
Vol 7. No. 1 - March, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

147

A Shuffled Frog-Leaping Algorithm for Optimal Software Project Planning

*R. O. Oladele & H. A. Mojeed
Department of Computer Science

University of Ilorin

Ilorin, Kwara State, Nigeria

*roladele@yahoo.com, leye4k@yahoo.com

*Corresponding author

ABSTRACT
In recent time, software project management has received considerable attention from researchers in the field of Search Based

Software Engineering (SBSE). This paper presents an approach to Search Based Software Project Planning based on Shuffled

Frog-Leaping Algorithm (SFLA). Our approach seeks to optimize work package scheduling with a view to achieving early

overall completion time. To evaluate the algorithm, it is tested on a set of randomly generated problems and it’s results are

compared with those of Genetic Algorithm (GA). Results indicate that SFLA is significantly superior to GA.

Keywords: Shuffled Frog-Leaping Algorithm, work package, software project planning, Search Based Software Engineering,

 Design structure matrix

African Journal of Computing & ICT Reference Format:

R. O. Oladele & H.A. Mojeed (2014): A Shuffled Frog-Leaping Algorithm for Optimal Software Project Planning.

Afr J. of Comp & ICTs. Vol 7, No. 1. Pp 147-152 .

1. INTRODUCTION

Software engineering projects cannot be completed on

schedule and within budget unless good software project

management techniques are enforced. However, a thorough

planning of the progress of a project is crucial for effective

management of the project. Planning a large scale software (or

another type of) project involves Work Packages (WPs). A

work package defines not just the work product but also the

staffing requirements, duration, resources, name of the

responsible individual, and acceptance criteria for the work

product [2]. The work packages are usually obtained from a

Work Breakdown Structure. Given a fixed number of WPs for

a fixed number of projects, there exists an optimal WPs

assignment to time-slots such that the project completion time

is minimized. WP ordering, one can find an optimal staff

distribution into teams. This is an NP-hard problem problem

for which heuristic methods have proved to be effective and

popular among other methods.

Barreto et al [3] applied constraint satisfaction to staff

software projects. However, their goal differs from ours in that

they aimed at allocating maintenance requests to the most

qualified team in terms of skills, to the cheapest team, or to the

team having the highest productivity. Bertolino et al[4]

employed performance engineering technique, based on the

use of queuing models and UML performance profiles, to

assist project managers in making decisions related to

organization of teams and tasks.

Karova et al [5] presented implementation of GA for Project

Planning and Project Scheduling Problem. Their algorithm

was tested on a set of randomly generated problems and their

results show that GA can be used by project manager to better

simulate realistic situations and reorder the WPs and delay the

project deadline, if the need arises.

SFLA is a memetic meta-heuristic that is based on evolution

of memes carried by interactive individuals and a global

exchange of information among the frog population [6]. It

combines the strengths of Memetic Algorithm (MA) and the

social behaviour-based Particle Swarm Optimization (PSO)

Algorithm. In SFLA, the population consists of frogs

(solutions) that is partitioned into subsets referred to as

memeplexes. The different memeplexes are considered

different cultures of frogs, each performing a local search [7].

Within each memeplex, the individual frogs hold ideas, that

can be influenced by the ideas of other frogs, and evolve

through a process of memetic evolution. After a defined

number of memetic evolution steps, ideas are passed among

memeplexes in a shuffling process [8]. The local search and

the shuffling processes are repeated until a specified

convergence criterion is satisfied.

In this paper, we implemented SFLA and tested it on a set of

randomly generated problems of software project planning.

We make two primary contributions in this paper: (1) SFLA is

applied to solve Software Project Planning Problem, and to the

best of our knowledge, this is the first paper in the SBSE

literature to employ SFLA. (2) The results of the application

Vol 7. No. 1 - March, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

148

of SFLA in comparison with GA are reported. The obtained

results provide evidence to support the claim that SFLA is

superior to GA

2. PROBLEM STATEMENT

Planning a large scale software project involves a set of

activities called Work Packages (WPs) , and an allocation of

programmers to teams and teams to work packages [9]. Given

a fixed number of Work Packages, there exists an optimal WP

ordering and optimal people distribution into teams. Such

resource allocation problems are instances of the ‘bin packing

problem’, which belong to the class of Non-deterministic

Polynomial-time hard (NP-hard) problems. In this paper, we

focus on finding an optimal WP scheduling: Given a project

that consists of a set WP’s ={wp1, wp2,……,wpn} of tasks to

be performed, a set of dependency constraints DEPS =

{(wpi,wpj),…..(wpin,wpjn)}, such that 0 <i < n and 0 <j < n and

j ≠i of dependencies between tasks, where wpj requires wpi to

be completed first. We seek an optimal ordering of tasks in the

sequence in which they should be completed without violating

dependency constraints such that the overall project

completion time is minimized.

