
International Journal of Applied Science and Technology                                                     Vol. 2 No. 6; June 2012 

106 

 
Numerical Study of Depth of Recursion in Complexity Measurement Using Halstead 

Measure 
 

 

A.E. Okeyinka 

Department of Mathematical Sciences 

Ondo State University of Science and Technology 

Okitipupa, Nigeria 
 

O.M. Bamigbola 

Department of Mathematics 

University of Ilorin 

Ilorin, Kwara state, Nigeria 
 

 

Abstract  
 

Complexity of algorithms has been studied analytically using the concept of Big O notation. One of the flaws of 

the study is that the complexities obtained for algorithms are in most cases the same; whereas in reality such 

algorithms might vary in terms of efficiency. The reason for the disparity is, of course, due to the definition of the 
Big O itself which mathematically is sound anyway. However, for pragmatic purposes, there is need for 

estimating actual complexities of each algorithm to be sure of which one is the best given more than one 

algorithms solving the same problem.  In this study, recursion is considered and the complexities of recursive 

algorithms are estimated numerically using Halstead measure. Our findings show that recursive algorithms are 
more complex and hence less efficient than non-recursive algorithms. 
 

Keywords: Numerical, Complexity, Depth, Algorithms, Big O 
 

1. Introduction 
 

There are a number of important practical and theoretical reasons for analyzing algorithms. The principal reason 

is that we need to obtain estimates or bounds on the storage or run time which our algorithm will need to 

successfully process a particular input. Computer time and memory are relatively scarce resources which are often 
simultaneously sought by many users. It is advantageous to avoid runs that are aborted because of insufficient 

time. One would like to predict such things with pencil and paper in order to avoid disastrous runs. A good 

analysis is also capable of finding bottlenecks in our programs, that is, sections of a program where most of the 
time is spent. 
 

Computational complexity theory investigates the problems related to the amount of resources required for the 

execution of algorithms (e.g. execution time), and the inherent difficulty in providing efficient algorithms for 
specific computational problems. A typical question of the theory is, ‘‘as the size of the input to an algorithm 

increases, how do the running time and memory requirements of the algorithm change and what are the 

implications and ramifications of that change.’’ In other words, the theory, among other things, investigates the 
scalability of computational problems and algorithms. In particular, the theory places practical limits on what 

computers can accomplish. 
 

The time complexity of a problem is the number of steps that it takes to solve an instance of the problem as a 

function of the size of the input (usually measured in bits), using the most efficient algorithm. Intuitively, we 

consider the example of an instance that is n bits long, that can be solved in n
2
 steps. In this case we say the 

problem has a time complexity of order n
2
. The Big O notation is generally used in measuring the complexity of 

algorithms. If a problem has time complexity O(n
2
) on one typical computer, then it will also have complexity 

O(n
2
) on most other computers, so this notation allows us to generalize away from the details of a particular 

computer [49]. The space complexity of a problem is a related concept that measures the amount of space, or 
memory required by the algorithm. Space complexity is also measured with Big O notation. 

 



© Centre for Promoting Ideas, USA                                                                                                www.ijastnet .com    

107 

 

2. Research Motivation and Methodology 
 

The need for choosing a better algorithm out of two or many that claim to solve the same problem can not be 

over-emphasised. The following are factors influencing program or algorithm efficiency: 
 

 Problem being solved 

 Programming language being used 

 Computer compiler being used 

 Computer hardware 

 Programmer’s ability (effectiveness) 
 

Using these factors would only give subjective results, hence the rationale for making recursion to the use of Big 

O concept. However, the Big O itself, being an analytic solution often gives same results for algorithms that are 

apparently not the same considering efficiency. For instance it gives O(n) efficiency to both bubble sort and 
successive minima sort. It gives the same result also (i.e. O(nlogn) to heap sort, quick sort and merge sort. Hence, 

as expected though, it gives general results rather than specific results. But in this study, we employ numerical 

approach; we also take into consideration recursive and non-recursive functions. To achieve these, we design a 

tool for implementing Halstead complexity measure.The tool is used to measure computational complexity of 
algorithms using the traditional Halstead concept and a modified concept that overcomes the inherent limitations 

in the traditional Halstead measure.  
 

