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'}\Et.'::,i.qu mdcpcmlicm'c of any nation depencls
.kuu,\u’-"\' w the _\“m\!\\ of abundant and reliable elec-
wic powet wid the extension of electricity services to
ol aens and vitlages the country, In this work,
the mathematical study of an electric power gener-
ating systern manlel was presented vla optimal con-
pod thavy inan attempt to maximize the power
aengruting output and minimize the cost of genera-
rore The factors affecting power generation al min-
pmum oot are operating efficiencles of generalors,
reel cost and transmisslon losses, but the most effi-
ctent oenerator in the system may not guarantee
mavmum cost as it mag be located in an area where
huel et ix high. We choose the generator capacity
av our control ), since we cannot neglect the
eperation limitatlon on the equipment because of lis
ffespay, the upper bound for u(t) is choosing to be
Lt represent the total capability of the machine
andd O to be the lower bound. The model Is una-
head, generation loss free equilibrium and stability
is estublished, and finally applications using real [ife
dete i presented using one generator and three
fenerator systems respectively,

Kevwords: mathematical model, electric power gen-
erating system, generation loss free equilibrium

1. Introduction

Let there be light and there was light shone forlh!
The world saw it and it was good! And the world
was revolutionized by the light called “electiiciy™
(Manata 1978).

it s no exaggeration that the whole of mankind,
ndeed the entie world economy, is today gov-
@med by the forees of electiicity. We him on the
switch and bight is made, as a resull, we cook our
oo with an electiic cooker, heat our toom with an
ehectric heater and cool them with an air condition-

er, lislen to radlo, walch television, fly a rocket and
Jet fo the moon and olher planels, speak to distant
filends and relalions by means of telephone and the
radio, and Indeed, enjoy many amenities. Behind
these, electicily Is at work,

Several aulhors have worked on the application
of optimal confrol Including numerical application.
(Fister el al,, 1998) worked on optimizing chemo-
therapy in an HIV model, (Fister and Panetta 2000)
worked on oplimal conlrol applied to cell-cycle spe-
cific cancer chemolherapy, (Burden et al., 2003)
considered optimal control applied to immunother-
apy, and (Aguslo, 2008) worked on optimal control
of oxygen absorplion In aqualic systems. Others
whose research touched on application of optimal
conlrol Include (Bao-Zhu and Tao-Tao 2009), (Erika
el al., 2007), (Kalhirgamanathan and Neilzarl
2008), (Kirshner 1990), (Salley 2007), o mention
few. In addition, several researchers have also
worked on the electric power system. These include
(Lee et al., 1988), (Billinton 1994), (Branimir et al.
1993), (Shaldehpour et al., 1988), (Ehsani et al.,
(1968) to name a few, As such, much emphasis has
been on the operational (design) aspect rather than
the economical aspect of an optimal power flow
problem of eleclric power generalion

The purpose of this work therelore, is to qualita-
tively study a mathematical model in the form of an
oplimal control model, (Aderinto and Bamigbola
2010) for a better understanding of electric power
generation, in an attempt 1o minimize the cost of
generalion, and maximize the generator outpul

without violaling operating limitations on the equip-
ment,

2. A mathematical model of an electric power
generating system

Let G(t) vepresent the amount of power generated
by the i generator at time 1, and Ct) the capital
investment on the the i generator at time t. For the
control classes, we choose measurable functions
defined on a fixed interval, a) < u % by (i = 1
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not neglect the physical Jaw gov-

m), since we can 1 the operating

erning power generaling systems an
limitation of the equipment
‘mlConsidering the i generator, the r"ate of ::jh::gs
in generation at time (1) depends on lnvestehiCh I?n
tal C{(t) and the generator outpul Gft) w o
turn, depends on the power input, generator cap <
ity, running cost and transmission losses. Suppo

we have m generators, (i.e., i =1,2,...,m) then, we
have:
iGd'T“l =aq Q;Ci(f)G.(!} - k; Gilt),
i=12..,m (2.1)

where a; g;and k; are respectively the actual mech-
anical/electrical energy from the high pressure fur-
bine and low pressure turbine (capacity of genera-
tor i), the corresponding running cost and the trans-
mission loss rate, which depends on the distance
from the grid centre. Also, the investment on capital
Ci(t) at time (t) is known 1o be dependent on labour
cost s;, maintenance cost v, fuel cost rCi(1)Git),
capacity rate x;, and the cost of transmission to the
grid centre yC(t), because of the physical law thal
governs power generation and the operating limita-
tion on the equipment, we choose the generalor
capacity as our control uj(t), since we cannot neg-
lect the operation limitation on the equipment
because of its lifespan, the upper bound for ujt) is
choosing 1o be 1, to represent the fotal capability of
the machine . Thus, we have:

