
A SIMULATION APPROACH TO AN OPTIMAL DAILY BANDWIDTH ALLOCATION IN A 250

NODES VIRTUAL PRIVATE NETWORK (VPN)

J.F. Opadiji,

jopadiji@yahoo.com

 Dept. of Electrical Engineering,

University of Ilorin, Ilorin, Nigeria

&

T.A. Abdul – Hameed

taoabdulhameed@yahoo.co.uk

Dept. of Electrical/Electronics Engineering

Federal Polytechnic, Ede, Nigeria

All correspondence to the 2
nd
 Author

Abstract

In order to make better use of available network

resources, there is a need for planning the

bandwidth allocation to communication demands.

In this study a bandwidth allocation problem was

formulated with three major constraints. A dynamic

mathematical model was developed and a Genetic

Algorithm method was adopted for an optimization

solution. The GA algorithm was implemented with

Java programming language. The model was

simulated for ten thousand (10,000) generations.

Two hundred and fifty (250) nodes were simulated

differently under varying bandwidths values of

64Kbps, 128Kbps, 256Kbps, 512Kbps, 1Mbps,

2Mbps, 4Mbps, and 8Mbps for a period of twenty

four (24) hours. Simulation results show that

utilization factors can be as high as ninety nine

percent if optimization conditions are scrupulously

observed.

Key Words: Bandwidth, Genetic Algorithm

(GA), Simulation, Model, Virtual

 Private Network (VPN)

1.0 Introduction

A virtual private network (VPN) is an extended

network within a network that uses a public

telecommunication infrastructure and their

technology such as the Internet, to provide remote

offices or individual users with secure access to

their organization's network. It aims to avoid an

expensive system of owned or leased lines that can

be used by only one organization. The goal of a

VPN is to provide the organization with the same

secure capabilities but at a much lower cost.

Without proactive management, network capacity

fills with inappropriate traffic and viruses, and the

connection becomes ineffective. [1, 2, 3]

Virtual Private Network (VPN) combines two

concepts: virtual networking and private

networking. In a virtual network, geographically

distributed and remote nodes can interact with each

other the way they do in a network where the nodes

are collocated. The topology of the virtual network

is independent of the physical topology of the

facilities used to support it. A virtual network is

managed as a single administrative entity [4, 5,6].

Bandwidth optimization is one of many concerns of

networking engineers. With the exponential growth

of digitally rich contents and Internet computing

demands for the last few years, the users often

perceive that there is insufficient bandwidth

available to completely satisfy their needs whereas

the problem lies at the end of management who

fails to identify certain bandwidth eating

unproductive applications [5]. Even the simplest

bandwidth optimization techniques can reduce

bandwidth costs significantly.

Bandwidth in developing countries is so expensive

that most organizations and institutions cannot

afford to purchase a sufficient quantity for the

users.

2.0 Bandwidth Constrained Optimization

Problems

Several studies make use of Genetic Algorithm

(GA) based techniques to solve network problems.

The motivation behind GA’s in nonlinear

optimization problems is that the problem can be

expressed such that natural evolution, as reported,

can provide an attractive paradigm for

implementing general nonlinear searches [7, 8, 9].

1119

3.0 System Modeling & Problem

 Formulation
A model is a simplified representation of the

relevant aspects of an actual system or a process. A

mathematical model is the characterization of a

process, concept or object in terms of explicit

mathematical forms. In a mathematical model, the

components of an object or system and the

relationships of its parts are expressed as

mathematical symbols. A dynamic model explains

how a situation or system changes. [10s]

Consider a virtual network consisting of “n” nodes

represented by n1, n2, n3, --------, nn as shown in

Fig.3.1 below.

Fig.3.1: A schematic of a typical virtual private network

Assuming the total available bandwidth for all the nodes at any instant is “BW”. We try to find an optimal VP

bandwidth assignment, which maximizes the total expected network throughput, given the network topology;

expected Origin-Destination (OD) traffic loads; and link capacities. An optimal allocation of bandwidth among

all VPs such that all demands across each node will always be satisfactorily met is the goal. Each node is

considered to behave as a selfish overlay network.