These limitations which our tool has overcome are as follows: 

 traditional Halstead regards multiplication and division as having the same complexity as addition and 

subtraction respectively 

 traditional Halstead does not take into consideration the depth of recursion. 
 

In general Halstead measure estimates complexity metrics directly from the operators and operands in the source 
code.The measureable and countable properties are: 

 n1 = number of unique or distinct operators appearing in the code 

 n2 = number of unique or distinct operands appearing in the code 

 N1 = total number of all of the operators appearing in the code 

 N2 = total number of all of the operands appearing in the code 

Given these metrics the following measures (among others) can be computed: program volume, difficulty level, 

effort, time to implement, program level, program lenght and program vocabulary. 
 

3. The conceptual framework of the complexity evaluator 
 

The conceptual model of the tool used (the complexity evaluator) in this study is presented below; also its major 

modules and their functions are stated. The model is made up of the Parser, code generator, and code compiler. 

Other key players are: program loader, stream reader, file locators, string manipulator, parse tree manipulator, 
parse tree reader and stream writer 
 

3.1 The Complexity Evaluator 
 

The complexity evaluator developed is capable of scanning given programs and compiling operators and operands 

in the programs. It can also do multiplication, division and recursion taking cognisance of their depths. 

 
 

 

 
 

 

 

 
 

 

 



International Journal of Applied Science and Technology                                                     Vol. 2 No. 6; June 2012 

108 

 

 

 

 

  

 

 

 

 

 

 

Figure: Hierarchy diagram of complexity evaluator 
 

3.2 Major Modules and Functions 
 

The complexity evaluator is a structured tool with the following major modules 

(i) The CodeAnalyst Class 

 involves the CodeCompiler to compile the C# code 

 involves the CodeGenerator to generate the C# file from the parse tree generated by the CodeParser 

 executes the executable file. The program starts by running the input program and extracting the required 

values after which the obtained values are displayed. 

 Invokes the program loader to load the input program to be analysed. 

(ii) The ProgramLoader is used by CodeAnalyst to obtain the loaded program 

(iii) CompileCode compiles the generated C# code file to produce an executable file 

(iv) CodeCompiler is used by the CodeAnalyst to compile the generated C# file 
(v) Function: This class inherits from the Abstract Class ‘‘CodeBlock’’, defines other specific functions for 

operating on functions extracted from the input program 

(vi) WholeUserCode: This class forms the top of the Parse tree for the input program. It keeps various lists 

such as: 

 list of operands in the input 

 list of operators in the input 

 list of classes in the input 

 total number of operands using traditional and modified Halstead 

 total number of operators using traditional and modified Halstead 
 

(vii) (CodeBlock: This class forms the base class for class ‘‘Function’’ and class ‘‘Property’’ 
 

4. Implementation  
 

The following four cases are considered in a test code and the numerical results obtained are displayed below as 

Table I to 

(i) Expanded recursive functions without considering the main function 
(ii) Expanded recursive functions and translation of every occurence of multiplication and division to 

successive addition and substraction respectively without considering the main function 

(iii) Expanded recursive function considering the main function 

(iv) Expanded recursive function and translation of every occurence of multiplication and division to 
successive addition and subtraction respectively considering the main function 

CodeCompiler 

(CodeAnalyst. 

CompileCode) 

Code Generator 

(CodeAnalyst. 

CreateCodeFile) 

Parser 

(codeAnalyst.Parse) 

Program 

loader 

(CodeAnalys

t.LoadProgr

am) 

String 

Manipulator 
Parse Tree 

Manipulator 

Parse 

Tree 

Reader 

Stream 

Writer 

Stream 

Reader 

File Locator 



© Centre for Promoting Ideas, USA                                                                                                www.ijastnet .com    

109 

 

Often times, the main function of a program contributes little or nothing to the complexity of an algorithm; 

because mostly, main functions are concerned with input, output, and house-keeping functions. Hence, if the 
complexity of the main function is negligible then cases (i) and (ii) above are justified, otherwise cases (iii) and  
 

(iv) are necessitated. The program which is analysed using our tool is given as Appendix 

Table 4.1: Expanded Recursive Function Without Considering the Main Function. 
 

