ETHNOBOTANICAL SURVEY AND INSECTICIDAL POTENTIALS OF SELECTED PLANTS AGAINST Anopheles gambiae (DIPTERA: CULICIDAE) IN NORTH-CENTRAL, NIGERIA

BY

ADELAJA, Olukayode James [04/55EK006]

APRIL, 2021

ETHNOBOTANICAL SURVEY AND INSECTICIDAL POTENTIALS OF SELECTED PLANTS AGAINST Anopheles gambiae (DIPTERA: CULICIDAE) IN NORTH-CENTRAL, NIGERIA

BY

ADELAJA, OLUKAYODE JAMES

(04/55EK006)

B.Sc., M.Sc. Zoology (Ilorin)

A Thesis Submitted to the Department of Zoology, Faculty of Life Sciences for the Award of the Degree of Doctor of Philosophy in Zoology of the University of Ilorin, Ilorin, Nigeria.

APRIL, 2021

CERTIFICATION

This is to certify that Mr ADELAJA, Olukayode James of the Department of Zoology has
successfully carried out this research under my supervision in partial fulfilment of the
requirements for the award of the degree of Doctor of Philosophy (Zoology), University of
Ilorin, Nigeria.

••••••	•••••••••••••••••••••••••••••••••••••••
Prof. A. T. Ande	Date
Supervisor	
DR. O. A. IYIOLA	Date
Ag. Head of Department	
	••••••
Prof. M. K. Mustapha	Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator	Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator	Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator	Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator	Date Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator 	Date Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator 	Date Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator 	Date Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator Internal Examiner	Date Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator Internal Examiner	Date Date Date
Prof. M. K. Mustapha Departmental Postgraduate Coordinator Internal Examiner External Examiner	Date Date Date

DEDICATION

This research work is dedicated to Almighty God the creator of the universe, my Baba and best

friend who saw me through the duration of this programme. To Him be all the Glory.

DECLARATION

I, ADELAJA, Olukayode James hereby declare that this Thesis entitled: "Ethnobotanical Survey and Insecticidal Potentials of Selected Plants against *Anopheles gambiae* (Diptera: Culicidae) in North-Central, Nigeria"is a record of my research work. It has neither been presented nor accepted in any previous application for a higher degree. All sources of information have been specifically acknowledged. In addition, the research work has been ethically approved by the University Ethical Review Committee (UERC/LSC/119).

.....

.....

Adelaja, O.J.

Date

ACKNOWLEDGEMENT

All glory to God, the source of infinite wisdom, strength and enablement for the grace and mercy He gave me to successfully undertake this doctoral programme.

Foremost my gratitude goes to my supervisor, Dr. A.O. Oduola for the support and guidance I received from him both as his research assistant and doctoral student. I have learnt so much from his wealth of experience over these years. I also want to thank Prof. A.T. Ande and Dr. O. D. Owolabi for their fatherly and friendly support all through this programme. Pray God bless and rewards you sirs.

I want to also appreciate the postgraduate committee members of the Department of Zoology; Prof. U.S. Ugbomoiko, Prof. (Mrs) G.C. Nzeh, Prof. A.T. Ande, Prof. M.K. Mustapha, Dr. O. D. Owolabi, Dr. I.O. Iyiola and Dr. E.C. Amaechi for their support and encouragement throughout the study. My appreciation also goes to the Acting Head of Department, Dr. I.O. Iyiola, and the Departmental postgraduate coordinator, Prof. M.K. Mustapha for their encouragement and support.

I want to appreciate my mum Mrs. Folashade Adelaja and my brother Mr. Olufemi Adelaja for their prayers, patience and support all through my life.

I thank Dr. and Dr. (Mrs) Ayoade (my in-laws) for their prayers, encouragement and support. They took me as a son and were a source of motivation. They have always enquired about the progress with my doctoral work and gave words of encouragement.