_G% = (s + y) + rCi{)Gi(t) - xu,(t)Cif1)
+yCft),i=12..m (2.2)

In the above setting an important objective is to
minimize the tolal operating cost incurred in the
process of generating the required quantity of elec-
tric power G at any time (, and the components of
the total operating cost are C(t) and u (t). Thus, the
expression for the objective function is of the form:

J(u )= T[5TC({)+77 u'u }ll,

Where § = (87, 85, ..., 6, ) is the unit expenditure

on the generators, 1 is a parameter to balance the
size of the control,

: The problem to study is to find the control u that
minimizes the cost function:

J(_u )= JE[JIC(Y)'I-I? uru ]J(,
subject to: _

dGift)
5 =a+ aCi(tHAG1) - ki G(t)

&b
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dCit) _ _C,)D G(t) = u(WEC 1) +
3 " (cs},;r é',)no) Z Go, Giltg) = Co aSujs b,

3. Generation loss fre

ili jecti ini
Ziggodzhategy o achieve the objective of attaining

maximum power output at minim.um cost is to min-
imize the electric power generaﬂqp lpsses. I'n this
connection, we determine the equ:llbruum point for
the systemn and establish that the .sysle'm is both sta-
ble and generation loss free at this point.

e equilibrium and

Definition 3.1 Equilibrium point
Let us consider the system:

% = Plx;, x2), and dx2 dt = Q(x;, x,)
A point (x,%, x°) for which P(x;%, x;%) = 0 = Q(x,°,
x3%) is called an equilibrium point or a critical point
of the system. The point (x,% x;%) is a trajectory
point, i.e., the solution stafing at this point, always
remains within reasonable distance of it. The equi-
librium point according fo (Shabi and Abo-Zeid,
2010) is called locally asymptotically stable if it is
locally stable, global attractor i.e., if every solution
converges fo that point as n—a«, and globally
asymplotically stable if it is locally asymptotically
stable and global attraclor. According to (Cao and
Wang, 2003), the equilibrium point x* = (x*,,
Xg,..., "y} is said fo be globally asymptotically sta-
ble if it is locally stable in the sense of Lyapunov
and global attractive, where global aftractivity
means that every trajectory tends to x* as f — +«.
The global asymptotic stability of an equilibrium
point of a differential system can be expressed
according o an elementary result in stability theory
which stated that if the jacobian matrix of function
fy ie., dffx), has eigenvalues with negative real part
at a singular point, then the point is asymptotically
stable. In other words if Jf(x) has eigenvalues with
negative real part at any critical point in IR , then
the critical point is globally asymplotically stable,
(Sabatini, 1990).

Definition 3.2 Generation loss-free
equilibrium

The generation loss-free equilibrium (GLFE) of the
model is obtained by sefting the right hand side of
the equation to zero and taking all the generator
output and production cost terms in the equations
to be zero, Thus, there is a steady state (equilibrium
point) of the system called generation loss free equi-
librium, i.e., a state where there is no generation
loss as t tends 1o infinity (after a long term has
passed). For more,on free equilibrium see (Bhunnu
et al., 2008) and (Castilio-Chavez et al.,, 2007)

oyt |
&
L
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3.3 Stability of a sysiem
5 sald to be locally stable if its weighl
C o ion response decays to zero as | lends to infin-
hmcﬁ,w system is asymplotically stable il and only il
y: Lc. of the characlerizalion function s" = a;s"!
g ze!= a. = 0ie, the finile poles of the transfer
[Z;;‘c.iion anre negalive for the real zeros or have neg-
jive real parts (for complex zeros). In olher words,
2 system 1S asymptotically stable if A, Is negalive
?uhere ), are the eigenvalues.

On the other hand, if each zeros is 1, the syslem
is marginally stable but if its greater than 1, then the
system s unstable, (Craven, 1995); (Burghes and
Graham 1989).

The generation loss-free equilibrium (GLFE) of
the model is oblained as follows, using the
Definitions, we oblain the following equalions:

0=a,+4,C{1)G/(1) -Gt}

i=12,..,m

D(ﬂ"'"o"
A s\lS'Bm |

(3.1a)

0=(s,+v) +rC (G {1) -

(3.1b)
,\',u,(l)C,(I)-i-y,C,({). i=12,.,m

Al the equilibrium points (G“C,)", equation (3.1a
and 3.1b) becomes:

0=a,+g, C‘(I)G,(l)
i=12,..,m

“kG() B2

0=(s,+y,)+r &'(’)él(’) -

. & (3.2b)
.1',11,(!)0(!) +7, C;(I), i=12,.,m

The system is said to be stable if all the eigenvalues
of the system are negalive,

We now state and prove the following theorems
for the local stability of the generalion loss-free

equilibrium at (G,,C,)’ .

