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INTRODUCTION 
 
The industrial growth of any nation depends greatly on 
the reliability of a large interconnected electric power 
system. Electric power system is a significant form of 
modern energy source, because of its application in 
nearly all spheres of human endeavour aimed at socio- 
economic development. In an interconnected power 
system, the objective is to find the output power and load 
shedding of each power plant in such a way as to 
minimize the operating cost. Manafa(1978), 
Laden(2008), Country profile(2006). 
  
The factors influencing power generation at minimum 
cost are operating efficiencies of generators, fuel cost and 
transmission losses. The most efficient generator in the 
system may not guarantee minimum cost as it may be 
located in an area where fuel cost is high. Olle(1987), 
Power Sector Reform(2005). Also, if the plant is located 
far from where the load is, transmission losses may be 
considerably higher and hence the plant may be 
uneconomical.  
 
The purpose of this work  is to minimize the total 
production / generation costs, with minimum losses and 
at the same time satisfy the load flow equation without 
violating the inequality constraints.  
 
Optimal Power Flow as an Optimization method for an 
energy management system control centre was developed 
in the 1960s by Carpenter, and since then it has been an  

MOTIVATION FOR THE STUDY 
 
important function as a standard application. A 
generalized nonlinear mathematical programming 
formulation of the economic dispatch problem including 
voltage and other operating power constraint which was 
named the Optimal Power Flow Problem, was introduced 
by Carpenter 1962, Dammel and Tinney, Oct, 1968. Since 
then, a great deal of research has been done and various 
optimization techniques have been used in order to find 
efficient solutions to this optimization problem. In 2005, 
Adejumobi looked at the effectiveness and efficiency of 
the electrical power distribution system in Nigeria by 
making use of power system security. In 1998, Arthur et 
al, worked on Optimization for load management 
scheduling. Also, in 1986 Lee et al, worked on 
optimization technique for power operation.  
 
Similarly, in 1989, Youssef et al, looked at the 
transmission planning model for a power system. In 1988, 
Lee et al, looked at the transmission planning model for a 
power system. However, little or no attention has been 
paid to the production cost; they emphasized more on the 
operational aspect (design aspect) rather than the 
economical aspect of optimal power flow problem (OPF). 
 
The purpose of this work is to develop an optimum 
dispatch / generating strategy by presenting economically 
the best load flow configuration in supplying load demand 
among the generators. The main aim is to minimize the 
total production / generation costs, with minimum losses 
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and at the same time satisfy the load flow equation 
without violating the inequality constraints 
 

MATHEMATICAL FORMULATION 
 
The standard optimal electric power generation problem 
(optimal power flow problem), is formulated 
mathematically as follows. Olle(1987), Rao(1998).
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iit fandgC , are continuous differentiable, vector x 
contains independent variables  consisting of bus voltage 
magnitudes and phase angle, reference bus angle, fixed 
bus voltage, e.t.c. The vector consists of controls 
variables, including real and reactive power generations, 
phase – shifter angles, direct transmission line flows, 
controls voltage settings, e.t.c.       
 

Where, ( )uxCi , represent the objective function, 
( )uxgi , represent non - linear equality constraint, the 

equality ( )uxgi ,  is the load flow equation, ( )uxfi , is 
the non - linear inequality constraint of vector argument x 

and u. The inequality ( )uxfi ,
 is the limit on the control 

variable u and the operating limits on the power system 
bus voltage limits. Limits on the control variables are 
known as “hard” limits (i.e. violation is not allowed, e.g. 
upper and lower band on the active power generation  at 
the generator buses) and operating limits are known as “ 
soft” limits (i.e. small violation is tolerable, e. g. voltage 
limit at load buses, maximum line loading limit). The 
vector x contains dependent or state variables (such as 
voltage magnitude, phase angle, e.t.c.), and u consists of 
control variables such as generated active and reactive 
power e. t. c. , Olle, (1987). 
 

OPTIMIZATION OF REAL POWER 
GENERATION INCLUDES THE LIMIT AND 

TRANSMISSION LOSSES 
 
When transmission distances are long with low density 
area, transmission losses are not neglected. The idea is to 
include the effect of transmission losses which can be 
expressed as a quadratic function of the generation power 
outputs, Burchett, R.S ., et al(1982), Charles, A.G.(1986). 
The simplest quadratic form is 
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The coefficients Bij are called loss coefficient or B – 
coefficient, which are assumed constants.  
 