I thank Prof. T.S. Awolola, Mr. Abiodun Olakiigbe, Dr. Adedapo Adeogun and the project staffs in Prof. Awolola's laboratory at the Department of Public Health, Nigeria Institute of Medical Research, Yaba, Lagos. I want to also thank Dr. O.O. Abiodun from IMRAT for her suggestions and support to make this research work a reality and Dr. A. Obembe for being a good model and pace setter and for his kind words of encouragement and support. I want to also thank the Nigerian Conservation Foundation and Chevron for their financial support through the Chief S.L. Edu Doctoral Research grant. Your support made this work possible.

I thank Dan and Comfort Ndangason, Emeka and Bilhatu Ohahuru and all past and present members of the Navigators campus team in Ilorin, Navigators South-west and Nigeria for their prayers, support and encouragement throughout the duration of this programme.

I specially thank my friends Olumide Ogundeji, Bami Betiku, Dayo Agoke, Dayo Mofikoya, Michael Otitoju, Dayo Olanipekun, Dr. Kelvin Ifesinachi and his wife, Pascal, Kenny Bolaji, Abayomi Dada, Michael Adeshina and Elizabeth Bandason for their support, concerns, encouragement and prayers.

I cannot forget to appreciate my darling wife Mrs Adelaja, Abisayo for her love, support, prayers, encouragement, sacrifice and patience. I also appreciate my personal bobo Master Adelaja, Eriifeoluwa Jathniel for being a source of inspiration. His August appearance into the world was a motivation for me to focus and complete this programme.

TABLE OF CONTENTS

CERTIFICATION	i
DEDICATION	ii
DECLARATION	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENT	vi
LIST OF TABLES	X
LIST OF FIGURES	xii
ABSTRACT	xvi

CHAPTER ONE

1.0	INTRODUCTION	1
1.1	Background of Study	1
1.2	Statement of Research Problem	3
1.3	Justification	4
1.4	Aim	4
1.5	Specific Objectives	4

CHAPTER TWO

2.0	REVIEW OF LITERATURE	6
 .		0

2.1	Roles of Insect in Vector Disease Burden	6
2.2	Mosquito-borne Disease Burden in Sub-Saharan Africa	6
2.3	Vector Control Interventions Performance Over Year	11
2.4	Ethnobotanical Survey of Insecticidal Plants in Africa	16
2.5	Shortlisted Insecticidal Plants Used for Mosquito Control in	
	Nigeria	25
2.6	Vapour Toxicity Activities of Botanicals against Mosquitoes	
	in Africa	33
2.7	Chemical Components of Plant Oils as Raw Materials for	
	Industries	34

CHAPTER THREE

3.0	MATERIALS AND METHOD	38
3.1	Study Area for Ethnobotanical Study	39
3.2	Extraction and Isolation of Plant Oils	42
3.3	Mosquito Rearing	43
3.4	Repellent Activity Assays	44
3.5	Contact Toxicity Assays for Oils from Selected Plants	47
3.6	Vapour Toxicity Bioassay for Oils from Selected Plants	48
3.7	Analysis of Selected Plant Oils to Identify Major Chemical	
	Components	51
3.8	Ethical Consideration	51

CHAPTER FOUR

4.0	RESULTS	52
4.1	Ethnobotanical Survey	52
4.2	Repellency Activity of Mentioned Plants against Anopheles	
	gambiae s.l	68
4.3	Repellency Activity of Oils from Selected Plants on Anopheles	
	gambiae s.l	87
4.4	Contact Toxicity of Oils from Selected Plants on Anopheles	
	gambiae s.l	95
4.5	Vapour Toxicity of Oils from Selected Plants on Anopheles	
	gambiae	105
4.6	Major Chemical Components found in Selected Plant Oils	113

