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ABSTRACT: Generalization of distributions is usually motivated by limitations in characteristics of existing distributions 

so as to introduce more flexibility and improve goodness of fit. This is done by parameter induction into an existing 

distribution and therefore remains an approach to generalizing distributions. In this article, families of generalized 

distributions are generated by sequential application of methods in permutations of five distinct parameter induction 

methods: Lehmann Alternative 1 (LA1); Lehmann Alternative 2 (LA2); Marshal and Olkin Method (M-OM); α-Power 

Transformation (APT); and Power Transformation Method (PTM). This is done by taken two methods at a time. Sixteen 

distinct families of generalized distributions were generated. Some of the families of generalized distributions obtained are 

already in existence while several others are entirely new.  

KEYWORDS: Generalized distributions; Lehmann Alternatives; α-Power Transformation Method; Power Transformation 

Method; Marshall and Olkin Method. 

 

1. INTRODUCTION  
 

There are several parameter induction methods in literature. These methods have received many applications 

and produced more flexible distributions that improved goodness of fit. ([MO97]) introduced a method for 

adding a parameter to a base distribution. The Probability Density Function (PDF) and Cumulative Distribution 

Function (CDF) of any random variable belonging to the family of generalized distributions obtained from this 

method for x  and any ),0(   are  
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  is the introduced parameter, where g(x) and G(x) are the PDF and CDF of any base distribution, ([MK16]) 

proposed another method of introducing an extra parameter (α>0) to a family of distributions in what they called 

α-Power Transformation Method. The α-Power transformations of the CDF (F(x)) and PDF (f(x)) of a 

continuous variable X for x  are defined as follows: 
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When α=1, The PDF and CDF becomes those of the base distributions. 
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([TN15]) discussed Lehmann Alternatives as ways of obtaining Exponentiated families of distributions with 

additional parameter (a>0). For any baseline distribution having PDF (g(z)) and CDF (G(z)), Lehmann 

Alternative 1 has the following PDF and CDF, 

 

)( zf )()( zGzag a
             (5) 

 

and  

 

)( zF  )( zG a
           (6) 

 

Whereas the PDF and CDF obtained using Lehmann Alternative 2 are 
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and 
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          (7) 

 

([GK09]) gave different interpretations to these exponentiated families of distributions and also discussed the 

Power Transformation method of parameter induction. Suppose X is random variable, then for an additional 

parameter (α > 0), consider a new random variable Y such that Y = X
1/α

, then the corresponding function PDF 

and CDF satisfy the following; 

 

)( yf  α x α-1 xf ( α
)  

 

and  

 

)( yF  xF ( α
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Other parameter induction methods and applications can be found in ([GK09]), ([LFA13]), and ([TN15]). 

This article generates families of generalized distributions with two additional parameters. Methods can be used 

similarly to obtain generalized distributions introducing more than two parameters. In the next section, we 

obtain and present some functions of derived families of generalized distributions while conclusion is done in 

section 3. 

 

2. FAMILIES OF GENERALIZED DISTRIBUTIONS AND THEIR FUNCTIONS 
 

Let X be a base random variable having the following functions; 

 Probability Density Function denoted by ƒ )( x , Cumulative Distribution Function denoted by )( xF . If X is a 

lifetime random variable, then, the Survival Function (SF) is denoted by, the Hazard Function (HF) is denoted 

by )( xh , and the Reversed Hazard Function (RHF) is denoted by )( xr . 

Let Y be a continuous random variable obtained by introducing a parameter (c>0) to the base random variable 

X, and let Z be another continuous variable belonging to a family of generalized distribution obtained by 

introducing another parameter(t>0) to Y.  

Then to generate families of generalized distributions introducing two parameters, we first obtain permutations 

of five distinct parameter induction methods (those reviewed) taken two methods at a time. The methods in each 

permutation are then applied sequentially to obtain a family of generalized distributions. Below are the families 

obtained and some of their statistical functions. 

Permutation 1: LA1, LA2 

Applying LA1 first and then LA2,  

Family 1:  
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Permutation 2: LA2, LA1 

Applying LA2 first and then LA1; 

Family 2: 
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Permutation 3: LA2, PTM 

Apply LA2 first and then PTM 

Family 3:  
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Permutation 4: PTM, LA2 

Apply PTM first and then LA2 

Family 4: 
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From equations in (11) and those in (12) it is observed that PTM and LA2 are commutative. 

Permutation 5: LA2, APT 

Apply LA2 first and then APT 

Family 5:  
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Permutation 6: APT, LA2 

Apply APT first and then LA2 

Family 6: 
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Permutation 7: M-OM, LA2 

Apply M-OM first and then LA2 

Family 7: 
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Permutation 8: LA2, M-OM 

Apply LA2 first and then M-OM 

Family 8:  
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Permutation 9:  LA1, PTM 

Apply LA1 first and then PTM 

Family 9:  
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Permutation 10: PTM, LA1 

Apply PTM first and then LA1 

Family 10:  
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From equations in (17) and those in (18), it is observed that LA1 and PTM are commutative. 
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Permutation 11:  LA1, APT 

Apply LA1 first and then APT 

Family 11:     
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Permutation 12:  APT, LA1 

Apply APT first and then LA1 

Family 12: 
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Permutation 13:   M-OM, LA1 

Apply M-OM first and then LA1 

Family 13:  
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Permutation 14: LA1, M-OM 

Apply LA1 first and then M-OM 

Family 14:   
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Permutation 15:  PTM, APT 

Apply PTM first and then APT 

Family 15:  
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Permutation 16: APT, PTM 

Apply APT first and then PTM 

Family 16:  
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From equations in (23) and those in (25), it is observed that APT and PTM are commutative. 

Permutation 17: M-OM, APT 

Apply M-OM first and then APT 

Family 17:  
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Permutation 18: APT, M-OM 

Apply APT first and then M-OM 

Family 18: 
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Permutation 19: M-OM, PTM 

Apply M-OM first and then PTM 

Family 19: 
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Permutation 20:  PTM, M-OM 

Apply PTM first and then M-OM 

Family 20: 
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From equations in (27) and (28), it is observed that PTM and M-OM are commutative. Methods 1 and 2 

producing families 1 and 2 agree with those found in ([C+13]) and ([CD11])). Some generalizations of 

POM/MOE family of distributions can be found in ([JM08]) and ([TN15]). 

 

3. CONCLUSIONS 
 

Twenty methods producing sixteen distinct families of generalized distributions with two additional parameters 

were obtained. Models introducing two parameters in any base distribution may be generated from sequential 

applications of methods in permutations of s ≥ 2 distinct parameter induction methods taken two methods at a 

time. In general, models introducing n parameters may be obtained by sequential application of methods in 

permutations of s (s ≥ n) distinct parameter induction methods taken n methods at a time. Sequential application 

of methods in permutations of two distinct parameter induction methods (PTM inclusive) produced two 

generalized distributions belonging to the same family hence PTM and such other method are said to be 

commutative. Some of the families of generalized distributions generated are already in existence while several 

others are entirely new. Properties of new families of distribution need to be studied. 
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