 Terms Notation

Minimum Required Bandwidth at node ni. bmi

Available Bandwidth at node ni bi

Throughput Request at node ni. tri

Allocated Throughput at node ni. tai

Total Available Bandwidth for all the nodes at a given time. BW

time (evaluation period) t

In this project work we assumed a single VP’s between an OD pair.

∑
=

k

i

ai
t

1

max (1) s.t. ∑
=

k

i

i
b

1

 ≤ BW (2)

 tai ≥ tri ∀ i = 1,2,3,-------,k (3) bi ≥ bmi ∀ i = 1,2,3, -------,k (4)

To solve the above mathematical model taking the

three identified constraints into consideration,

statistical characteristics of the bandwidth demand

functions from each node at any instant (tri –

Throughput Request at node ni) should be known.

We assume that each function tri is derived from an

appropriate probability density function for

bandwidth demand. By considering throughput as

"fluid flow", an optimal solution can be searched

for.

4.0 Model Simulation and Results

The implementation tool for the model was Java

program. (The source code is not included in this

paper for brevity purpose). The number of

generations matters a lot in deciding the fitness

value and subsequently in arriving at a value very

close to or equal to the optimal value. The model

was simulated for ten thousand (10,000)

generations in order to obtain a better solution. Two

hundred and fifty (250) nodes were simulated

differently under varying bandwidths values of

64Kbps, 128Kbps, 256Kbps, 512Kbps, 1Mbps,

2Mbps, 4Mbps, and 8Mbps for a period of twenty

four (24) hours.The results obtained from the model

simulation on daily bandwidth consumption and

utilization are as tabulated in tables 1 and 2 whilst

the utilization curve is as in figure 1.