CHAPTER FIVE

5.0	DISCUSSION	121
5.1	Ethnobotanical Survey	121
5.2	Screening of Collected Plant Materials for Repellency against	
	Anopheles gambiae s.1	125
5.3	Repellency Activity of Oils from selected Plant against Anopheles	
	gambiae s.1	126
5.4	Contact Toxicity of Oils from Selected Plants against Anopheles	
	gambiae s.l	127

5.5	Vapour Toxicity of Selected Plant Oils Against Adult Anopheles	
	gambiae	130
5.6	Major Chemical Components Identified in Oils from Hyptis	
	suaveolens, Citrus sinensis, Ocimum gratissimum, Nicotiana	
	tabacum and Ageratum conyzoides	131

CHAPTER SIX

6.0	SUMMARY, CONCLUSION AND RECOMMENDATION	133
6.1	Summary	133
6.2	Conclusion	134
6.3	Recommendation	135
Sugges	stions for Further Studies	136
REFERENCES		137
APPE	NDIX	163

Table	LIST OF TABLES Title	Page
Table1 Burde	en of vector borne diseasesglobally 9	
Table 2	An overview of insecticidal plants from ethnobotanical studies	
	in Africa	23
Table 3	Review of literature from the rest of Nigeria on the mosquitocidal	
	effect of insecticidal plants found in North-Central, Nigeria.	32
Table 4	Socio-demographic Characteristics of Respondents in North-Central	
	Nigeria	53
Table 5	Information on Insecticidal plants used for management of	
	haematophagus insects in North-central Nigeria	57
Table 6	Distribution of Shortlisted plants by Ethnicity in North-central Nigeria	59
Table 7	Distribution of Shortlisted plants by target respondents in North-centra	1
	Nigeria.	60
Table 8	Perception of respondents to insecticidal plant accessibility,	
	effectiveness and source of information	64
Table 9	Method and Frequency of Application of Insecticidal plants	65
Table 10	Knowledge and effectiveness of insecticidal plants in relation to	
	gender, age, Educational Status and Ethnicity	66
Table 11	Percentage Repellency and Preference Index of mention plant	
	materials in North-central Nigeria on Anopheles gambiae s.l.	86
Table 12	Percentage Repellency of Oils from Selected Plants on Anopheles	

	gambiae s.l.	83
Table 13	Mean larval mortality induced selected plant oils at different	
	concentrations against 3rd instar larvae of An. gambiae s.l.	97
Table 14	Mean mortality of different concentrations of selected plant oils	
	on Adult Anopheles gambiae s.l.	101
Table 15	Knock-down Effect and Lethal Concentration of selected plant oils	
	Anopheles gambiae s.l.	104
Table 16	Percentage Mortality and knock down values of selected plant oils	
	on An. gambiae	112
Table 17	Major chemical components identified in the oil from Citrus sinensis	
	fruit peels	114
Table 18	Major chemical component identified in the oil from Ageratum	
	conyzoides leaves	115
Table 19	Major chemical components identified in oil from Ocimum gratissimum	
	leaves	117
Table 20	Major chemical component identified in oil from Hyptis suaveolens	
	leaves	118
Table 21	Major chemical components identified in oil from Nicotiana tabacum	
	leaves	120

TLISTS OF FIGURES Title

Figure

Figuro 1	Structural formula of D Limonona	36
riguie i	Structural formula of D-Limonene	50
Figure 2	Structural formula of β -caryophyllene	37
Figure 3	Structural formula of Eugenol	37
Figure 4	Map of the selected communities in the study area within the	
	North-Central Zone, Nigeria.	40
Figure 5	Target respondents interviewed during the ethnobotanical	
	survey	54
Figure 6	Insecticidal plant materials used by respondents for the	
	management of haematophagous insects	54
Figure 7	Mean number of Anopheles gambiae s.l. mosquitoes both	
	treated and control chambers for Ageratum conyzoides Leave	
	and DEET	69
Figure 8	Mean number of Anopheles gambiae s.l. mosquitoes both	
	treated and control chambers for Allium cepa Leave and DEET	69
Figure 9	Mean number of Anopheles gambiae s.l. mosquitoes both treated	
	and control chambers for Annona senegalensis Leave and DEET	71
Figure 10	Mean number of Anopheles gambiae s.l. mosquitoes both treated	