Theorem 3.1

The GLFE is asymptotically stable when the basic
loss production number A, - Lo <1 and unstable for
A'i = LO >1

Proof:

To study the stability of different equilibrium points,
we have 1o determine the Jacobian matrices
around the points. Considering the Jacobian of the
matrix at the equilibrium point:

E=(E;F’C|t):r =
AT
xu, Ci—y, Cl_(sl it _)',) * G-a,

\ r,C, 9, G,

B

Joumal of Energy in Southern Africa + Vol 23 No 2 + May 2012

given by
J(G,,C1) =
q, (?,(f)-k, q,(’;"(;)
RC()  =xu,+1G1)+y,
= ”'é'f"" q‘é’.\ 3.3)

nCo =xutnGAy,

Evaluating the Jacobian at the equilibrium point
[, we oblain:

J(E)=
ké—a quA‘— CA'—s+y,.
g, %y, qIH:J’: A:(l )
9,0, rC
r k, Gl:al Xy xu, G-y, C:\i'("'.' +:)
\ 9,6, rC

Finding the determinant of the characteristics of the
jacobian matrix al E, we have:

a. —-A a
Der[J(E)]: " 12120, where
ty  ly =4
G
kG-a
ag = ‘h"__',g—J'“ku
4,G,
N n )
xu, C—y, C—Is,+y
a, = 4, i Yy ?’l: (1 }:,
5 €
kG-a
ay, = L I,\ L
4, G;
xi, C—y, C =18, +y,
= —Xp,+ = i z (5, J')+y,
nG
= (a“—i{)(uu—zl)—uuuu,
e, A2 =(a, +ay)A+a,a, —aya,
which can be written as:
2-pl+g=0
where p = aj) + a3, 9 = 0;;0z2 - 021012
The eigenvalues are:
67
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- E8

Lptdr-da

2
_p-r-4
ie, 4 -'-"‘—‘_2_'—'_
and 4, =‘£L£')i:fi i

-

Thus, the values of 4; and A2 determine the sta-

bility of the loss-free equilibrium. If the Det[J(E]U <0
then the basic loss Production number, Lo < .'l'b

This implies that the generation Joss-free equl '<'
rium point E is asymptotically stable whenever L‘ih
1, (i.e. when all the eigen values are .negahve e
condition holds). For the proof of a similar result see
(Bhunnu et al., 2008), and (Castilio-Chavez el al,,
2007).

By application of the real life dala (as we have
on Table 4.1) we obtained 4 and A, to be
0.0229739 and -0.0229739 respectively.

To obtain the next theorem, we utilize the fol-
lowing assumption by (Cao and Wang 2003).
Assumption 3.1: I f and g, (i = 1,2..,n) are
Lipschitz continuous, then there exist paositive con-
stants k;, |; such that:

() - foll=k) u = ) g(u) - gfoll <kl u-d,
foralu,ve Randi=12,..,n,

Theorem 3.2

Given that Assumption (3.1) is satisfied, then equa-
tions (3.2a) and (3.2b) has a unique equilibrium
point,

Proof

Let £ =(G, C,')T and E =(Q, DY denote the
two equilibrium points of the system model (3.2a)
and (3.2b) where:

&>
p:»

GGG .0 =@0,-0Y
G =G, and D =(h,b.,...£)n)’ '

Then we have:

,+4,C,Gi~k G, =0

Val.+q,C‘.Q,.—kIQi =0 (3.5)
and ‘

(s,+y) —x4, Citr, C; &H*}’, é{ =0
(sr_ +y,.) =xu,Di+ 1, D, &1+}’, bi = 0 (3.5b)

These imply that:

4G, (6-0) =h (G0, and
x-un(z"t"b‘) =G (C;=Di) +
7 (AC[-D.'), i=l,..,n

Using the assumption above, we obtain:

qié,/&,'Qp/SI;/k‘//GI_QE/ (3631 |

and

< Bl G/||Ci- D

é’, - 131'

+Ill)’ll !él- b;!

(3.6b)

Xty

Rewriting equation (3.6a) and (3.6b) respectively 5.