 Program 

Volume 

V=(Nlogn) 

Log to Base 2 

 

Difficulty Level  

D=(n1/2)(N2/n2

) 

 

Effort 

E = 

(VD) 

 

Time to 

Implement  

T = E/18 

 

Program 

Level 

 L = 1/D 

 

Program 

Lenght 

 N=N1 + N2 

 

Program 

Vocabulary 

 n = n1 + n2 

Traditiona

l Halstead 

69.8 6.0 418.6 23.3 0.2 21 10 

Modified 

Halstead 

229.2 20.0 4584.3 254.7 0.1 69 10 

Modified 

Data 
n1 (UOperators):                                 5 

n2 (UOperands):                                   5 

n(UOperators + UOperands):                10 
 

N1 (UOperators):                                  29 

N2 (UOperands):                                    40 

N(UOperators + UOperands):                69 
 

Traditiona

l Data 
n1 (UOperators):                                   5 

n2 (UOperands):                                   5 

n(UOperators + UOperands):                10 
 

N1 (UOperators):                                   9 

N2 (UOperands):                                    12 

N(UOperators + UOperands):                21 
 

  

Table 4.2: Expanded Recursive Function and Translation of Every Occurence of Multiplication and 

Division to Successive Addition or Subtraction Respectively Without Considering the Main Function. 
 

 Program 

Volume 

V=(Nlogn) 

Log to Base 2 

 

Difficulty Level  

D=(n1/2)(N2/n2) 

 

Effort 

E = 

(VD) 

 

Time to 

Implement  

T = E/18 

 

Program 

Level  

L = 1/D 

 

Program 

Lenght 

 N=N1 + N2 

 

Program 

Vocabulary 

 n = n1 + n2 

Traditional 

Halstead 

69.76 6.00 418.56 23.25 0.17 21 10 

Modified 

Halstead 

458.12 7.63 3493.20 194.07 0.13 106 20 

Modified 

Data 
n1 (UOperators):                                     4 

n2 (UOperands):                                     16 

n(UOperators + UOperands):                20 
 

N1 (UOperators):    45 

N2 (UOperands):                                    61 

N(UOperators + UOperands):              106 
 

Traditional 

Data 
n1 (UOperators):                                     5 

n2 (UOperands):                                     5 

n(UOperators + UOperands):                10 
 

N1 (UOperators):                                    9 

N2 (UOperands):                                    12 

N(UOperators + UOperands):               21 
 

 

Table 4.3: Expanded Recursive Function Considering the Main Function. 
 

 Program 

Volume 

V=(Nlogn) 

Log to Base 2 

 

Difficulty Level  

D=(n1/2)(N2/n2) 

 

Effort 

E = 

(VD) 

 

Time to 

Implement  

T = E/18 

 

Program 

Level  

L = 1/D 

 

Program 

Lenght 

 N=N1 + N2 

 

Program 

Vocabulary 

 n = n1 + n2 

Traditional 
Halstead 

246 5 1292 72 0 59 18 

Modified 

Halstead 

446 12 5466 304 0 107 18 

Modified 

Data 
n1 (UOperators):                                     6 

n2 (UOperands):                                     12 

n(UOperators + UOperands):               18 
 

N1 (UOperators):                                    58 

N2 (UOperands):                                     49 

N(UOperators + UOperands):               107 
 

Traditional 

Data 
n1 (UOperators):                                     6 

n2 (UOperands):                                     12 

n(UOperators + UOperands):               18 
 

N1 (UOperators):                                     38 

N2 (UOperands):                                     21 

N(UOperators + UOperands):                59 
 

 



International Journal of Applied Science and Technology                                                     Vol. 2 No. 6; June 2012 

110 

 

Table 4.4: Expanded Recursive Function and Translation of Every Occurence of Multiplication and 

Division to Successive Addition or Subtraction Respectively Considering the Main Function. 
 