and control chambers for *Capsicum annuum* Fruit and DEET 71

- Figure 11 Mean number of *Anopheles gambiae* s.l. mosquitoes both treated and control chambers for *Cassia mimosoides* Leave and DEET 73
- Figure 12 Mean number of *Anopheles gambiae* s.l. mosquitoes both treated and control chambers for *Citrus sinensis* Fruit peel and DEET 73
- Figure 13 Mean number of *Anopheles gambiae* s.l. mosquitoes both treated and control chambers for *Cymbpogon citratus* Leave and DEET 75
- Figure 14 Mean number of *Anopheles gambiae* s.l. mosquitoes both treated and control chambers for *Ertyphleum suaveolens* Bark and DEET 75
- Figure 15 Mean number of *Anopheles gambiae* s.l. mosquitoes both treated and control chambers for *Eucalyptus globulus* Leave and DEET 77
- Figure 16 Mean number of *Anopheles gambiae* s.l. mosquitoes both treated and control chambers for *Hibiscus rosa sinensis* Leave and DEET 77
- Figure 17 Mean number of *Anopheles gambiae* s.l. mosquitoes both treated and control chambers for *Hyptis suaveolens* Leave and DEET 79
- Figure 18 Mean number of *Anopheles gambiae* s.l. mosquitoes both treated and control chambers for *Latanna camara* Leave and DEET 79
- Figure 19 Mean number of *Anopheles gambiae* s.l. mosquitoes both treated and control chambers for *Moringa oleifera* Leave and DEET 81

Figure 20	Mean number of Anopheles gambiae s.l. mosquitoes both treate	
	and control chambers for Nicotiana tabacum Leave and DEET	81

Figure 22Mean number of Anopheles gambiae s.l. mosquitoes both treatedand control chambers for Parkia biglobosa83

Figure 23Mean number of Anopheles gambiae s.l. mosquitoes both treated

and control chambers for *Thymus vulgaries* Leave and DEET 85

- Figure 24 Mean number of *Anopheles* mosquitoes in both treated and control chamber when *Hyptis suaveolens* plant oil was tested. 91
- Figure 25 Mean number of *Anopheles* mosquitoes in both treated and control chamber when *Ocimum gratissimum* plant oil was tested. 91
- Figure 26Mean number of Anopheles mosquitoes in both treated and controlchamber when Ageratum conyzoides plant oil was tested.92
- Figure 27Mean number of Anopheles mosquitoes in both treated and controlchamber when Citrus sinensis plant oil was tested92
- Figure 28Mean number of Anopheles mosquitoes in both treated and controlchamber when Nicotiana tabacum plant oil was tested.93
- Figure 29 Dose-response curves for *An. gambiae* s.l. larvae to selected plant oils for 24 hrs post exposure.

99

Figure 30	Dose-response curves for <i>An. gambiae</i> s.l. larvae to selected	
	plant oils for 48 hrs post exposure.	99
Figure 31	Adulticidal activity (Dose-response assay) of selected plant	
	oils on Anopheles gambiae s.l.	102
Figure 32	Percentage knockdown of Anopheles gambiae exposed to	
	oils from Hyptis suaveolens leaves	106
Figure 33	Percentage knockdown of Anopheles gambiae exposed to	
	oils from Citrus sinensis fruit peels	106
Figure 34	Percentage knockdown of Anopheles gambiae exposed to	
	oils from Ocimum gratissimum leaves	108
Figure 35	Percentage knockdown of Anopheles gambiae exposed to	
	oils from Nicotiana tabacum leaves	108
Figure 36	Percentage knockdown of Anopheles gambiae exposed to	
	oils from Ageratum conyzoides leaves	111