1120

World Academy of Science, Engineering and Technology 80 2011

�

�

�
�
�
��
��
�: D

a
ily
 B
a
n
d
w
id
th
 C
o
n
su
m
p
tio
n
 fo
r 2

5
0
 N
o
d
es
�

P
erio

d

@

6
4
K
b
p
s

@

1
2
8
K
b
p

s

@

2
5
6
K
b
p
s

@

5
1
2
K
b
p

s

@

1
M
b
p
s

@

2
M
b
p
s

@

4
M
b
p
s

@

8
M
b
p
s

1
2

m
id
n
ig
h
t

6
5
2
8
0

1
3
0
0
2
0

2
5
8
4
8
0

5
2
3
0
8
0

1
0
4
7
9
0
0

2
0
9
5
6
2
0

4
1
9
2
4
4
0

8
3
8
7
7
6
0

1
a
.m

6
5
2
8
0

1
3
0
0
2
0

2
6
1
1
8
0

5
2
4
2
8
0

1
0
4
7
9
0
0

2
0
9
7
0
0
0

4
1
9
2
8
0
0

8
3
8
7
7
6
0

2
a
.m

6
5
2
8
0

1
3
0
0
2
0

2
6
1
9
6
0

5
2
4
2
8
0

1
0
4
7
9
0
0

2
0
9
7
0
0
0

4
1
9
3
2
8
0

8
3
8
8
3
0
0

3
a
.m

6
5
2
8
0

1
3
0
0
2
0

2
6
1
9
6
0

5
2
4
2
8
0

1
0
4
7
9
0
0

2
0
9
7
0
0
0

4
1
9
4
0
0
0

8
3
8
8
4
2
0

4
a
.m

6
5
2
8
0

1
3
0
4
4
0

2
6
1
9
6
0

5
2
4
2
8
0

1
0
4
7
9
0
0

2
0
9
7
0
0
0

4
1
9
4
2
4
0

8
3
8
8
4
2
0

5
a
.m

6
5
2
8
0

1
3
0
4
4
0

2
6
1
9
6
0

5
2
4
2
8
0

1
0
4
7
9
0
0

2
0
9
7
0
0
0

4
1
9
4
2
4
0

8
3
8
8
4
2
0

6
a
.m

6
5
2
8
0

1
3
0
4
4
0

2
6
1
9
6
0

5
2
4
2
8
0

1
0
4
7
9
0
0

2
0
9
7
0
0
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

7
a
.m

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
7
9
0
0

2
0
9
7
0
0
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

8
a
.m

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
2
0
0

2
0
9
7
0
0
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

9
a
.m

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
2
0
0

2
0
9
7
0
0
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

1
0
a
.m

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
2
0
0

2
0
9
7
0
0
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

1
1
a
.m

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
2
0
0

2
0
9
7
0
0
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

1
2
n
o
o
n

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
0
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