(4-JleX
<(0,0,....0) 3.72)
and

e o} e}

)

é,‘é][ 3 an_ él‘a"':,én _é"

(3.7b)

Multiplying both sides of (3.7a) by (A-| K| L)1 ang
both sides of (3.7b) by (A 4 A g 4 A L) we

obtain:
6-0f6.-¢. {GQ[)
<(0,0,...,0)
and
(-5 “i-ﬁ,‘,...,le,._ﬁ,;)r
<(0,0,...,0)"

which implies that for all i = 12..n,

Gi=0, and CA,. =Lf)\‘.

Hgnce, our model system has a unique equilibrium
point. : .

4. Application to real life data

Electric power generation as a real life endeavour
needs to be studied as a multidisciplinary subject
making use of contributions from the relevant fields.
As shown in the proceeding developments in this
yvork‘ mathematics has a lot to contribute in resolv-
ing practical problems in electric power generation
as well as improving on its advancement. In what
follows, we fashioned solutions to the electric power
generating system model using real life data.

The following tabulated values were obtained

from the National Control Centre, Osogbo, Nigeria.
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qadte &1 Generator paramaters for a one-generator station (National Grig Centre, Osogbo)
- r"‘“',"”"’\TN g Value ———
R f\ o Al Y chanical clectrical eneray available S00MW —_
Ca from the ttane
_ppma m; :ﬁi\i_\fx;::‘mt 0.3217 per unit o
-"‘;"'M"H— fuel cost rate 0.347 per unit
e ;""‘“‘ T acual capacity rate 0.606
- T\""'” rate of enenay loss during transmission 0.002 MW per unit
7 labour cost 200 per h (assumed)
“;‘"——_ maintenance cost #100 per h (assumed)
—" Cost of transmitting from generating station # 0.3421 per unit
—'"f"_f generator actual capacity rate (control) asus<b 0=su=l,
a=0b=1
""5—_ unit of power generating station 1,2
T Parameters to balance the size of the control. (Number 2, 6

of hours for which the machines can be on)

Table 4.2: Generator parameters for a three-generator station (National Grid Centre, Osogbo, Nigeria)

Porameter  Meaning Value
a actual mechanical / electrical energy available from 100MW,100MW,80MW G,
the turbine 100MW, G, 100MW, G3 s80MW,
q total running cost 03217, #0.3112, 0.312Per unit
r fuel cost rate 0.3478 each per unit
X actual capacity rate 0.606, 0.502, 0.402
k rate of energy loss during transmission 0.002 MW each per unit
s labour cost 70 per h (assumed)
v maintenance cost 50 per h (assumed)
Y Cost of transmitting from generating station 0.3421 per unit
u generator actual capacity rate (control) as<u=sb,03=u=09,
a=00,b=10
5 unit of power generating station

1 each

Parameters to balance the size of the control. (Number 3

of hours for which the machines can be on)

4.1 Solution to the electric power
generating model

In this work the desired solution is that power out-
put from the generating station is maximized with
minimum cost of production. The first variable a, is
best described by the actual mechanical [ electrical
energy from the turbine. The second factor x i.e.,
the rate of generation is associated with the capaci-
ty of the generating machine. The third variable nj is
the number of hours for which the generating
machine is going to be on.

There are two systems of differential equations
in the optimality systemn with one involving the con-
troL The systems is solved using an analytical
method. (Matilde, 2009); (Otarod, 2008): (Pope et
al., 1998): (Shepley. 1966) and (Weisstein, 2010).
and iterative method with fourth-order Runge-
Kutta scheme, (Jain, 1983); (Hosking et al., 1996)

and (Eric. 2003); (Pingping 2009); (Naevadal

2003). The controls are updated at the end of each
iteration using the formula for optimal controls.
The problem under consideration is:

Joumal of Energy in Southem Africa » Vol 23 No 2 + May 2012

Minimize
-fconds.
e 5
subject to: '
42
dG( a,+C,(1)g,G,(1)-kG,(¢) B
%_(w)m O I
i —u,-(l)x, ;(1)'*‘?': (!)
With '
Gilty)=Gy, Cle,)=C,, a; <u,<b,
89
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Table 4.4: Analytical solution for gpe. e

n

By the Langrangian we have: electric power mode| Erator
F=01,u=01,0203. T T

L(G,Cou, 4,4, M, N)= G = 79050 |

lcb"C, + t]u,ru,] +A[a, +C,(0)g,G,(1)-,G, (1) U C \

01 312817575  390.03555] ————

#4a[(s,+ )= 5 0)+nC )6 ) ) 02 322625660 390331405 ———_

03 332843022 39087069 ————_

*ZM =)+ N ~a,), 04 343488833 391653107 ———
sl

where M,..,Mp,N,...N,, 20 are penalty numbers 0.5  354.583257 39267383

e 06  366.147464 39394797
i

e 07 378203684 395460387

Mi (b - u) = ON{u; - o)) = 0, at ;" 08  390.775265 397216137

/

403.886734 39977
Thus, using the data in Tables 4.1 and 4.2, the com- (l)g A9 9825]];
putations for the numerical and analytical solution . . x

are obtained respectively as follows.

