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ABSTRACT 
 
Oftentimes Box-Jenkins methodology is desirable 
to forecast time series data, appropriate model 
selection could be a challenge. Even when one 
selects the best model, estimation of the 
parameters of the selected model becomes 
another huddle to jump. One possible solution of 
these problems is application of bootstrap 
methods in time series. This method is employed 
as a means of model validation on some classes 
of financial time series of which the monthly Brent 
Crude Oil Price per Barrel belong.  
 
In view of the above problem, this research was 
set to: explore and explain the behavior of the 
series; determine the best model; forecast future 
values of the series; and cross-validate suggested 
model through bootstrap method. With the aid of 
S-Plus programming ware, R language, and 
output by LATEX text ware; ARIMA (2, 1, 2)(2, 0, 
0)[12] was reached as an optimum and 
parsimonious model for the series after a 
bootstrap technique was applied. An arithmetic 
increase in the price was forecast. 

 
 (Keywords: autocorrelation, partial autocorrelation, 
autoregressive integrated moving average, ARIMA, 
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nonoverlapping block bootstrap, moving block 
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INTRODUCTION 
 
Interestingly, according to Google’s NGram, 
“bootstrapping” appeared in print for the first time 
around 1900 and then fell out of use for forty 
years before, coming back into use (in a different 
way) around 1945. The use of the term 
”bootstrap” was derived from the phrase to pull 

oneself up by one’s bootstraps, widely thought to 
be based on a phrase of the eighteenth century’s 
”The Surprising Adventures of Baron 
Munchausen” by Rudolph Erich Raspe: 
 

The Baron had fallen to the bottom of a 
deep lake. Just when it looked like all 
was lost, he thought to pick himself up by 
his own bootstraps. 

 
It is nether the same as the term ”bootstrap” used 
in computer science meaning to boot a computer 
from a set of core instructions, nor ”bootstrap” 
used in business development environment to 
mean starting a business venture without ones 
start-up capital, though the derivations are 
similar. 
 
Oil is one of the most important commodities in 
the world. The fluctuation of crude oil price 
affects global economy, and also affects our daily 
lives. The oil market is quite complex. Crude oil is 
a naturally occurring, yellow-to-black liquid found 
in geologic formations beneath the Earth’s 
surface. It is a fossil fuel which is commonly 
refined into various types of fuels. Crude oil is 
distinguishing from petroleum that includes both 
naturally occurring unprocessed crude oil and 
petroleum products. 
 
The oil price or the price of oil, generally refers to 
the spot price of a barrel of benchmark crude oil. 
The major benchmark oil prices in the world 
contain Brent crude oil price, WTI (West Texas 
Intermediate) crude oil price and Dubai/Oman 
crude oil price. The different types of oil are with 
different density and sulfur content, that leads to 
the oil price difference. Crude oil price are 
commonly measured in USD per barrel. The 
price of oil is affected by global economic 
conditions and supply and demand as well as 
market speculation.  
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The International Energy Agency reported that 
high oil prices generally have a large negative 
impact on global economic growth. In the United 
States and Canada, the oil barrel (abbreviated as 
bbl) is a volume unit for crude oil, it is defined as 
42 US gallons, which is equal to 159 liters or 35 
imperial gallons. However, Outside the above two 
countries, volumes of oil are usually reported in 
cubic meters (m3) instead of oil barrels. Hasan 
(2017). 
 
Statistics is a subject of many users and 
surprisingly few effective practitioners. The 
traditional road to statistical knowledge is blocked, 
foremost, by a formidable wall of mathematics. A 
Bootstrap Method for Box-Jenkins Models with 
Application on Brent Crude Oil Prices per Barrel 
avoids that wall. It arms the learner, the users, as 
well as statisticians with the computational 
techniques they need to correctly predict and 
validate time series model. Two of the most 
important problems in applied statistics are the 
determination of an estimator for a particular 
parameter of interest and the evaluation or 
measurement of the accuracy for such estimator.  
 
The best way to do this consist in using 
(whenever this is possible) the sampling 
distribution of the estimator we are concern with. 
In most cases, this sampling distribution is very 
difficult to obtain and only an asymptotic 
approximation is available. Anyway, it is very likely 
that either the true sampling distribution or its 
asymptotic approximation depends on some 
unknown population characteristics. As a result, it 
is necessary to find some known distribution 
function that is close (in some sense) to the 
sampling distribution of the estimator. A possible 
way to do this is the use of bootstrap method.  