1
p
.m

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

2
p
.m

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

3
p
.m

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

4
p
.m

6
5
2
8
0

1
3
0
8
6
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

5
p
.m

6
5
2
8
0

1
3
0
9
2
0

2
6
2
0
8
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

6
p
.m

6
5
2
8
0

1
3
0
9
2
0

2
6
2
1
4
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

7
p
.m

6
5
2
8
0

1
3
0
9
2
0

2
6
2
1
4
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

8
p
.m

6
5
2
8
0

1
3
0
9
2
0

2
6
2
1
4
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

9
p
.m

6
5
2
8
0

1
3
0
9
2
0

2
6
2
1
4
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

1
0
p
.m

6
5
2
8
0

1
3
0
9
2
0

2
6
2
1
4
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
2
4
0

8
3
8
8
6
0
0

1
1
p
.m

6
5
2
8
0

1
3
0
9
2
0

2
6
2
1
4
0

5
2
4
2
8
0

1
0
4
8
3
2
0

2
0
9
7
0
6
0

4
1
9
4
3
0
0

8
3
8
8
6
0
0

�

World Academy of Science, Engineering and Technology 80 2011

1121

�

�

T
a
b
le

2
: D

a
ily
 B
a
n
d
w
id
th
 U
tiliza

tio
n
 fo
r 2

5
0
 N
o
d
es
�

P
erio

d

@

6
4
K
b
p
s

@

1
2
8
K
b
p
s

@

2
5
6
K
b
p
s

@

5
1
2
K
b
p
s

@

1
M
b
p
s

@

2
M
b
p
s

@

4
M
b
p
s

@

8
M
b
p
s

1
2

m
id
n
ig
h
t

0
.9
9
6
0
9
4

0
.9
9
1
9
7
4

0
.9
8
6
0
2
3

0
.9
9
7
6
9
6

0
.9
9
9
3
5
5

0
.9
9
9
2
6
9

0
.9
9
9
5
5
6

0
.9
9
9
8
9
9

1
a
.m

0
.9
9
6
0
9
4

0
.9
9
1
9
7
4

0
.9
9
6
3
2
3

0
.9
9
9
9
8
5

0
.9
9
9
3
5
5

0
.9
9
9
9
2
8

0
.9
9
9
6
4
1

0
.9
9
9
8
9
9

2
a
.m

0
.9
9
6
0
9
4

0
.9
9
1
9
7
4

0
.9
9
9
2
9
8

0
.9
9
9
9
8
5

0
.9
9
9
3
5
5

0
.9
9
9
9
2
8

0
.9
9
9
7
5
6

0
.9
9
9
9
6
3

3
a
.m

0
.9
9
6
0
9
4

0
.9
9
1
9
7
4

0
.9
9
9
2
9
8

0
.9
9
9
9
8
5

0
.9
9
9
3
5
5

0
.9
9
9
9
2
8

0
.9
9
9
9
2
8

0
.9
9
9
9
7
8

4
a
.m

0
.9
9
6
0
9
4

0
.9
9
5
1
7
8

0
.9
9
9
2
9
8

0
.9
9
9
9
8
5

0
.9
9
9
3
5
5

0
.9
9
9
9
2
8

0
.9
9
9
9
8
5

0
.9
9
9
9
7
8

5
a
.m

0
.9
9
6
0
9
4

0
.9
9
5
1
7
8

0
.9
9
9
2
9
8

0
.9
9
9
9
8
5

0
.9
9
9
3
5
5

0
.9
9
9
9
2
8

0
.9
9
9
9
8
5

0
.9
9
9
9
7
8

6
a
.m

0
.9
9
6
0
9
4

0
.9
9
5
1
7
8

0
.9
9
9
2
9
8

0
.9
9
9
9
8
5

0
.9
9
9
3
5
5

0
.9
9
9
9
2
8

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

7
a
.m

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
3
5
5

0
.9
9
9
9
2
8

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

8
a
.m

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
6
4
1

0
.9
9
9
9
2
8

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

9
a
.m

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
6
4
1

0
.9
9
9
9
2
8

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

1
0
a
.m

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
6
4
1

0
.9
9
9
9
2
8

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

1
1
a
.m

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
6
4
1

0
.9
9
9
9
2
8

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

1
2
n
o
o
n

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
2
8

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

1
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

2
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

3
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

4
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
3
8
3

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

5
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
8
4

0
.9
9
9
7
5
6

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

6
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
8
4

0
.9
9
9
9
8
5

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

7
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
8
4

0
.9
9
9
9
8
5

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

8
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
8
4

0
.9
9
9
9
8
5

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

9
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
8
4

0
.9
9
9
9
8
5

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

1
0
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
8
4

0
.9
9
9
9
8
5

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
8
5

0
.9
9
9
9
9
9

1
1
p
.m

0
.9
9
6
0
9
4

0
.9
9
8
8
4

0
.9
9
9
9
8
5

0
.9
9
9
9
8
5

0
.9
9
9
7
5
6

0
.9
9
9
9
5
6

0
.9
9
9
9
9
9

0
.9
9
9
9
9
9

World Academy of Science, Engineering and Technology 80 2011

1122

�

�

 F
IG

U
R
E
 1
: D

A
IL
Y
 B
A
N
D
W
ID

T
H
 U
T
IL
IZ
A
T
IO

N
 F
O
R
 2
5
0
 N
O
D
E
S

0
.9
8
6

0
.9
8
7

0
.9
8
8

0
.9
8
9

0
.9
9

0
.9
9
1

0
.9
9
2

0
.9
9
3

0
.9
9
4

0
.9
9
5

0
.9
9
6

0
.9
9
7

0
.9
9
8

0
.9
9
9 1

12m
idnight

1am

2am

3am

4am

5am

6am

7am

8am

9am

10am

11am

12pm

1pm

2pm

3pm

4pm

5pm

6pm

7pm

8pm

9pm

10pm

11pm

t
im
e

utilization factor

6
4
K
b
p
s

1
2
8
K
b
p
s

2
5
6
K
b
p
s

5
1
2
K
b
p
s

1
M
b
p
s

2
M
b
p
s

4
M
b
p
s

8
M
b
p
s

World Academy of Science, Engineering and Technology 80 2011

1123

From tables 1 and 2 as well as figure 1, the

following inferences could be inferred for various

nodes at different bandwidths.

(i) The bandwidth consumption varies

randomly with time.

(ii) With the 250 nodes considered in this work,

it gets to a point where there is a

considerable increase in the bandwidth

consumption and the curve becomes non-

linear. The implication is that bandwidth is

wasted whenever there is no proportional

increment in available nodes.

(iii) There is always a critical point in

bandwidth availability at which further

increase in available bandwidth (BW) did

not improve the utilization factor for the

nodes. In actual fact the utilization factor

starts decreasing. If the cost of purchase of

bandwidth is to be minimized and available

bandwidth optimized, VPN must not be

operated above the point.

(iv) Each node acts adaptively and optimally to

the dynamics of the external environment so

that the available bandwidths are shared

optimally for each node despite the fact that

each node behaves as a selfish node.