3. PROBLEM MODELLING

The problem is modelled with a Design Matrix Structure

(DSM), an efficient method which shows the relationships

between the activities in a project. It can be represented as an

n x n multi-dimensional array representing tasks and

precedence rule. The diagonal elements represent the tasks and

off diagonal elements specify the precedence relationships.

Using a scheduling problem consisting of two software

projects, each containing 5 WPs which represent the tasks

involved in the development of the projects, the corresponding

DSM can be represented as shown in Figure 1

 Project 1 project 2

1

 2

 1 3

 4

1 1 5

Figure 1: DSM model of project scheduling problem.

From above figure, the DSM indicates that WP1 precedes WP5, WP2 precedes WP3, WP3 precedes WP5, WP6 precedes WP8

and WP9, and WP8 precedes WP10. The WPs are ordered according to the precedence rule modeled by the above DSM. For

example the orderings below shows correct (a) and incorrect (b) schedules:

1 6 2 8 3 5 9 4 7 10

 (a)

1 3 7 5 2 8 9 4 6 10

 (b)

Figure 2: Correct and incorrect WP orderings.

4. SFLA DESIGN

In general, SFLA works as follows; First, an initial population

of F frogs is created randomly. Afterwards, the frogs are

sorted in a descending order according to their fitness. Then,

the entire population is divided to form memeplexes, within

each memeplex the frogs with the best and the worst fitness

are identified as Xb and Xw respectively. Also, the frog with

the global best fitness is identified as Xg. Then, a process is

applied to improve only the frog with the worst fitness (not all

frogs) in each cycle.

Accordingly, the position of the frog with the worst fitness is

adjusted as follows [10]:

Change in frog position:

 (1)

New position:

 = + ; - Dmax ≤ ≤ Dmax

(2)

6

 7

1 8

1 9

 1 10

Vol 7. No. 1 - March, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

149

 is a random number between 0 and 1, and Dmax is the

maximum allowed change in a frog’s position. If this process

produces a better solution, it is replaced for the worst frog.

Otherwise, the calculations in equations (1) and (2) are

repeated but with respect to the global best frog (i.e. is

replaced with). If no improvement is possible, then a new

solution is randomly generated to replace the worst frog.

Hence, the calculations continue for a specific number of

iterations [8]. The main parameters of SFLA are: population

size F; number of memeplexes m; and number of shuffling

iterations in each memeplex q.

4.1 SFLA For Optimal Project Planning

The SFLA approach in solving project planning and

scheduling problems combines the local search within each

memeplex and global information interchange from parallel

local searches among all memplexes to move towards a global

solution using population-based model of frogs which

represents feasible solutions (correct WP orderings).

4.2 Individual Frog Representation

The position vector of each individual frog represents a

feasible solution of WPs schedules. Each frog is encoded as an

n-sized array; the value of each meme (element of the array)

indicates the position of the WP in the incoming ordered

sequence and the index value represents the WP itself. The

population is a set of F frogs (F WP ordered lists). The frog

schema is shown in figure 3.1

 Frog 1:

 WP1

 WP2 WP10

 Frog 2:

 WP1

 WP2 WP10

 Frog F:

 WP1

 WP2 WP10

Figure 3: The frog schema.

4.3 Fitness Function

The fitness f of a frog is based on the constraints penalties. It is calculated as the sum of penalty points present in each frog with

respect to the precedence rule predefined. Using the above DSM structure and the frog schema, the fitness values of two frogs A

and B is given below:

1 3 5 8 6 2 9 4 7 10

 wp1 wp2 wp3 wp4 wp5 wp6 wp7 wp8 wp9 wp10

Frog A

1 5 2 8 4 9 3 6 7 10

wp1 wp2 wp3 wp4 wp5 wp6 wp7 wp8 wp9 wp10

 Frog B

f(A) = 0 (no violation of precedence rule)

f(B) = 3 (three violations of precedence rule)

The lower the value of f the fitter the frog since the fitness is calculated based on penalties.

Pos 4 Pos 3 ………. Pos 10

Pos 1 Pos 3 ………. Pos 6

Pos 2 Pos 7 ………. Pos 9

Vol 7. No. 1 - March, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

150

4.4 Formation Of Memeplex

Memeplexes are constructed by partitioning the initial population of frogs. The entire population is divided into m memeplexes,

each containing n frogs. In this process, the first frog goes to the first memeplex, the second frog goes to the second memeplex,

frog m goes to the mth memeplex, and frog m+1 goes back to the first memeplex and so on as shown in Figure 4.

