3,2,1 XXX  and 4X . This 1 x 4 matrix can be demonstrated as   
 
       4321 XXXXX      (1) 
The seven-bit encoded data is represented as; 

     

        7654321 YYYYYYYY    
 (2) 

The encoding process of the Hamming code can be represented as modulo-2 multiplication;            
      

         76543214321 yyyyyyyGxxxxx 
  

 (3) 
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Where y1, y2, y3, and y4 represent the data bits while y5, y6, and y7 represents the check bits. 

 

In the design, the modular check equations listed below were used: 
  
     D1= x2 ⨁x3⨁ x4     (4)    

 

      D2= x1 ⨁x3⨁ x4     (5)  
 
                                              D3= x1 ⨁x2⨁ x4     (6)   

 

D4= x1 ⨁x2⨁ x3     (7)                                                                                                                      
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From the modular check equations, that is, equation (4), (5), (6), and (7), check bits D1 to D4 can also be formed by 
representing, in the equations, every data bit position that was present in each check equation by a one (1). More so, B1 to B4 
can also be formed by changing all bit positions in D1 to D4 that has 1’s to zeros (0’s) and also the position with a zero to a 
one (1). 
  

         B1   B2    B3    B4   A1    A2   A3 

 =  

1  0  0  0  0  1  1
0  1  0  0  1  0  1
0  0  1  0  1  1  0
0  0  0  1  1  1  1

 

From equation (3) above, substituting Gx into the equation we have: 
     76543214321 yyyyyyyxxxx  Gx ............ (3) 

      [x1 x2 x3 x4]             

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 = [y1 y2 y3 y4 y5 y6 y7]        

Where the 4 x 7 matrix is known as a generator matrix represented by  Gx . The encoding process is done by multiplying the 

information vector  X  by a generator matrix  Gx  to obtain the encoded bit sequence  Y .                      

      GxXY          (3) 

From the generator matrix  of the Hamming code above: 

G  = 

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 

Yes 

× 
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                                   [Gx] = 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 1
1 0 1
1 1 0
1 1 1

 

   [Gx] = [[I]4×4  [P]] 

 

4 x 4 identity sub-matrix  I     4 x 3 parity sub-matrix  P  

    Fig. 3: Show the Deconstruction of generator matrix  Gx  

 
Parity check 
When the data transmission is error free we have 

[r] =  Y  
Which indicates that the receiver codeword [ ] is the same with  Y  which represent the transmitted codeword.   
Parity Check Matrix 

 
[H] = [[A]T  [I]3×3] 

Note that  TA  becomes a matrix of dimension 3 x 4. 

[H] = 
0 1 1 1
1 0 1 1
1 1 0 1

1 0 0
0 1 0
0 0 1

 

    3x4 transpose of parity matrix  A     3x3 identity submatrix  I   

    Figure 4: deconstruction of check matrix  H  

Now let  r  represents the received codeword, the syndrome vector [S] can be obtained by, 

[S] = [r] × [H]T 

[S] = [y1 y2 y3 y4 y5 y6 y7] ×  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

  

Since the multiplication involves a [1×7] and a [7×3] matrix, therefore the resulting syndrome would be a [1×3] row matrix. 









ZWif
ZWif

ZW
1
0

 

If the result of [S] gives an all zeros [1×3] row matrix, the receiver takes it that the transmission is error free. This agreement 
or disagreement is exactly what is needed for single-bit error detection and correction in the received seven-bit sequence. 
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Table 1: The Syndrome generated and the bit in error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Error Correction 

If a single bit error was encountered. Mathematically, we can write 
[r]=  Y + ei 

Modulo 2, signifies that ei is the  unit vector (a zero vector with a 1 in the , counting from 1) 

  

The expression above shows a single bit error in the  place. 

Now, by multiplying the vector by H: 

[H] [r] = [H] (  + ei) = [H] [ ] + [H] [ei] 

Since the transmitted data 풚 is error free, we have zero by multiplying [H] and  y . Thus  

[H] [y ] + [H] [ei]  = 0 + [H] [ei] =[H] [ei] 

Now, from [H] with the  standard basis vector if we remove the column of [H], we are certain the error occurred in column 
[H] location. For example, suppose a bit error on bit number 4 is introduced, where the initial data sent is 0110 then the result 
will be: 

 

 

 

 

[S] Bit received in Error 

[0 0 0] None 

[0 1 1] y1 

[1 0 1] y2 

[1 1 0] y3 

[1 1 1] y4 

[1 0 0] y5 

[0 1 0] y6 

[0 0 1] y7 
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 [r]= (v    + e4) =  

⎝
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⎛
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⎟
⎞
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⎝

⎜
⎜
⎜
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0
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0
0⎠

⎟
⎟
⎟
⎞

 =   

⎝

⎜
⎜
⎜
⎛

0
1
1
1
0
1
1⎠

⎟
⎟
⎟
⎞

 = 

⎝

⎜
⎜
⎜
⎛

0
1
1
1
0
1
1⎠

⎟
⎟
⎟
⎞

 

                                                                                        
 
 
 
 
 
 
 
 
 
 
 

Fig. 5:   Representing a codeword using a Venn diagram 
 
 

 
                                                                  
 
 
 
 
 
 
 
 
 

Fig. 6:  A bit error invoking bad parity in all the other bits. 
 