As I introduce this thesis, I am particularly 
motivated by these two problems. Most important 
is the measurement of accuracy of estimator, 
particularly when the estimator was complex and 
standard approximations were either not 
appropriate or too inaccurate. I am also 
motivated by the Abraham Waldâava’s story of 
survivor’s bias as narrated in the motivation 
subsection above. The need for estimation of 
parameter(s) for the model parameter(s) also call 
for measurement of accuracy of such a model.  
 
Evidences from literature has shown that 
application of bootstrap in time series is most 
appropriate, but time series data being what it is, 
comes with its peculiar challenges of time 
dependency; serial correlation most times non-
stationarity and some more. 
 
A time series is a set of observations usually 
ordered in equally spaced intervals. The first step 
in the analysis of any time series is the 
description of the historic series. It includes the 
graphical representation of the data. When a time 
series is plotted, common patterns are frequently 
found. These patterns might be explained by 
many possible cause-and-effect relationships. 
Common components are the trend, seasonal 
effect, cyclic changes and randomness. 
 
The more interesting and ambitious task is to 
forecast future values of a series on the basis of 
its recorded past, and more specifically to 
calculate prediction intervals (commonly refers to 
as the error term). So the identification of these 
components is important in the choice of a 
forecast model. 
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The aim of this research work is to present a 
better model validation scheme through bootstrap 
method; so as to create a model that best fit the 
special time series data of which the crude oil 
price per barrel belong. The specific objectives 
are to: 
 
i. explore and explain the behavior of the series; 
 
ii. determine the best model; 
 
iii. forecast future values of the series; and 
 
iv. cross-validate suggested model in (ii) through 
bootstrap method. 
 
 
LITERATURE REVIEW 
 
Léger and Romano (1990) discussed bootstrap 
technology and emphasized on modern issues 
and application such as variable selection, 
problems with dependent data, and determination 
of optimal replacement policy in a reliability study 
depending on the availability of fast computing 
power. 
 
Davidson and MacKinnon (2006) proposed a 
weighted bootstrap method, also known in the 
literature as the wild bootstrap, which results in 
consistent variance of test statistics even in the 
presence of heteroscedacity. In this procedure, 
each observation of the original series is 
weighted, resampled with reposition from a 
standard normal distribution. Neumann and 
Kreiss, (1998) tested the validity of this method, in 
the contest of time series. 
 
Efron and Tibshirani (1994) used simulation 
comparison to show that the use of bootstrap bias 
correction could provide better estimates of 
classification error rate than cross-validation 
approach often called leave-one-out which was 
originally proposed by Burman (1989) and Stone 
(1974). These results are applicable only in a 
small sample size. Later several follow-up articles 
were published that widened the applicability and 
sueriority of bootstrap (Chermick et al., 1995 
1986, 1988; Efron land Tibshirani, 1997; Gong, 
1986; Peter and Freedman, 1984). 
 
Politis and Romano (1994) showed that the 
stationary bootstrap estimate of variance and the 
moving block estimate of variance are quite close 

provided that p
−1

 is approximately equal to l, 
where l is the block length and is the parameter 
of the geometric distribution. 
 
Hall et al. (1995) presented a problem of 
maximum score estimation in estimation and 
hypothesis test that demonstrated the use and 
performance of the bootstrap and related 
resampling techniques provided practical 
methods for estimating the asymptotic 
distributions of statistics in carrying out statistical 
inference. According to them, statistical inference 
based on first order asymptotic approximation 
can be highly misleading for example, White 
(1982) information metric test which is a 
specification test for parametric models estimated 
by maximum likelihood is a well-known example 
of this, but the bootstrap often greatly reduces 
the error correction probability (ECP) of 
confidence intervals and error in the rejection 
probability (ERP) of test, thereby making reliable 
inference. 
 
Carlstein et al. (1998) proposed sampling blocks 
according to a data based Markov chain so as to 
increase the likelihood that consecutive blocks 
match at their end. They gave conditions under 
which this matched-block bootstrap (MBB) 
reduces the bias of a bootstrap estimator of a 
variance. However, the moving block bootstrap 
increases the rate of convergence of bias only if 
the data generation process is a Markov process. 
The moving block bootstrap does not reduce the 
variance of the estimator. 
 