Figure 4: Formation of Memeplexes

4.5 Local Exploration

This is the part of the algorithm where the frog with worst performance in each memeplex is improved and updated. Within each

memeplex, the worst performance frog is updated according to the following simple rule:

The new frog is obtained by randomly selecting a subsequence in to replace the corresponding position in , while

keeping the other positions in unchanged or if violating the precedence constraints , just randomly relocate the remaining

positions to form a new feasible solution. The idea is illustrated in Figure 5. If the fitness of is better than that of ,

then replace with , otherwise replace with the global best and carry out the same operation as the above to

generate another new feasible solution . If its fitness is better than that of , then replace with this new ,

otherwise randomly generate a new feasible solution to replace , where;

 = new updated frog, = worst frog, = best frog and = global best frog

Xb

1 3 5 8 6 2 9 4 7 10

wp1 wp2 wp3 wp4 wp5 wp6 wp7 wp8 wp9 wp10

 Xw

1 5 2 8 4 9 3 6 7 10

wp1 wp2 wp3 wp4 wp5 wp6 wp7 wp8 wp9 wp10

Xnew

1 4 5 8 6 2 9 3 7 10

wp1 wp2 wp3 wp4 wp5 wp6 wp7 wp8 wp9 wp10

Figure 5: Update (Xnew) in a Submemeplex

This operation is performed for a specific number of iteration.

The number of iteration q here determines the time spent for

local meme transference and in turn the efficiency of the local

search. Intuitively we chose q to be dependent on the problem

size with the value q = 2n, where n is the number of frogs in a

memeplex.

4.6 Convergence

Vol 7. No. 1 - March, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

151

The convergence criterion we used is given by the formula:

[|f (1)| - | f (F)|] < Є

Where f represents the fitness and Є is the convergence

tolerance. In order to ensure high convergence rate the value

of Є is set to 1. The solution converges when at least 90 % of

the frogs in the population have a fitness value 0.

5. COMPUTATIONAL EXPERIMENTS, RESULTS AND

 DISCUSSION

The algorithm is coded in JAVA and executed on HP 655

pavilion laptop with Windows 7 operating system, AMD E2-

1800 APU 1.7 GHz CPU and 4.00GB RAM.

The proposed SFLA is tested on randomly generated problems

with 10, 20, 30, and 50 WPs respectively. The number of

memeplex is set to 5 and number of iterations per memeplex is

2n where n is the number of frogs in a memeplex. To avoid

any misinterpretation of the optimization results related to the

choice of any particular initial parameters, all results are

obtained by averaging over 20 independent runs. The fitness

value is given by the sum of penalty points and in each test the

population size is varied as (30, 50, 80 and 100). The SFLA

results and GA results extracted from [5] are presented in

Table 1.

From the table of results, it is clear that SFLA is superior to

GA. For GA, the best results are obtained when WP = 30.

However, for SFLA the best results are obtained when WP

=50, in fact, the larger the size of WP the better the result. The

implication of these results is that, apart from the fact that

SFLA is more effective than GA, it has an added advantage of

being able to handle projects with larger size of WPs. For both

SFLA and GA, the optimal value (optimal schedule) is

obtained when the population size is 80.

Table 1: SFLA results versus GA results

Population size N WP’s Fitness SFLA Fitness GA [1]

30 10 14.80 16.1

 20 8.30 10.00

 30 3.35 3.50

 50 2.85 4.00

50 10 13.10 15.75

 20 7.30 9.80

 30 2.65 2.80

 50 2.35 3.40

80 10 12.15 15.55

 20 7.23 9.85

 30 2.45 2.60

 50 2.30 3.05

100 10 12.95 15.90

 20 8.22 9.60

 30 3.03 3.05

 50 2.75 4.25

6. CONCLUSION

The problem of assigning optimal WP to timeslots with a view

to minimizing project completion time has been solved using

SFLA. Experimental results show that the proposed SFLA is

effective in finding optimal solution. Comparison of SFLA

results with GA results reveals that SFLA outperforms GA.

Results also show that while the best performance of GA

occurs when WP = 30, the performance of SFLA improves as

WP increases. In the future, the application of SFLA to multi-

objective version of the problem will be considered as an

extension of this study

Vol 7. No. 1 - March, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

152

REFERENCES

[1] Stylianou, C., Andreou, A. S., “A multi-objective

genetic algorithm for intelligent software project

scheduling and team staffing”. Intelligent Decision

Technologies 7(1): pp. 59 -80, 2013.