ABSTRACT

Widescale report of insecticide resistance in *Anopheles* mosquitoes is a major challenge confronting the usefulness of available interventions involving limited insecticides. Some plants have indigenously been used as insecticides without scientific validation. Therefore, this study was conducted to survey and evaluate the bio-efficacy of selected insecticidal-plants in Northcentral, Nigeria and to broaden the scope of available insecticides for management of *Anophelesgambiae*. The objectives were to determine the: species types and frequency; repellent activity; contact toxicity; vapour toxicity; and major potent chemical components of selected insecticidal-plants against *A. gambiae*.

Insecticidal-plant species types and frequency were determined from nine ethnic groups in North-Central, Nigeria using questionnaires. The common plants acclaimed to have insecticidal potency were collected, identified in the herbarium and thereafter screened for insecticidal activities against A. gambiae. Oils from selected plants were extracted using a Clevenger apparatus. The repellency, contact and vapour-toxicities of these oils were evaluated against the larva and adult stages of An. gambiae using modified World Health Organisation bioassay testprocedures. Standard insecticide (Deltamethrin) and repellent (N,N-Diethyl-metatoluamide(DEET)) were used as controls. The major potent chemical components were determined using Gas-Chromatography-Mass-Spectrometry. Questionnaires, knock-down time (KdT₅₀), mortality and repellency data were analysed using descriptive statistics, Chi-square, Analysis of Variance, Tukey post-hoc test, Preference Index and probit analysis (p<0.05).

The findings of this study were that: *Hyptis suaveolens, Ocimum gratissimum, Citrus sinensis, Ageratum conyzoides, Cymbpogon citratus, Thymus vulgaries, Nicotiana tabacum, Capsicum annuum, Cassia mimosoides, Annona senegalensis, Eucalyptus globulus, Parkia biglobosa,* Hibiscus rosa sinensis, Allium cepa, Ertyphleum suaveolens, Latanna camara and Moringa oleifera were identified belonging to twelve families. The most represented families were: Lamiaceae (H. suaveolens, O. gratissimum and T. vulgaries) and Fabaceae (C. mimosoides and P. biglobosa); and species were: Hyptis suaveolens (19.6%), Ocimum gratissimum (18.7%), Citrus sinensis (10.8%), Ageratum conyzoides (6.2%), Thymus vulgaries (6.2%) and Nicotiana tabacum (5.6%). H. suaveolens and A. conyzoides leaves had the same preference index (-0.87) as DEET against A. gambiae. All plant-oils tested displayed better (p<0.05) repellent activities against A. gambiae at 3.0 and 5.0 mg/mlcompared to DEET in the presence of human-odour; H. suaveolens (3.0 mg/ml), C. sinensis (4.0 mg/ml), N. tabacum and A. conyzoides (5.0 mg/ml) recorded 100% mean larval mortality against An. gambiae24-hours post-exposure. Similarly, adult A. gambiaeexposure to 5.0 mg/ml N. tabacum resulted in 100% mortality which compared favourably (p>0.05) with Deltamethrin; knock-down activity of 5.0 mg/ml C. sinensis (80%) against adult A. gambiae was significantly higher (p<0.05) compared to DEET (70%) after 20 minutes of exposure. KdT₅₀ was lowest in 5.0mg/ml O. gratissimum (31.32 minutes) and H. suaveolens (25.18 minutes) which was lower than DEET (36.10 minutes); and D-Limonene, was the most potent chemical component in C. sinensis; A. convzoides and O. gratissimum.

This study concluded that *H. suaveolens,A.conyzoides, C. sinensis,N. tabacum* and *O. gratissimum* demonstrated excellent repellent, contact and vapour-toxic properties comparable to standard commercial insecticides against *An. gambiae*. These plants are therefore recommended as potential source of novel bio-insecticide for management of *An. gambiae*.