(v) The utilization factor at the optimal

condition can be as high as 99.99% (250

nodes @ 4096/8192kbps).

Conclusion

This study was on bandwidth optimization for

virtual private network. Based on experience, a

problem was formulated taken cognizance of the

constraints. A dynamic mathematical model was

developed. The study adopted a Genetic Algorithm

method for the optimization solution in allocation

of bandwidth. The GA algorithm was implemented

with Java programming language. The model was

simulated for ten thousand (10,000) generations in

order to obtain a better solution. Two hundred and

fifty (250) nodes were considered. Each of the

nodes were simulated differently under varying

bandwidths values of 64Kbps, 128Kbps, 256Kbps,

512Kbps, 1Mbps, 2Mbps, 4Mbps, and 8Mbps for a

period of twenty four (24) hours.

Simulation results show that if the cost of purchase

of bandwidth is to be minimized and the available

bandwidth optimized, the number of nodes and

utility must be commensurate with the quantity of

bandwidth purchased by operators of Virtual

Private Network. The utilization factors can be as

high as ninety nine percent if the method proposed

in this study is carefully observed and implemented.

REFERENCES

1. Benvenutti, C. (2007): “Bandwidth

Optimization” AfREN, Abuja, Nigeria.

2. Jaffar, J. (1999): “Resource allocation in
Networks using Abstraction and Constraint

Satisfaction Techniques”, CP’99, LNCS

1713, pp. 204–218.

3. Tanterdtid, S., Steanputtangaul, W., and

Benjapolakul, W. (1997): “Optimizing ATM

network throughput based on Virtual Paths

concept by using Genetic Algorithm”, Proc.

IEEE ICIPS’97, Beijing, 1634–1639.

4. VMware White Paper (2006): “Network

Throughput in a Virtual Infrastructure”, V

Mware Inc., Palo Alto, U.S.A.

5. Sharma, V.; Kumar, V. & Thakur, B.S.:

“Need of Bandwidth Management and

Formulation of Policy Framework for

Effective Utilisation of Internet Services

within a University Campus”, International

Journal of Computer Science and

Communication, Vol. 2, No. 1, January-June

2011, pp. 173-178

6. Banga, V.K., Singh, Y. and Kumar, R.(

2007): “Simulation of Robotic Arm using

Genetic Algorithm and Analytical

Hierachy Process (AHP)”, World Academy

of Science, Engineering and Technology.

7. Goldberg, D. E. (1991): Genetic Algorithm

in search, “optimization and machine

learning”, New York, Addison Wesley.

8. Heitkoetter, J. and Beasley, D. (1994): Eds.
The Hitch-Hiker's Guide to Evolutionary

Computation: A list of Frequently Asked

Questions (FAQ). USENET:

comp.ai.genetic.

rtfm.mit.edu:/pub/usenet/news.answers/ai-

faq/genetic/.

9. Podnar, H. and Skorin-Kapov, J. (2002):
“An application of a genetic algorithm for

throughput optimization in non-broadcast

WDM optical networks with regular

topologies”, Mathematical Communications

7, p.45-59.

1124

World Academy of Science, Engineering and Technology 80 2011

�

�

10. Osuagwu, O. E. (2007): Computer –

Modelling, Research Analysis and

Designing Support System: Oliverson

Industrial Publishing House, Owerri,

Nigeria. P 4-6.

�

�

APPENDIX

SOURCE CODE

/*

 * dynamicbandwidth.java

 *

 * Created on 6 May 2010, 19:32

 *

 * To change this template, choose Tools | Template

Manager

 * and open the template in the editor.