Lahiri (1999a) compared the asymptotic minimal 
values of the mean square error of each of these 
four methods of the block bootstrap and 
concluded that the moving block bootstrap and 
circular block bootstrap are asymptotically 
equivalent in the sense of mean squared error 
(MSE). He affirmed that these are advantages in 
the use of moving block bootstrap and circular 
block bootstrap in relation to stationary block 
bootstrap method, even in samples of moderate 
size. 
 
Berkowitz and Kilian (2000) studied the optimal 
block bootstrap method can be highly sensitive to 
the selection of size of the block while Liu and 
Singh (1992) indicated the stationarity problem of 
the resampled series by the moving block 
bootstrapping. 
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Bühlmann (2002) compared, reviewed and 
illuminated the theoretical facts about block, sieve 
and local bootstrap on the finite-sample data. 
According to Bühlmann (1999) it was shown that 
the two types of sieve’s bootstrap outperform the 
block bootstrap and that the local bootstrap in 
some cases exhibits low performance. 
 
Lahiri (2013) discussed block bootstrap 
procedures and suggested that the use of blocks 
of random size leads to bigger mean squared 
error than the ones obtained when blocks with 
non-random sizes are used. According to Lahiri 
(1999b) for a given block size l, the methods of 
moving block bootstrap (MBB), circular block 
bootstrap (CBB), stationary block bootstrap (SBB) 
and non-overlapping block bootstrap (NBB) 
Present, asymptotically, the same size of bias, but 
the variances of the estimators in stationary block 
bootstrap are Present, asymptotically, the same 
size of size of bias, but the variances of the 
estimators in stationary block bootstrap are 
always at least, twice the variance of the 
estimators for non-overlapping block 
bootstrapping and circular block bootstrap. 
According to Politis and White (2005) it occurs 
because of the additional randomization 
generated by bocks random size. 
 
Box et al. (2015) in their book titled ”Time Series 
Analysis, Forecasting and Control” emphasized 
that for an autoregressive process of order p, the 

Partial Autocorrelation Function (PAF) ᶲkk will be 

non-zero for k less than or equals to p
th
 and zero 

for k greater than p. In another words, the Partial 
Autocorrelation Function (PAF) of p

th
 order 

autoregressive process has a cut-off after lag k. 
Generally, the autoregressive model is given as: 

 

 
     (1) 
 
The complexity of such a long model was given 
relieve by their work which provided a cut off at a 
point where an autocorrelation coefficient break 
out of their confidence interval. The Box and 
Jenkins ARIMA techniques are based on the idea 
that a time series in which successive values are 
highly dependent can be regarded as being 
generated from series of independent shocks. 
 
Gregory et al. (2015) Started by approximating a 
broad class statistics formulated through statistical 

functionals, They propose a smooth bootstrap by 
modifying a state-of-the-art (extended) tapered 
block bootstrap (TBB). Their treatment shows 
that the smooth TBB applies to time series 
inference cases not formally established with 
other TBB versions. Simulations also indicate 
that smoothing enhances the block bootstrap. 
 
Kumar (2016) used Monte Carlo experiments 
using the weighted bootstrap, he evaluated the 
size and power properties in small samples of 
Chow and Denning’s multiple variance ratio test 
and the automatic variance ratio test of Choi. His 
results indicate that the weighted bootstrap tests 
exhibit desirable size properties and substantially 
higher power than corresponding conventional 
tests. 
 
 
METHODOLOGY 
 
Introduction to Time Series Analysis 
 
A time series is a stochastic process in discrete 
time with a continuous state space. 
 
Notation: {X1, X2, . . . , Xn} denotes a time series 
process, whereas {x1, x2, . . . xn} denotes a 
univariate time series (i.e., a sequence of 
realizations of the time series process). 

 

 
 
Autoregresive (AR) 
 
An Autoregressive (AR) model of order p, or an 
AR(p) model, satisfied the equation: 
 

 
  

   

  

  (2) 
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AR is a constant. The p denotes the order of 
autoregressive model, defining how many 
previous values the current value is related to. 
The model is called autoregressive because the 
series is regressed on to past values of itself. The 
error term εt in equation 2 refers to the noise in 
the time series. The error is said to be 
independently and identically distributed (iid). 
Commonly, they are also assumed to have a 
normal distribution.  