[2] Schach, S. R., “Object-Oriented and Classical

Software Engineering”, McGrawHill, 2002.

[3] Barreto, A., Barros, M. and Werner, L. “Staffing a

Software Project: A Constraint Satisfaction and

Optimization-based Approach.Computers and

Operations Research, 2008 .

[4] Bertolino, A., Marchetti, E. and Mirandola, R.

“Performance Measures for Supporting Project

Manager Decisions. Software Process: Improvement

and Practice, 12(2): pp. 141–164, 2007.

[5] Karova, M., Petkova, J., Smarkov, V. “A Genetic

Algorithm for Project Planning Problem”, in

Proceedings International Scientific Conference

Computer Science’2008, pp. 647 – 651. 2008.

[6] Xue-hui L., Ye Y., Xia L. “Solving TSP with

Shuffled Frog-Leaping Algorithm”. ISDA, vol. 3,

pp.228-232, 2008. Eighth International Conference

on Intelligent Systems Design and Applications,

2008

[7] Elbeltagi, E., Hegazy, T. and Grierson, D.,

“Comparison among five evolutionary-based

optimization algorithms”. J. Adv. Engng.

Informatics, 2005, 19, pp. 43 – 53

[8] Shepperd M.J. and Schofield C. “Estimating

software project effort using analogies”. IEEE

Transactions on Software Engineering 23(11): pp.

736–743, 1997.

[9] Jalote, P., “Software project management in

practice”, Addison Wesley, 2004

[10] Eusuff, M.M. and Lansey, K.E., “Optimization of

water distribution network design using the shuffled frog

leaping algorithm”. J. Water Resour. Planning Mgmt, 2003,

129, pp. 210 - 225

[11] Gueorguiev S., Harman M., Antoniol G., “Software

Project Planning for Robustness and Completion Time in the

Presence of Uncertainty using Multi-Objective Search Based

Software Engineering”. in Proceedings of the annual

conference on Genetic and evolutionary computation

(GECCO’09), July, 8–12, 2009, Montréal Québec, Canada.

2009.

[12] Ren, J., Harman, M., and Penta, M. D.,

“Cooperative Co-evolutionary Optimization of Software

Project Staff Assignments and Job Scheduling”. M. B.Cohen

and M. O. Cinneide (Eds.): SSBSE 2011, LNCS 6956, pp.

127-141, 2011.

[13] Maia, C. L. B., Nascimento, T. F., Freitas, F. G.,

Souza, J. T., “An Evolutionary Optimization

Approach to Software Test Case Allocation”, CIIT

2011, CCIS 250, pp.637-641, Springer-Verlag

[14] Ren, J., Harman, M., Penta, M. D., “Cooperative co-

evolutionary optimization of software project staff

assignments and job scheduling”, SSBSE 2011,

LNCS 6956, pp.127-141, Springer-Verlag

[15] Rodriguez, D., Ruiz, M., Riquelme, J. C.,

“Multiobjective simulation of optimization in

software project management”, in Proceedings of

the 13th annual conference on Genetic and

evolutionary computation (GECCO’ 11), pp. 1883 -

1890, 2011.

APPENDIX: PSEUDOCODE FOR SFLA

Begin;

 Generate random population of P frogs;

 For each individual i in P: calculate fitness (i);

 Sort the population P in descending order of their fitness;

 Divide P into m memeplexes;

 For each memeplex;

 Determine the best and worst frogs;

 Improve the worst frog position

 Repeat for a specific number of iterations;

 End;

 Combine the evolved memeplexes;

 Sort the population P in descending order of their

fitness;

 Check if termination criterion is satisfied;

End;

Authors’ Brief

Dr. R. O. Oladele is a Faculty at the

Department of Computer Science,

University of Ilorin, Nigeria. He obtained

a Bachelor of Science Degree in

Mathematics at the University of Ilorin,

Ilorin, Nigeria in 1992, a Master of

Science Degree in Mathematics at the

University of Ilorin, Ilorin in 1998 and a

PhD Degree in Computer Science from the University of

Ilorin, Ilorin, Nigeria in 2013. His research interests are

Algorithms, Combinatorics, Optimization, Computational

Complexity Theory, and Software Engineering.

Mr. H. A. Mojeed is currently on

national youth service at Kebbi State,

Nigeria. He obtained a Bachelor of

Science Degree in Computer Science at

the University of Ilorin, Ilorin, Nigeria in

2013. His research interests are

Algorithms, Software Engineering and

Optimization.