 */

package dynamicbandwidth;

import java.util.*;

import java.io.*;

import java.lang.*;

/**

 *

 * @author Taofeek

 */

public class dynamicbandwidth {

 /** Creates a new instance of dynamicbandwidth

*/

 public void dynamicbandwidth() {

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args)

 {

 boolean generate_throughput = false;

 RandomAccessFile solution_matrix = null;

 long start_time = System.currentTimeMillis();

 long run_time = 0;

 int cpoint = 0;

 int no_of_solutions=8;

 int no_of_nodes = 80;

 int[] max_Throughput_request =new

int[no_of_nodes]; //{5,1,5,2,7,7,8,9,8,1};

 int Max_BW=8388608; int time=60;int mm=0;

 //int[][] initial_population =

{{10,10,10,10,10},{6,5,4,6,5},{7,6,4,3,5},{5,4,3,7,

6}};

 int[][] initial_population = new

int[no_of_solutions][no_of_nodes];

 for (int w=0 ; w < no_of_solutions; w++)

 {

 for (int i = 0; i < no_of_nodes; i++)

 {

 initial_population[w][i] =

(int)(10*Math.random());

 }

 }

 for(int y=0;y<no_of_solutions;y++) //code

for printing

 {

 for(int i=0;i<no_of_nodes;i++)

 {

System.out.print(initial_population[y][i]+"\t");

 }

 System.out.print("\n");

 }

 int[] min_BW_per_node =

{0,

0,0

,0,

0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-

0,0

,0,

0,0

,0,

0,0

,0,

0,0

,0,

0,0

,0,0,0,0,0,0,

0,0};

 int[] dummy_solution=new int[no_of_nodes];

//= {0,0,0,0,0};

 for (int j=0; j<no_of_nodes;j++)

 {

 dummy_solution[j]=0;

//System.out.print(dummy_solution[j]);

 }

 String filename = new String();

 RandomAccessFile Nodes_throughput_file =

null;

 Random fs = new Random();

 filename = String.valueOf(no_of_nodes);

 filename = filename.concat("nodes.dat");

 int hours = 1;

1125

World Academy of Science, Engineering and Technology 80 2011

�

�

 int states = 24;

 int no_of_hours = 24;

 if (generate_throughput == true)

 {

 try

 {

 Nodes_throughput_file = new

RandomAccessFile(filename,"rw");

 } catch (FileNotFoundException ffe) {

 System.out.println("Error: File not found");

System.exit(0);

 }

 for(int i = 0; i < no_of_hours; i++)

 {

 try

 {

 for (int s=0;s<no_of_nodes;s++)

 {

Nodes_throughput_file.writeBytes(String.valueOf(f

s.nextInt(850)));

 Nodes_throughput_file.writeByte(13);

 }

 Nodes_throughput_file.writeByte(13);

 } catch (IOException ioe) {};

 }

 }

 if (generate_throughput == true)

 try

 {

 Nodes_throughput_file.close();

 } catch (IOException ioe) {

 System.out.println("File not found");

System.exit(0);

 }

 do

 {

 int generations=1000;

 int iteration = 0;

 Random p = new Random();

 //filename = "nodes1.dat";

 //filename =

filename.concat(String.valueOf(hours)).concat(".dat

");

 /*if (hours > 1){

 try

 {

 Nodes_throughput_file.close(); // =

new RandomAccessFile(filename,"r");

 }

 catch (IOException ioe) {

 System.out.println("File not found");

System.exit(0);

 }

 }*/

 try

 {

 Nodes_throughput_file = new

RandomAccessFile(filename,"r");

 } catch (FileNotFoundException ffe) {

 System.out.println("File not found");

System.exit(0);

 }

 int[][] mmax_Throughput_request=new

int[24][no_of_nodes];

 for (int u = 0; u < 24; u++)

 {

 String empty = "";

 for (int i = 0; i < no_of_nodes; i++)

 {

 try

 {

 mmax_Throughput_request[u][i] =

Integer.parseInt(Nodes_throughput_file.readLine())

;

 }catch (IOException ioe) {

 System.out.println("Unable to read

data");

 System.exit(0);

 }

 }

 try

 {

 empty =

(Nodes_throughput_file.readLine());

 }catch (IOException ioe) {

 System.out.println("Unable to read

data");

 System.exit(0);

 }

 }

 try

 {

 Nodes_throughput_file.close(); // = new

RandomAccessFile(filename,"r");