 
For the model in 2 to be of use in practice, the 

estimator must be able to estimate the value of ᶲkk 

and μ. Note the subscripts are defined so that the 
first value of the series to appear on the left of the 
equation is always one. 
 
 
Moving Average (MA) Models 
 
Moving Average (MA) model of order q or an MA 
(q) model is of the form: 
 
 

 
 
 
 
 
  (3) 
 
 
 

 
MA models imply the time series signal can be 
expressed as a linear function of previous value 
on the time series. The error (or noise) term in the 
equation (3) is the one step and ahead forecasting 
error. In contrast, MA (q) models imply the signal 
can be expressed as function of previous 
forecasting errors. It suggests MA (q) models 
make forecast based on the error made in the 
past, and so one can learn from the error made in 
the past to improve current forecast. 
 
 
 
 
 

Autoregressive Moving Average (ARMA) 
Models 
 
The best model is the simplest model that 
captures the important features of the data 
(parsimonious model). 
 
Sometimes, however, neither a simple AR (p) 
model nor simple MA (q) model exists. In these 
case, a combination of AR (q) any MA (q) models 
will almost produce a simple model.  
 
These models are called Autoregressive Moving 
Average Models, or ARIMA (p, q) models. Once 
again p is used for number of Autoregressive 
components, and q is for the number of Moving 
Average Component. Definition: The Form ARMA 
(p, q) model is given by the equation: 
 
 

 

 

 
 

 
 
 
 
  (4) 
 
 
 
 
 

 
 
Where Xt is the observed data point. μ is some 
constants and ϕj, ϴk are defined as for AR and 
MA model, respectively. 
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Autoregressive Integrated Moving Average 
(ARIMA) Model 
 
ARIMA model models, sometimes called the Box-
Jenkins models; named after the authors of the 
iterative Box-Jenkins methodology typically 
applied to time series data for forecasting consists 
of three parts: An Autoregressive (AR) part, a 
Moving Average (MA) part and the difference part.  
 
The model is usually then referred to as the 
ARIMA models where p is the order of the 
Autoregressive part, d is the order of difference 
and q is the order of the moving Average part. For 
example, a model is referred to have ARIMA (1, 1, 
1) when it has only one Autoregressive parameter 
called order one and only one moving Average 
parameter also called order one for the time 
series data after it was differenced once to attain 
stationary.  
 
If the model becomes ARMA, which is linearly 
stationary on its self without being differenced. 
ARIMA is a linear non-stationary model. If the 
underlying time series is non-stationary, taking the 
difference of the series with itself some d-times 
makes it stationary, and then ARIMA model is 
applied onto the difference series. 
 
 
Differencing and Unit Root 
 
In the full class of ARIMA (p,d,q) models, the ’I’ 
stand for integrated. The idea is that one might 
have a model\ whose terms are the partial sum up 
to time t, of some ARIMA models. Thus X consist 
of accumulated past shock, that is, shocks to the 
system, have a permanent effect. Note also that 
the variance of Xt increase without bound as time 
passes.  
 
A series in which the variance and mean are 
constant and the covariance between Xt and Xs is 
a function only of the time difference (t−s) is called 
a stationary series. Clearly these integrated series 
are non-stationary. Another way to approach this 
issue is through the model. Again let us consider 
an autoregressive order 1 model, AR (1): 
 
 
 
 
 
 

(5) 
 
 
Which is convergent expression satisfying the 
stationary conditions. However, if  

 
 
the infinite sum does not converge so one require 
a starting value say 
 

 
 
in which case, 
 

 
 
is the initial value plus an unweighted sum of or 
shocks they are permanent and the variance of X 
grows without bound over time. As a result there 
is no tendency of the series to return to any 
particular value and the use of a symbol for the 
starting value is perhaps a poor choice of 
symbols in that this is does not really represent a 
mean of any sort. 
 
This type of series is called a random walk. Many 
stock series are believed to follow this or some 
closely related model. The failure of forecasts to 
return to mean in such a model implies that the 
best forecast of the future is current value and 
hence the strategy of buying low and selling high 
is pretty much eliminated in such a model 
whether high or low is unknown. Any 
Autoregressive model like  
 

 
 
has associated with a ’characteristic equation’ 
whose root determine the stationary or non- 
stationary of the series. 
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AUTOCORRELATION 
 
The correlation between a variable, lagged one or 
more periods, and itself is called autocorrelation. 