 Program 

Volume 

V=(Nlogn) 

Log to Base 2 

 

Difficulty Level  

D=(n1/2)(N2/n2) 

 

Effort 

E = 

(VD) 

 

Time to 

Implement  

T = E/18 

 

Program 

Level  

L = 1/D 

 

Program 

Lenght 

 N=N1 + N2 

 

Program 

Vocabulary 

 n = n1 + n2 

Traditional 

Halstead 

246.0 5.3 1291.6 71.8 0.2 59 18 

Modified 

Halstead 

561.9 10.5 5899.4 327.7 0.1 130 20 

Modified 

Data 
n1 (UOperators):                                     5 

n2 (UOperands):                                     15 

n(UOperators + UOperands):               20 
 

N1 (UOperators):                                    67 

N2 (UOperands):                                    63 

N(UOperators + UOperands):              130 
 

Traditional 

Data 
n1 (UOperators):                                     6 

n2 (UOperands):                                     12 

n(UOperators + UOperands):               18 
 

N1 (UOperators):     38 

N2 (UOperands):                                    21 

N(UOperators + UOperands):               59 
 

 

5. Analysis of Results 
 

 In Table 4.1, Modified Halstead metrics are greater than the traditional Halstead metrics except in the 

case of program vocabulary where both are equal. 

 In Table 4.2, Modified Halstead metrics are greater than the traditional Halstead metrics in all cases. 

 In Table 4.3, Modified Halstead metrics are greater than the traditional Halstead metrics in five of the 

seven cases. In the remaining two cases the metrics are the same. 

 In Table 4.4, Modified Halstead metrics are greater than the traditional Halstead metrics in all cases. 
 

Implication of these results is that Modified Halstead measure yields accurate results. It shows that recursion is a 

more tasking activity than sequential processing. It further shows that multiplication and division are more 

involving and therefore more complex than addition and subtraction. Hence, this study has revealed the 
limitations of the traditional Halstead measure and has proposed an algorithm to overcome them. 
 

6. Conclusion 
 

From this study, it has been established that numerical solution of complexity of algorithm gives more detailed, 
more specific and hence more pragmatic results than those obtained by use of Big O notation. Furthermore, the 

numerical study reveals that the depth of recursion has an unnegligible effect when evaluating complexity of 

algorithm 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 



© Centre for Promoting Ideas, USA                                                                                                www.ijastnet .com    

111 

 
Appendix 1: Test Code 

 

using system; 
class illustrate 
{ 
             public int Power(int a, int Raisedto) 
             { 
                         if (Raisedto < 1) return 1; 
                         else 
                                    return a * Power(a, Raisedto – 1); 
              } 
              public double Div(int a, int b) 
              { 
                          if (b < 1) return 0; 
                          return (double)a/b; 
              } 
 

              public static void Main() 
             { 
                          System console.WriteLine(‘‘Starting Test...’’); 
                          System console.WriteLine(‘‘........................’’); 
                          System console.WriteLine(); 
                          System console.WriteLine(‘‘Please Input a value to find its Power:’’);  
                          System console.WriteLine(‘‘Power:                                                        {}’’; 
                          Power(int.Parse(System.Console.Readline()), 
                          int.Parse(System.Console.ReadLine()))); 
                          System.Console.WriteLine(); 
                          System.Console.Write(‘‘Please Input a value to find its division:’’); 
                          System console.WriteLine(‘‘Division:                                                     {}’’; 
                          Div(int.Parse(System.Console.ReadLine()))); 
                          int.Parse(System.Console.ReadLine()))); 
                          System.Console.WriteLine(); 
                          System.Console.WriteLine(‘‘Press any Key to Exit...’’); 
                          System.Console.ReadKey(true); 
               } 
     } 
 

References 
 

Abu T.M., Abran A. and Ormandjieva O. (2005): COSMIC-FFP and Functional Complexity Measures: A study 
og their scales, units and scale types. Proceedings of the 15th International Workshop on Software 

Measurement, Montreal, Canada, pp. 209-225. 

Anany L. (2003): Introduction to the Design and Analysis of Algorithms, pp 41-50, Addison-Wesley, Reading, 

Massachusetts. 

Behrouz A. (2008): Cryptography and Network Security, McGraw-Hill International Edition, London. 

Christos H. (1994): Computational Complexity, Addison-Wesley, Reading, Massachusetts. 

info@verifysoft.net(2005): Halstead Metrics 

Jukka K.N. (2003): Using Software Complexity Measures to Analyse Algorithms – An Experiment with the 

Shortest-Paths Algorithms; Computers and Operations Research 30, pp. 1121 – 1134, New York, U.S.A. 

Glenn J. (2007): Computer Science; an Overview, Tenth Edition, Pearson Education, New Jersey, U.S.A. 

mailto:info@verifysoft.net