 } catch (IOException ioe) {

 System.out.println("File not found");

System.exit(0);

 }

1126

World Academy of Science, Engineering and Technology 80 2011

�

�

 for (int j=0;j<no_of_nodes;j++)

 {

max_Throughput_request[j]=mmax_Throughput_re

quest[hours-1][j];

 }

 for(int f=0;f<no_of_nodes;f++)

 {

 if(max_Throughput_request[f]>mm)

 {

 mm=max_Throughput_request[f];

 }

 }

 //System.out.println(mm);

 int current_population =

initial_population.length;

 chromosome[] solution = new

chromosome[100000];

 for (int i = 0; i < current_population; i++)

 {

 solution[i] = new

chromosome(initial_population[i]);

 }

 for (int i = current_population; i < 100000; i++)

 {

 solution[i] = new

chromosome(dummy_solution);

 }

 population solution_space = new

population(solution);

 double rate = 0.3;

 while (iteration < generations)

 {

 do

 {

 cpoint =

(int)(no_of_nodes*Math.random());

 } while (cpoint == 0 || cpoint ==

(no_of_nodes-1));

 //System.out.println(cpoint);

 for (int j = 0; j < current_population; j++)

 {

solution_space.individual[j].eligibility(Max_BW,ti

me,max_Throughput_request,no_of_nodes,min_B

W_per_node);

 if (solution_space.individual[j].validity == false)

 solution_space.individual[j].fitness = -1;

 if (solution_space.individual[j].validity == true)

 {

solution_space.individual[j].calculate_cost();

solution_space.individual[j].calculate_fitness(no_of

_nodes);

 }

 }

 solution_space.ranking(current_population);

 current_population =

solution_space.mating(current_population,cpoint,no

_of_nodes);

 for (int j = 0; j < current_population; j++)

 {

solution_space.individual[j].eligibility(Max_BW,ti

me,max_Throughput_request,no_of_nodes,min_B

W_per_node);

 if (solution_space.individual[j].validity ==

false)

 solution_space.individual[j].fitness = -1;

 if (solution_space.individual[j].validity ==

true)

 {

solution_space.individual[j].calculate_cost();

solution_space.individual[j].calculate_fitness(no_of

_nodes);

 }

//System.out.println(solution_space.individual[j].val

idity+"\t");

 }

 solution_space.ranking(current_population);

solution_space.mutation(rate,current_population,no

_of_nodes,mm);

 for (int j = 0; j < current_population; j++)

 {

solution_space.individual[j].eligibility(Max_BW,ti

me,max_Throughput_request,no_of_nodes,min_B

W_per_node);

 if (solution_space.individual[j].validity ==

false)

 solution_space.individual[j].fitness = -1;

 if (solution_space.individual[j].validity ==

true)

 {

solution_space.individual[j].calculate_cost();

1127

World Academy of Science, Engineering and Technology 80 2011

�

�

solution_space.individual[j].calculate_fitness(no_of

_nodes);

 }

//System.out.println(solution_space.individual[j].val

idity+"\t");

 }

 solution_space.ranking(current_population);

 for (int k = 0; k < current_population; k++)

System.out.println(solution_space.individual[k].fitn

ess + "\t");

 iteration++;

 System.out.print("\n");

 }

 for(int u=0;u<no_of_nodes;u++)

 {

 System.out.print("ta_"+(u+1)+"=

"+solution_space.individual[0].ta[u]+";"+ "\t");

 }

 System.out.print("\n");

 for(int i=0;i<no_of_nodes;i++)

 {

 System.out.print("bi_"+(i+1)+"=

"+solution_space.individual[0].bi[i]+";" + "\t");

 }

 System.out.print("\n");

 System.out.print("Total bi=

"+solution_space.individual[0].total_bi+

"\t");hours++;

 }while (hours <= states);

 }

}

class chromosome

{

 boolean validity = false;

 double cost = 0.0; int [] bi;

 double fitness = 0.0;int total_bi = 0;

 int [] ta;

 public chromosome(int[] gene_val)