While the graphical tool that displays the 
correlations for various lags of time series is 
called correlogram. The coefficient of 
autocorrelation is derived bellow: 

 
 
 
Autocorrelation Coefficient 
 

(6) 
 
 
Properties of the Autocorrelation Function 

 
 
      (7) 
 
 
      (8) 
  

 

         (9) 
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HYPOTHESIS TESTING FOR TREAND IN THE 
SERIES 
 
Actually, the autocorrelation coefficients for all 
time lags can be tested simultaneously. If the 
series is truly random, most of the series 
autocorrelation coefficients should lie within the 
specified by 0 plus or minus a certain number of 
standard errors, arranged as the bellow 
expression. Where z is the standard normal value 
for a given confidence level and n is the number 
of observation in the series: 
 

 
 
Steps in Hypothesis Testing 
 
In order to test for the presence of stationarity, 
randomness or seasonality, the following steps 
are taken: 
 
i. Test Statistic 
 
ii. Hypothesis setting 
 
iii. Decision Rule 
 
iv. Decision 
 
v. Conclusion 
 
 
Partial Autocorrelation Function (PACF) 
 
In the previous section we have seen how the 
ACF can be used to identify MA processes, 
clearly indicating the order q of the process by the 
number of non-zero terms in the ACF. It would be 
great if we could similarly identify the order of an 
AR process. There is another correlation function 
which allows us to do precisely that: The Partial 
Autocorrelation Function or PACF. The PACF 
computes the correlation between two variables yt 
and yt−k after removing the effect of all 
intervening variables yt−1, yt−2, · · · , yt−k. We 
can think of the PACF as a conditional correlation: 
Another tool that will be needed is the partial 

autocorrelation function denoted by ᶲkk where k = 

1, 2, · · · ,K is the set of partial autocorrelation at 

different or various lag K and it is defined by: 

 
and [ρK] is a K by K autocorrelation matrix, and 
[ρK] with the last column replaced by: 

 
[ρK] is a general form of Yule Walker’s equation 
written as: 
 

 
 
Through which the Yule Walker’s equation is 
formed as shown in the next section. 
 
 
Parameter Estimation for Autoregressive 
Process 
 
How does this PACF behave? Well, by 
convention we set 

 
 
   (10) 
 

 
 
 
 
 
 

               (11) 
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     (13) 
 
 
etc. 
 
 
Parameter Estimation for Moving Average 
Process 
 

 
  (14) 
 
 

            (15) 
 
 

Measure of Forecasting Accuracy 
 
The forecast error is the difference between the 
actual value and the forecast value for the 
corresponding period. εt = At − Ft Where εt is the 
forecasting error at period t, At is the Actual Value 
at period t and Ft is the forecast for period t . 
These are as shown in Table. 
 
 

Table 1: Formulas for Measuring Forecasting 
Accuracy. 

 

 
 

 
 

MODEL BUILDING STRATEGY 
 
The below Figure 2 is the flow chart that depicts steps taken in the series model building: 
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RESULTS AND DISCUSSION 
 
Data Presentation 
 
381 univariate data set was collected every first trading day of the month from January 1985 to 
September 2016 chronologically; which I adopted from the Organization of Petroleum Exporting Countries 
(OPEC) Statistical Bulletin shown in Table 2 below. 
 

 
 
 
 
Data Exploration 
 
The most obvious reasons for analyzing an important series like this, is to find a way to accurately 
forecast its future values. However, the analysis process itself sometimes reveals important insight into 
the series that will help make better decisions. 
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Histogram 
 
Histogram of Crude Oil Per Barrel is seen in Figure 3. 
 

 
 
 

Whisker Box Plot 
 
The oversight way to check for seasonality in time series is through the box plot as shown in Figure 4. 

 
Figure 4: Whisker Box plot of Crude Oil per Barrel. 
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Pareto Diagram 
 
The Pareto theorem of (80/20)% holds for the price regime of $20 interval. Figure 5 shows that 20% ($1 - 
$21) and ($41 - $41) of price subgrop experienced 80% of price reign of the crude oil prices. 

 

 
 

Figure 5: Whisker Box plot of Crude Oil per Barrel. 