Fig. 6 shows how a bit error as indicated, in blue text, in the above Venn diagram invokes bad parity in the entire circle as 
indicated in red text. To detect bit error, the parity of the circle needs to be detected. Once we detect a faulty parity, then the 
location of the bit with error is the data bit that intersects, only, the faulty parity. From the Venn diagram in fig. 5 A1, A2 and 
A3 are all infected with  bad parity, so all the bits that fall within the intersection of A1, A2 & A3 which is the one represented 
with blue text ( )  indicates the error bit.  

S] = [H] × [r] = 
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

  ×

⎝

⎜
⎜
⎜
⎛

0
1
1
1
0
1
1⎠

⎟
⎟
⎟
⎞

=  
3
3
3

 = 
1
1
1

 

 

The algorithm was designed in such a manner that the syndrome [H] which is located in the 4th column is identical to the 
decimal value of 7, which signifies the presence of bad parity in 4th bit in this design. Furthermore, the error detected in the 4th 
bit can be tackled through the process of negation of its value or flip method. 
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A2 
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1      
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 1         0 
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rcorrected =   

⎝
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⎜
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0
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1
0
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1⎠

⎟
⎟
⎟
⎞

 =  

⎝

⎜
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⎛

0
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⎟
⎞

 

From the above, the corrected value of the error detected in the 4th column corresponds the transmitted value [ Y].     
 
Decoding 
In a situation where only zero or one bit of errors are encounter, in order to correct this error the received data must be 
converted or decoded back to its original form first by defining a decoding matrix R as shown below. 

R =  

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

 

 Xr which is the received value can be obtained by: 
 

Xr =  퐑 × 퐫퐜 

 

and using the example from above: 

Xr = Xr = 

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

 × 

⎝

⎜
⎜
⎜
⎛

0
1
1
0
0
1
1⎠

⎟
⎟
⎟
⎞

 = 

0
1
1
0

 

 

The actual transmitted data is retrieved by the receiver after the decoding operation is carried out by the decoder on the 
corrected received codeword. 

Testing of the Algorithm  

The interface of the algorithm is designed to be operated by human agents. The user of the algorithm will need to input a four 
bits data to be transmitted, then the operator will just need to click on interface button to generate a result. The use of the 
algorithm is easy as it is user friendly and self–explanatory (instructional).  
 

 
 
Fig. 7:  The first stage of using the algorithm 
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Fig. 8: Error message stating that binary data must be input. 
 
Fig. 8 shows the error message that will be displayed, if anything other than four-bit binary data is inputted into the algorithm. 
 

 

Fig. 9: Error message, indicating that the length of information data must be 4 bits. 

From fig.9, it is shown that the data this algorithm can process must be 4-bit but if otherwise, an error message will be 
displayed saying “data must be 4 bits”. 

 

Fig. 10: Show the four-bit data to be encoded 

Analysis of the Result 
In Hamming codes, each integer k ≥ 2 has a code with: 

 L = 2k – 1,  

 F = 2k – k – 1, and 

                                R = F/L =1 – k ∕(2k – 1) ,  
Which is the highest possible for codes with distance 3. 
Since, in this algorithm, the redundant bit k = 3. Therefore, L, given by the formula: L = 2k – 1 equals: 
 

Encode button that execute the encode 
function 

4 bit user data to be 
encoded 
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L = 2k – 1 = 23 – 1 = 8 – 1 = 7bits 
 
Where L, F and R indicate the block length, message length and rate of Hamming code respectively. 
 
Table 2: Using the value of k to generate all realistic Hamming codes. 
 

Parity 

bits 

Total 

bits 

Data 

bits 

Name Rate 

2 3 1 Hamming(3,1) 

(Triple repetitive 

code) 

1/3≈0.333 

3 7 4 Hamming(7,4) 4/7≈0.571 

4 15 11 Hamming(15,11) 11/15≈0.733 

5 31 26 Hamming(31,26) 26/31≈0.839 

 

K 2k-1 2k-k-1  /( ) 

 
The detection/correction capacity depends on the minimum distance of a code, which was demonstrated in the theorem below: 

Theorem 1: Let E be a code with minimum distance r. Then E can detect any r – 1 errors, and can correct any errors. 