Table 4.3: Numerical solution for one-generator electric power model

h=005u=01,0203..,1.0,G = 782.65698 D

3] C Ji=1 Jhy=1=4 =g

5=1,7=6 0=21=6 s y-¢ —

01 383.975551 384.035551 760010902 304004353 ——

02 385.231445 385.471445 770.,702890 308281156 ——

03 386.490626 387.030626 773521252 " 3094.083008——
04 387.7531012 388.713101 776.466202 3105.864808
05 389.018880 390.518880 779.537760 3118.15104

0.6 390.287973 392.447973 782.735416 3130941664
07 391.560387 394.500387 786.060774 3144 24309
08 392.836131 396.676131 789.512262 3158.049048
09 394.115214 398.975214 793.090428 3172.361712
1.0 394.926917 400.926917 795.853834 3183415336

Table 4.5: Numerical solution for a three-generators electric power model

h=005u=02 03,04,..,09,5 = ,n=3i=123

u G G Cs Jatty =1 Jalt =6
0.2 186.95889 186.63370 186.32130 560.27389 3361.64336
03 187.90813 187.56171 186.38327 562.66311 3375.97864
04 188.86003 188.20629 187.57888 566.08521 3396.51124
0.5 189.81461 189.33645 188.20943 569.63048 3417.78290
06 190.63340 189.78621 188.84115 572.50077 3435.00463
0.7 191.73181 19057893 189.47405 576.19479 3457.16875
0.8 191.91594 191.37349 190.10813 579.15756 3474.94538
09 193.11363 192.16990 190.74339 583.23692 3499.42155
Gl 99.9500
G2 99850
G3 , 77.920

; . May 2012
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Table 4.6: Numerical solutlon for a three-generators electric power model
a 6:

3 .. 096=1h=3i=1 2,3,C;, Cg Cyin Table 2

,,..—-Av—'*; uy Uy Jatty =1 3,{3’;1 |g:36
. U 54 05 £65.82385 194311
T gg 06 567.03764 3407 72584
i 06 0.7 57237487 3434 24923
007 08 57579047 3454,74280
05 ' 0.9 579.66860 3478.01215
¢ o] ' 07 572.61170 343567021
X ik ' ' 57779656 3466.77933
‘ ; : '. 576.73028 3460.38170
: 09 ; . 579.10297 3474.61780
——08 0.7 05 574.84430 3449.06581

4.2 piscussion of results -
From these tables, it can be established that the
model gave the maximum generalor output so far,
and that the more we generate the more we spend
on it. Therefore, the choice of u;is greatly depend-
ent on the number of generating machines that are
available and the number of hours or the duralion
in which the generation is to be carried oul. Thus u;
- 08 uy=07,anduz= 0.5 is recommended for
the three generalors system above with J =
574.84430 at t; =1 and J = 3449.06581 al l; = 6.
However, the physical capability of the
machines or simply the physical characteristics of
the generating machines is very important and so
the control has to be put into consideration while
trying to minimize the cost. As such, we can moni-
tor the control i.e., we can generate more with min-
imumn cost and still maintain the good condition of
the generating machine. [t was also observed thal
the more time we spend, the more power and the
more cost we have. Thus, from the results obtained,
it is observed that for efficiency and effective func-
tioning of the generating machines in each station,
monitoring of the control is very essential.

5. Conclusion

Electrical engineers are concerned with the technol-
ogy of generation, transmission, distribulion, and
utilization of electric energy. Since electric energy
systems is probably the largest and mosl complex
industry in the world, the electrical engineers offer
some challenging problems in designing future
power system to deliver sufficient electrical energy
in a safe, clean, ecological, and economical man-
ner. Hence, the need to improve the quality and
quantity of electric power generalion is done by
applying optimal control theory to the study of elec-
tric power generation. To a layman, the resull can
be interpreted by saying that, the electric power
generating systems can be expressed mathematical-
ly by using mathematical equations which relates
two or more parameters that can be used to meas-

Journal of Energy in Southern Africa » Vol 23 No 2 - May 2012

ure the condition or state of electric power generat-
ing systems. These parameters enable us to know
the condition and the capacity of the generator,
how to use, and how long to use, sO as {o maximize
the generalor output and minimize the cost of gen-
eration.
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