 
 

Time Plot 
 
The first step in any time series analysis is to plot the observations against time. The time plot was 
achieved through the use of S-plus software.   
 

 
 

Figure 6: Time plot of Crude Oil per Barrel. 
 
The time plot in Figure 6 revealed that the monthly crude oil price is non-stationary. The focal assumption 
of time series analysis is stationarity of the series out of other assumptions like randomness of the series 
and normality of the series. To be critical in examining the presence trend (non-stationary series) a 
hypothesis is set up. The time plot is as shown as in Figure 6. 
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Time series decomposition diagram as shown in Figure 7. 
 

 
Figure 7: Time Series Decomposition Diagram. 

 
Hypothesis Test for First-Order Stationary 
 
To start the process of hypothesis testing for test of stationarity, a 95% confidence interval is computed 
as follows: 

 
 
 
 
      (15) 
 

Next is the computation of autocorrelation coefficients through S-Plus program with the out-put bellow 
table: 
 

Table 3: Autocorrelation Coefficients of First Few Lags of Crude Oil Prices 

 
 

 
 

Figure 8: Correlelogram of the Monthly Crude Oil Prices. 
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Hypothesis Setting for First-Order Stationarity: 
H0: The series is stationary. 
H1: The series is not stationary. 
At 95% confidence level. 
 
Decision Rule for First-Order Stationarity: 
Reject HO: The series is stationary, if the first 
several lag value of autocorrelation coefficients 
are significant and gradually decreases until zero, 
accept H0: The series is stationary, otherwise. 
At 95% confidence level. 
 
Decision for First-Order Stationarity: I reject 
H0: The series is stationary, since the first several 
lag value of autocorrelation coefficients are 
significant and gradually decreases until zero. 
 
Conclusion for First-Order Stationarity: At 95% 
significant level, the data do provide sufficient 
evidence (as seen in Table 3 and Figure 9) to 
conclude that the series is not stationary. 
 
 

Hypothesis Test for Randomness 
 
Hypothesis Setting for Randomness: 
H0: The series is random. 
H1: The series is not random. 
At 95% confidence level. 
 
Decision Rule for Randomness: Reject HO: 
The series is random, if Autocorrelation 
Coefficients Lag 1 is close to unity. The series is 
randomness, otherwise. 
At 95% confidence level. 
 
Decision for Randomness: I do reject H0: The 
series is randomness, since Autocorrelation 
Coefficients Lag 1 = 0.9913 and is close to unity. 
 
Conclusion for Randomness: At 95% 
significant level, the data do provide sufficient 
evidence (as seen in Table 3 and Figure 9) to 
conclude that the series is not random. 
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Figure 9: Time Plot of First Difference of the Monthly Crude Oil Prices. 

 
 
It is noted that the autocorrelation coefficients of 
the first several lags are significantly different from 
zero for instance, autocorrelation coefficient of lag 
1, lag 2, lag 3, · · · , lag 20 = 0.9913, 0.9913, 
0.9754, · · · , 0.7820, respectively which 
individually less than the ±0.13 (the confidence 
bound for autocorrelation) and the autocorrelation 
coefficients gradually regressed towards zero 
rather than dropping exponentially. This shows 
that a trend exists in the series (that is the series 
is non stationary) or there is presence of serial 
correlation in the series.  
 
The ACF for the series decays very slowly 
indicating that it is non-stationary. Non-stationary 
stochastic processes tend to generate series 

whose estimated autocorrelation function fail to 
die out rapidly; that is, the estimated 
autocorrelations for non-stationary processes 
tend to persist for a large number of lags. 
Persistently large values of them indicate that the 
time series is non-stationary, or serially 
correlated and that transformation of the series 
through at least one difference is needed. 
 
Since the theoretical autocorrelations and partial 
autocorrelations are only independent of time for 
stationary processes, it is necessary to difference 
the original series until it can be assumed to be a 
realization of a stationary process. The 
differencing is achieved through S-Plus program 
and the output is presented in the Table 4. 

 
Table 5: Autocorrelelogram for the First Difference of the Crude Oil Prices. 