Moreover, there are some r errors E cannot detect and there are  + 1 errors E cannot correct. Also since 4 bits is used 
for the data bits in this algorithm, the expected levels will be: 

Levels =  = 16 levels 
 

Table 3: Show the expected levels in a system using four-bits to represent data and the codeword for each input.  
 

 Information bits Parity bits Codeword 

Levels  

  
0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 

1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 

2 0 0 1 0 1 1 0 0 0 1 0 1 1 0 

3 0 0 1 1 0 0 1 0 0 1 1 0 0 1 

4 0 1 0 0 1 0 1 0 1 0 0 1 0 1 

5 0 1 0 1 0 1 0 0 1 0 1 0 1 0 

6 0 1 1 0 0 1 1 0 1 1 0 0 1 1 

7 0 1 1 1 1 0 0 0 1 1 1 1 0 0 

8 1 0 0 0 0 1 1 1 0 0 0 0 1 1 

9 1 0 0 1 1 0 0 1 0 0 1 1 0 0 

10 1 0 1 0 1 0 1 1 0 1 0 1 0 1 

11 1 0 1 1 0 1 0 1 0 1 1 0 1 0 

12 1 1 0 0 1 1 0 1 1 0 0 1 1 0 

13 1 1 0 1 0 0 1 1 1 0 1 0 0 1 

14 1 1 1 0 0 0 0 1 1 1 0 0 0 0 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Fig. 11:  the result of the encode function for a 4-bits data. 

From fig. 11, it is shown that when a four-bit data from the message source is fed into an encoder, the algorithm is designed to 
append redundant bits to the data so that if the channel is noisy, data corruption can easily be detected and corrected. By 
clicking the encode button, the algorithm generate a codeword of length n=7 where the check-bit m= 7 - 4 = 3 bits 

 

Fig. 12:  The receiver interface asking for the codeword received. 

Fig. 12 shows the screenshot from the algorithm, when the transmit button is clicked. As the user clicks the transmit button, 
the algorithm will bring out the field for the user to enter the codeword received. At this stage, the user can decide to flip any 
of the 7-bits and the algorithm will detect the error. 
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Fig. 13: The algorithm message when the bit position six is in error. 
From fig. 13, when the check data button is clicked, the algorithm uses the received codeword and check matrix to compute 
the syndrome then the syndrome is compared with the column of the check matrix to determine the bit in error. For example 
the screenshot above show that bit six of the codeword is in error. 
 

 

Fig. 14: The  error free message when the transmitted codeword is the same as the received vector. 

 
It has been explained earlier that when the transmitted codeword is the same as that of the received vector, the algorithm will 
generate a (1 ) all zero’s row matrix which, when traced with all columns of the check matrix, will find no match.  
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Fig. 15: Showing that bit position two is in error 

 

 
Fig. 16: Showing that bit position 1 is in error. 
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Fig. 17: There is error in bit number 5 

 

 
Fig. 18: An error message is displayed when the user enter more than 7-binary data. 
 
Fig. 18 shows the complete process of encoding and decoding data, using the designed algorithm. To encode a data, after the 
algorithm has been launched, the user enters a four bits data and click the encode button. Once the encode button is clicked, 
the algorithm used the encoding matrix to manipulate the four bits data and it generates a codeword, as the output of the 
encoding process. 
The next step is to transmit the generated codeword. To do this, the user will click the transmit button and the algorithm will 
bring out the decoder side of the algorithm (note: the assumption is that  a visual channel is used, that is, an imaginary 
transmission medium) so that as the transmit button is clicked, the decoder input interface is prompt up. At the receiver’s end, 
the input of the decoder was designed in such a way that the user will have to type the received codeword and can decide to 
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flip any of the seven bits sequence. Once the user clicks the “check data button”, the algorithm will use the 3 7 matrix called 
the H-matrix (check matrix) to compute the syndrome, this syndrome is then compared with H-matrix column to detect which 
bit is in error. Once the error has been detected and corrected in the seven bits received sequence, the decoder will make use of 
another matrix called the decoding matrix (4 7 matrix) to get back the actual four bits original data.  
 
Conclusion 
The objective of this project is to design and develop an algorithm, capable of detecting and correcting error, in the received 
sequence, provided it is a bit different from the transmitted codeword and this was achieved. This is just a simulation design to 
be used on a computer system. The algorithm is capable of processing four bits data to generate seven bits codeword with 
three bit added as redundancy Hamming (7, 4) was believed to have the highest efficiency of about 33-percent compare to 
other Hamming codes such as H(15, 11), H(31, 26).  
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