Statement of the problem 
 
The problem can now be stated as:  
 
Minimize the overall generation cost Ct 
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Where miniPg
 and maxiPg

 are the minimum and 
maximum generating limit respectively, for plant .i  
 
Solution to the Problem 
 
Using the Langrange Multiplier and adding additional 
terms to include the constraints  
 
we have, 

( )

( )( ) ( )

( ) ( )( )∑

∑

∑

=

=

−

−+

−+









−++=

ng

i
iii

ng

i
iii

ng

i
iLDit

PgPg

PgPg

PgPPpgCL

1
minmin

1
maxmax

1

      

3                       

µ

µ

 
 

Note: ( ) ( ),max0max iii PgPgwhen <=µ
 

 ( ) ( )min0min iii PgPgwhen >=µ
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This simply means that if the constraint is not violated 
then the associated   µ variable is zero. 
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The solution to the Langrange equation is found by 
obtaining the following 
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Expanding the above result in linear matrix,  we have, 
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To find the optimal dispatch for an estimated value of 

( ) ,kλ equation (7) is solved using the iterative method. 
The iterative continues until the load flow equation is 
satisfied. Thus from (6), we have, 
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L If we denote 
( )k
ipg  by ( ) ,kf λ  and using Taylor 

series expansion, we have, 
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Neglecting second and higher degree, we have,  
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,  

iit fandgC , are continuous differentiable, vector x 
contains independent variables  consisting of bus voltage 
magnitudes and phase angle, reference bus angle, fixed 
bus voltage e.t.c. The vector consist of controls variables, 
including real and reactive power generations, phase – 
shifter angles, direct transmission line flows, controls 
voltage settings e.t.c.       
 
Where, ( )uxCi , represent the objective function, 

( )uxgi , represent non - linear equality constraint, the 

equality ( )uxgi ,  is the load flow equation, ( )uxfi , is 
the non - linear inequality constraint of vector argument x 
and u. The inequality ( )uxfi ,  are the limit on the 
control variable u and the operating limits on the power 

system. bus voltage limits. Limits on the control variables 
are known as “hard” limit (i.e. violation is not allowed, 
e.g. upper and lower band on the active power generation  
at the generator buses) and operating limits are known as 
“ soft” limits (i.e. small violation is tolerable, e. g voltage 
limit at load buses, maximum line loading limit). The 
vector x contains dependent or state variables (such as 
voltage magnitude, phase angle etc), and u consist of 
control variables such as generated active and reactive 
power etc , Olle, (1987). 
 

OPTIMIZATION OF REAL POWER 
GENERATION INCLUDES THE LIMIT 

AND  TRANSMISSION    LOSSES 
 
When transmission distances are long with low density 
area, transmission losses are not neglected. The idea is to 
include the effect of transmission losses which can be 
expressed as a quadratic function of the generation power 
outputs, Burchett,R.S, et al(1982),Charles,A.G.(1986). 
The simplest quadratic form is 
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4.1: Statement of the problem 
 
The problem can now be stated as:  
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Where miniPg  and maxiPg  are the minimum and 

maximum generating limit, respectively for plant .i  
 
4.2: Solution to the Problem 
 
Using the Langrange Multiplier and adding additional 
terms to include the constraints.  
 
We have, 

( )

( )( ) ( )

( ) ( )( )∑

∑

∑

=

=

−

−+

−+









−++=

ng

i
iii

ng

i
iii

ng

i
iLDit

PgPg

PgPg

PgPPpgCL

1
minmin

1
maxmax

1

      

3                       

µ

µ  



59                    AJST, Vol. 12, No. 2: August, 2013

Y.O .ADERINTO  

 

 

Note: ( ) ( ),max0max iii PgPgwhen <=µ  

 ( ) ( )min0min iii PgPgwhen >=µ  
 
This simply means that if the constraint is not violated 
then the associated   variable is zero. 
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The solution to the Langrange equation are found by 
obtaining the following 
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Expanding the above result in linear matrix,  we have, 
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To find the optimal dispatch for an estimated value of 

( ) ,kλ equation (7) is solved using the iterative method. 
The iterative continues until the load flow equation is 
satisfied. Thus from (6), we have, 
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L If we denote 
( )k
ipg  by ( ) ,kf λ  and using Taylor 

series expansion, we have, 
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Neglecting second and higher degree, we have,  
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And therefore, 
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k
i

k
LD

k PgPPP
1  

The process continues until 
( )kP∆  is less than a specified 

accuracy. 
 
If an approximate loss formula expressed by  

∑
=

=
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i
LiiL gPBP

1
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 is used,  
,0,0 0 == iij BB

and solution of the equation 
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4.3: Solution Algorithm 
 
1. Assume an initial value for ( ).kλ  
2. Calculate .iPg using equation 
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or 
 

B. 
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i
k

k
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λγ
βλ

+
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=
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3. Calculate ( )k

LP  using 
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n

i
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j
iL BPBPBPP

1
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i
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k
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2  for 2B. 

4. Check if the relationship ( )∑
=
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i

k
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k
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1
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satisfied if not go to 5. 
5. Calculate  ( )k

iPg∆  from 

( ) ∑
=

−+=∆
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k
iLD

k
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6. Calculate ( )kλ∆  from 
( )kλ∆ =

( )

( ) ( )( )
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PBB
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+
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7. Obtain a new value of λ from ( ) ( )kkk λλλ ∆+=+1   
 

8. Repeat step 2 – 7 until ( ) 0=∆ k
iPg or when ( )k

iPg∆  
is less than a specified accuracy. 

9. Check for the value of iPg  when the equality is 
met, plants that exceed their      upper limit are kept 
at the specified limit. 

10. Continue from step 4 – 7 when the equality 
constraints are met again check limit       of the 
plants. 

11. Calculate the total Production Cost 
( ) ,21 ........ nit CCCPgC +++= where n  the 

number of generator. 
 