 
 

 
Figure 10: Autocorrelogram of First Difference of the Monthly Crude Oil Prices, 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –103– 
http://www.akamaiuniversity.us/PJST.htm                                             Volume 18.  Number 2.  November 2017 (Fall) 

 

 

Hypothesis Test for Second-Order Stationary 
 
Having achieved the first differenced series; a test 
for stationary of the series is necessary and will 
be conducted again to check if stationarity has 
been reached. The first step on this is to plot the 
autocorrelogram of the first differenced series to 
view how the first differenced time series 
behaves. The autocorrelogram obtained from 
Table 5 through S-Plus is presented in Figure 10. 
 
 
Hypothesis Setting for Second-Order 
Stationarity 
 
Hypothesis Setting for First Order: 
H0: The series is stationary. 
H1: The series is not stationary. 
At 95% conidence level. 
 
Decision Rule for Second-Order Stationarity: 
Reject HO: The series is stationary, if the first 
several lag value of autocorrelation coefficients 
are significant and gradually decreases until zero, 
accept H0: The series is stationary, otherwise. 
At 95% confidence level 
 
Decision for Second-Order Stationarity: I reject 
H0: The series is stationary, since the first several 
lag value of autocorrelation coefficients oscillate 
around zero. 
 
Conclusion for Second-Order Stationarity: At 
95% significant level, the data do provide 
sufficient evidence (as seen in Table 3 and Figure 
9) to conclude that the series is stationary. 
Ordinarily, one would have expect that decision 
rule for test of seasonality be made on 
autocorrelation coefficient the restriction to this is 
that strength of serial correlation will overpower 
the autocorrelogram in such a way that spike in it 
will hardly be noticed. at this stage of the analysis 
that the trend have been satisfactorily removed, I 
can now test for seasonality as follows: 
 
 
Hypothesis Test For Seasonality 
 
Hypothesis for Seasonality:  
H0: The series is seasonal. 
H1: The series is not seasonal. 
At 95% confidence level. 
 
 

Decision Rule for Seasonality: Reject HO: The 
series is seasonal, if a spike in Autocorrelation 
Coefficients after differencing at a regular lag 
interval. The series is seasonal, otherwise. At 
95% confidence level. 
 
Decision for Seasonality: I do not reject H0: 
The series is seasonal, since there is a 
noticeable spike in Autocorrelation Coefficients 6 
has interval as can be seen in Table 5, and 
Figure 8. 
 
Conclusion for Seasonality: At 95% significant 
level, the data do provide sufficient evidence (as 
seen in Table 5 and Figure 8) to conclude that 
the series is not seasonal. Haven achieved 
detrend, and deseasonalised the series; model 
identification and parameter estimation is now 
discussed in the sections below. 
 
 
Model Strategy 
 
The steps demonstrated in Figure 2, for easy 
step-taking in this thesis, the model strategy 
involves model identification and parameter 
estimation as shown in the subsections below. 
 
 
Model Identification 
 
The model for the monthly crude oil prices is 
achieved by estimating the Autocorrelation 
Function (ACF) and the Partial Autocorrelation 
Function (PACF) of the differenced series. The 
selection of a time series model is frequently 
accomplished by matching estimated 
autocorrelations coefficients with the theoretical 
autocorrelation. The matching of the first 50 
estimated autocorrelations and partial 
autocorrelations of the underlying stochastic 
processes suggested that the series were 
stationary, with the ACF, PACF. The estimated 
ACF and PACF are as shown in Table 6 (6a 
and 6b, respectively). 
 

Table 6: ACF and PACF Table.  
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With the matching of the ACF with the PACF, the 
model is identified as an ARIMA (2, 1, 2) model. 
Plot of the Autocorrelogram and Partial 
Autocorrelogram is shown in Figure 11 (11a and 
11b respectively) and their corresponding tables 
in Table 6 (6a and 6b, respectively). P 
 
lot of the Autocorrelation Function and Partial 
Autocorrelation Function greatly assisted in the 
understanding of the model. From the ACF and 
PACF, the functions both had a sharp cut 
off(indicating no additional non-seasonal terms to 
be included in the model) after lag 2 after the first 
difference suggest that the model may include in 
its formation ARIMA (2, 1, 2).  
 
In addition I had tested the seasonality of the 
series to be positive, thus the need to include 

seasonal component in the series. A seasonal 
ARIMA model is formed by including additional 
seasonal terms in the ARIMA model as 
demonstrated in the Equation 16 below: 
 

 (16) 
 
 
Parameter Estimation 
 
The likely estimates of parameter that will be 
needed to form appropriate model is summarized 
in Table 7. The estimates are obtained by S-plus 
program with the method on Equation 10, 11, 12 
and 13. 