 {

 ta = gene_val;

 }

 public void calculate_cost()

 {

 }

 public void calculate_fitness(int nn)

 {

 fitness=0;

 for(int i=0;i<nn;i++)

 {

 fitness=fitness+ta[i];

 }

 }

public void eligibility(int M_BW,int t,int[]

max_tr,int nn,int[] min_BW_p_node)

 {

 int ttcount = 0; int tcount = 0; int count = 0; bi=

new int[nn];

 total_bi=0;

 /*for(int i = 0; i < nn; i++)

 {

 if(ta[i] > max_tr[i])

//System.out.println("ta=

"+ta[i]+"\t"+"tr="+max_tr[i]);

 {

 count++;

 }

 //System.out.println(count);

 }*/

 for(int w=0;w<nn;w++)

 {

 bi[w]=(ta[w]*t);

 if(bi[w]<min_BW_p_node[w])

 {

 tcount++;

 }

 }

 for(int i=0;i<nn;i++)

 {

 total_bi=total_bi+bi[i];

 if(total_bi>M_BW)

 {

 ttcount++;

 }

 }

if (count > 0 ||tcount > 0 || ttcount > 0)

 validity = false;

else

 validity = true;

}

}

class population

{

 chromosome[] individual;

 public population(chromosome[] citizen)

 {

 individual = citizen;

 }

 public void ranking(long pop)

 {

1128

World Academy of Science, Engineering and Technology 80 2011

�

�

 int i = 0; long p = pop;

 chromosome pivot;

 do

 {

 if (individual[i].fitness <

individual[i+1].fitness)

 {

 pivot = individual[i];

 individual[i] = individual[i+1];

 individual[i+1] = pivot;

 i = 0;

 }

 else

 i++;

 } while(i < (p-1));

 }

 public int mating(int ns, int cp, int nn)

 {

 //codes for mating

 int ce,e;

 int pop=0; int i;

 int[] fp = new int[nn], sp = new int[nn];

 int[] fc = new int[nn], sc = new int[nn];

 for (i = 0; i < ns/2; i+=2)

 {

 //System.out.println(ns);

 for (int r = 0; r < nn; r++)

 {

 fp[r] = individual[i].ta[r];

 sp[r] = individual[i+1].ta[r];

 }

 //x = (int)(cp/16);

 //if((cp%16) > 0) y = 1;

 //ce = cp; //x + y;

 e = 0;

 while (e < cp)

 {

 fc[e] = fp[e];

 sc[e] = sp[e];

 e++;

 }

 //e=ce;

 while (e < nn)

 {

 fc[e] = sp[e];

 sc[e] = fp[e];

 e++;

 }

 for (int r = 0; r < nn; r++)

 {

 individual[(ns/2)+i].ta[r] = fc[r];

//individual[i+(int)(ns/2+0.5)].time = fc;

 individual[(ns/2)+i+1].ta[r] = sc[r];

//individual[(int)((ns+i)/2+0.5)+1].time = sc;

 }

 }

 //pop=i;

 pop = ns; //ns+(int)(ns/2);

 return pop;

 }

 public void mutation(double rt, int pop, int nn,int

m)

 {

 int mutation = (int)(rt*(pop-1)*nn);

 int[] mrow = new int[mutation];

 int[] mcol = new int[mutation];

 int k=0;

 for(int i=0; i<mutation; i++)

 {

 k = (int)((pop)*Math.random());

 if (k == 0)

 {

 i--;

 }

 else

 {

 mrow[i] = k;

 }

 }

 for(int i=0; i<mutation; i++)

 {

 k = (int)((nn)*Math.random());

 mcol[i] = k;

 }

 for (int i = 0; i < mutation; i++)

 {

 individual[mrow[i]].ta[mcol[i]] =

(int)((m+1)*Math.random());

 }

}

}

1129

World Academy of Science, Engineering and Technology 80 2011