5. Numerical Results and Interpretation 
 

In this section we give some numerical examples and the 
interpretation of the results obtained. 

5.1   Numerical Results 

Problem 5. 1 

Consider the following generator parameters of 5 bus 
system with three generating bus. 

Table 7.1 

Bus No Pmin Pmax α β γ 

1 5.5 39.5 150 7.0 0.008 

2 10 80 160 6.3 0.009 

3 10 70 140 6.8 0.007 

 
Given that the real power losses is expressed as 

,2

1
i

n

i
iiL PBP ∑

=

=  

where 3....,1,
00179.0
00228.0
000218.0

=















= iBii  

Determine the optional dispatch of generator and the cost 

of generation when the total system load demand is 

180MW. 

Solution: 

The problem can be stated as   

Minimize, 
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( ) ii
i

iiiit PgPgPgC γβα ++= ∑
=

3

1  
 
Subject to  

 
 

 

( ) ( )maxmin iii PPP ≤≤  

( ) ( )max22min2 PPP ≤≤  

( ) ( )max33min3 PPP ≤≤  
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1
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n

i
iiL PBP ∑

=

=   where  

3....,1,
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00228.0
000218.0

=















= iBii ,     MWPD 180=  

Follow the algorithm above,  

Assume 
( ) 5.71 =λ  and obtain iPg from 

( )k
iPg  
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i
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k
i B
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      =1.18MW 

Since MWPD 180= , we compute 
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P

26.57)95.4102.5695.25(             
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∆
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B
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( ) ( ) ( ) 93.7112 =∆+= λλλ  

Hence, we obtain, ( ) 3,.....,1,2 =iPi , 

( ) ( ) MWPMWPi 41.75,80.47 2
2

2 ≅≅ , and       
( ) MWP k 11.673 ≅  

Note that 1P  has exceeded the upper limit, so that from 

1P at the upper limit of 39.5MW and obtain LP  and 
( )2P∆ . 

( ) MWPL 44.22 ≅  

( ) MWPL 44.22 ≅  
 

( ) ( ) 42.01.6741.755.3944.21802 =++−+=∆P  
 
With 1P fixed, compute ( )2λ∆ and ( )3

1P  
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( ) 933.7003.093.73 =+=λ  
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3 ≅P ,   

( ) MWPL 45.23 ≅ . 
 

 
Compute ( )4λ∆  and ( )4

iP , using:  
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001.0
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1
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3
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∆
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∑
=i iii
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βλγ
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( ) 934.74 =λ . 
 
Hence, 
 

( ) ,5.393
1 MWP = ( ) MWP 56.754

2 ≅ ,  ( ) MWP 34.674
3 ≅  

( ) MWPL 45.24 ≅ . 
( ) ( ) 105.034.6756.755.3945.21804 <=++−+=∆P

 
Since the difference between ( )iP∆  is getting very 
smaller compare to 1, we stop here and compute the cost 
of generation for each plant and the total  cost of 
generation. 
 
Thus, the optimal dispatch is  

( ) ,95.251
1 MWP ≅

0
3

1
=−−∑

=
LD

i
i PPPg

( ) 13.03 =∆P

( ) 54.75,5.39 3
21 ≅= PMWP
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,5.391 MWP = MWP 56.752 ≅ , MWP 34.673 ≅ , 

934.7=λ , MWPL 45.2≅ , 

,/#98.4381 hC = ,/#41.6872 hC = ,/#66.6293 hC =  

and ,/#05.1756 hCt =  
 

Problem 5.2 

Consider the generator parameters given below, 

Table 5.2. 

 
Bus No Pmin Pmax α β γ 
1 5 25 45 7.820 0.00140
2 5 20 50 7.60 0.00292 
3 5 10 30 7.85 0.00480 

Given that, ,000
1 1

BPBPBPP i
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 Determine the optimal dispatch of the generator and the 
optimal cost of generation, when the total load  demand is 
31MW 
 
The problem can be stated as,  
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Using Gausian elimination method, we have, 
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( ) 2000466.80000466.02.82 =+=λ  

Compute ( ),2
iP  we have the same value as ( ),1

iP and 

,iP∆ is very small, so  we stop and compute ( ),it PC  

hCandhC t /#20.366,,/#24.733 ==
,/#53.146,/#43.146 21 hChC ==  

 
Thus, the optimal dispatch is given by  
 

,94.12,64.12,49.5 321 MWPMWPMWP ===  

.16.0,2.8 MWPL ==λ  

 
INTERPRETATION 

 
It is  observed that when generating limit is included, 
generators are capable of dispatch more power under the 
secured atmosphere. It is also observed that plants with 
higher actual capacity should not be placed very far from 
the National Control Center (Grid Center) in order to 
minimize power losses.  
 

CONCLUSION 
 
We give, mathematical formulation of the Optimization 
problems involving electric power generation with 
generator limit plus  power losses was established. An  
Algorithms was tested via iterated numerical method and 
numerical examples were considered for  better 
understanding of the concept. Finally we present 
interpretation of the result folowed by conclusion. 
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