 
 
 

 

 
 
 
I recommend the following models: 
 
 
 
 
 
 
            (17) 
 
 
            (18) 
 
            (19) 
 
and, 
 
 
            (20) 
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BOOTSTRAP METHOD FOR DIAGNOSTIC 
CHECK 
 
Almost all model validity test are based on the 
examination of the residuals,  

 
 
is the fitted value, or some functions of the 
residuals. In some cases where some financial 

time series defile the use of ACF of the residuals 
to determine the validity of a time series model, 
thus the search for a more robust test for model 
validity. The use of ACF of bootstrap residuals in 
comparison with ACF of the residual. I therefore 
present the Autocorrelogram residuals with their 
corresponding Autocorrelogram bootstrap 
residuals of models presented in Equation 17, 
Equation 18 Equation 19 and Equation 20 are 
presented in the figures below: 
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To be double sure, I present a more conventional 
method of testing accuracy of a model: A forecast-
accuracy metric table to measure accuracies of 
suggested models presented in Equation 17, 
Equation 18, Equation 19 and Equation 20. The 
accuracy-metric Table is presented on Table 8. 
Log Likelihood and Mean Error (ME) places a 
greatest metric value on a best forecast model to 
be selected, while others like The Akaike 
information criterion (AIC), the Bayesian 

information criterion (BIC) and the rest place 
lowest metric value on best model to be selected. 
 
Obviously, ARIMA (2, 1, 2)(2, 0, 0)[12] stands out 
to be the best model which is in agreement with 
my Bootstrap Method presented on Figure 12, 
Figure 13, Figure 14 and Figure 15 above. 
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           (21) 

 
Thus, Equation 21 becomes the best, parsimonious, consistent and the most representative model for the 
series. Also, from the Table of Parameter Estimate in Table 7 the parameters are being fed to Equation 
21 which is given as: 
     

(22) 
 
With the Equation 21 and Equation 22 the following are forecast the month of October 2016, November 
2016, December 2016 and January 2017 and presented in Table 9. The forecast is not just on point 
forecast alone, but also on 80% and 90% interval as can be seen on the same table. To make it eye-
friendly, a pictorial diagram of forecast plot is presented below: 
 

 
Figure 16: Forecast Plot of ARIMA (2, 1, 2)(2, 0, 0)[12]. 

 

Figure 16 depicts Table 9 and an In-Series forecast of the series, while Table 10 present the In-Series 
errors from January 1985 to September 2016. 
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(a) ACF ERROR 

 
(b) ACF BOOT ERROR 

 
Figure 17: Validation for ARIMA (2, 1, 2). 

 
 
Figure 17 further shows the normality stand of the 
error term especially to readers who are not so 
friendly with the Box-Jenkins terminology, and 
also conformity of confidence interval of both error 
term and the bootstrap error term. Having used 
the bootstrap method as a validation tool for Box-
Jenkins model which provides accurate forecast 
for the series, the next step is the summary of 
findings and conclusion. 
 
 
CONCLUSION 
 
From the investigation performed in this study, the 
following conclusions can be drawn: 
 
i. Box-Jenkins methodology was used for model 
identification which indicated that ARIMA (2, 1, 
2)(2, 0, 0)[12] is the best fit for the monthly crude 
oil prices (January 1985 to September 2016) 
among set of most fitting model presented in 
Equation: 17, 18, 19 and 20 in no order. 

ii. A Bootstrap Method for Model Validation was 
used to check the validity of the model also 
affirmed by forecast-accuracy metrics like Akaike 
information criterion (AIC), Bayesian information 
criterion (BIC), among others, to be the best 
model as can be seen in Table 8 and Figure 17. 
 
iii. The forecast for the price of crude oil per 
barrel (Brent being the benchmark) for October 
2016, November 2016, December 2016 and 
January 2017 are $50.33, $52.81, $55.35, and 
$56.85, respectively, thus the crude oil prices are 
forecast to increase up to the December, 2017 to 
the ton of $59.37 as a point forecast and ($35.37, 
$96.07) as 95% interval forecast as can be seen 
in Table 9 and Figure 16. 
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