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Abstract

The study of classical Restricted Three-body Problem (RTBP) and its generalizations
have been of major interest to researchers over the years. This is due to the rise in the need for
accuracy in determining astrometric positions which would help to reveal some peculiarities of
components of motion and draw conclusions on the stability of space vehicles to be launched.
This has led to the necessity of considering all possible physical properties
(oblateness/triaxiality, radiation pressure, Poynting-Robertson (PR) drag, perturbing forces etc.)
that affect the motion of particles in space. The effect of perturbations in the coriolis and
centrifugal forces on the stability of the generalized photo-gravitational RTBP has been a major
focus of investigations. However, the effect under the influence of the PR-drag from both
oblate bodies has received little or no attention. Therefore, the aim of this research work was
to investigate how perturbations in the coriolis (¢) and centrifugal forces (&) affect the

stability of the triangular libration points of the RTBP when the primaries were considered to be
oblate, radiating with PR-drag effects. The objectives of this study were to: (i) determine the

effect of PR-drag on the stability of the libration of the generalized RTBP; (ii) investigate the
effects of ¢ and &' on the stability of the generalized RTBP in the linear sense; (iii)

establish the periodic orbit: period of oscillation, orientation and semi-axes of the proposed
system; and (iv) verify the results obtained using astrophysical data for the Kruger 60 and
RXJ0450, 1-5658 binary systems.

The Hamiltonian and Lagrangian methods were employed to establish the relevant
equations of motion, obtain the triangular libration points and investigate their stability using
Murray’s and Routh & Hurwitz’s criteria and verifying the results for the two binary systems
using, MATLAB and Microsoft Excel Mathematical softwares.

The findings from this study showed that the:

* generalized system was unstable around the triangular libration points due to the
presence of the PR-drag effect from both bodies;

e presence of the parameter of the stabilizing factor, (¢), in the roots of the
characteristics equation does not change the instability of the system around the libration
points;

e period for the growth of the particle oscillation is dependent on the PR-drag
parameter only, in the linear sense;

e orientation and length of semi- axes are dependent on all the perturbing
parameters; and

e change in the values of ¢ and &' affects the values of the libration points and
roots of the characteristics equations computed for the two binary but does not satisfy the
criteria for stability.

The study concluded that the system remained unstable even with the significant
influence of perturbations due to the strong destabilizing effect of the PR-drag force. This work
as a generalization of the classical case and the work of others, is therefore recommended to



serve as a form of reference to achieving more interesting and vital results in Space Dynamics
and also an added value to designers of space crafts and aerospace agencies.
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1 General Introduction

1 Background to the Study

Space dynamics is a branch of astronomy which considers the study of celestial
mechanics and control applied to spacecraft and natural objects. The initial goal of celestial
mechanics was to explain the motion of the sun, the moon, and the planet. However,
mathematical methods of celestial mechanics find several applications such as the
determination of the dynamics of the planet, asteroids, comets, artificial satellites and the
design of orbit for interplanetary travels. celestial mechanics plays a vital role in all areas of life.
Space research has brought about lots of progress in, satellite telecommunications, weather
forecasting, targeting missiles, tourism, exploration of mineral resources, defense and security
and much more.

Nigeria is amongst the nations that have shown interest in space science. The Nigerian
Government have launched five satellites since her intention to venture into space research
was first made known at an inter-governmental meeting in Addis Ababa in 1976. The first was
the world-wide Disaster Monitoring Constellation (DMC) System, the Nigeria Sat-1 built by a
United Kingdom-based satellite technology company, Surrey Space Technology Limited (SSTL
Ltd). It has a mass of 100 kg, carries an optical imaging payload which uses green, red and
near-infrared bands equivalent to Landsat TM+ bands 2, 3 and 4 and 32 m ground resolution
with an exceptionally wide swath width of over 640 km. NigeriaSat-1 was launched by Kosmos-
3M rocket from Russian Plesetsk spaceport on 27 September 2003.

The second Nigerian satellite to be placed into orbit was the NigComSat-1, a
communications satellite owned and operated by Nigerian Communication Satellite limited.
This was launched on 13th May, 2007 from the Xichang satellite launch centre in China with
the aim of providing rural internet access. This satellite was a total loss because it lost both of
its solar arrays and was switched off.

The NigeriaSat-2 and NigeriaSat-X of mass, 300 kg each, built to replace the
NigeriaSat-1, were launched on the 17th of August, 2011. The NigComSat-1R was built to
replace the lost NigComSat-1 and launched by China on 19th December, 2011 with no cost to
Nigeria.

More recently are the NigComSat-2 and NigComSat-3 launched in 2012 and 2013
respectively. The NigeriaSAT-1-dual-aimed military/civil Earth monitoring satellite with
synthetic aperture radar was launched in 2015. The main reason for these activities is to use
space acquired information to understand and manage our environment and natural resources.

Isaac Newton was the first to study the motion of particles moving under the influence
of a mutual gravitational force of attraction. His effort resulted in oral descriptions and
geometrical sketches. He unified the three laws of motion (the law of inertia, the law of
conservation of momentum and the law of action and reaction) and proved that these laws
govern both earthly and celestial mechanics. Using Huygens results on centripetal acceleration,
Hooke and Wren concluded that this diminishes as the inverse square of the distance. They
identified this force as the same force that makes objects fall near the surface of the earth and
hence succeeded in computing the orbits of celestial bodies using the inverse square law.

Based on Euler extension of Newton’s laws of motion from particles to rigid bodies and



the reformulation of these laws by Lagrange and Hamilton, it was possible to solve problems
that seem complicated in space dynamics. Like the two-body, three-body, four-body and
N-body problems.

The two-body problem describes the motion of two bodies of finite masses moving
under the influence of a mutual gravitational force of attraction. For example, the solar system,
which consists of the sun and its nine planets. This problem has been solved completely. The
three-body problem studies the motion of three bodies of finite masses attracting it each other
in pairs under a mutual gravitational force of attraction. An example of this is the sun, earth and
moon relation.

Due to the complexity of solving the three-body problem, Mathematicians studied a
special case, the Restricted Three-body problem (RTBP). This is one of the most important
components of Space Dynamics which has captured the attention of many researchers over the
years. The problem is restricted in the sense that it describes the motion of a third body with
negligible mass moving in the plane of two massive bodies, called the primaries, such that its
motion does not influence their motion. A typical example is a spacecraft moving between
planets or the satellites orbiting the planets.

The history of RTBP began with Euler and Lagrange through their lunar theories. Euler’s
introduction of the rotational (synodic) coordinate system brought about his major
accomplishment which led to the discovery of the Jacobian integral by Jacobi. These integrals
connect the magnitude of the velocity vector of the body to its location. Hill described the
motion of the moon using these integrals. Poincare initiated the analytical methods which are
his highest theoretical accomplishment. He considered the study of the Periodic Orbit as the
only means by which the unsolvable problems of three-body system can be approached. He
also emphasized the importance of the periodic orbit and suggested it be used as a reference
orbit. This was adopted by many prominent researchers using ellipse and variational orbit.

The classical problem assumes that the primaries are spherical. Due to the advancement
in astrophysical studies, the true nature (oblateness, triaxiality, surface area light, force order
than the gravitational force, coriolis and centrifugal forces, atmospheric drag, solar wind e.t.c.)
of the planet and extrasolar bodies became clear.

In recent times all these properties are taken into consideration in describing the
motion and stability of satellites (both natural and artificial) and other planetary bodies. The
Poynting-Robertson drag effect which is the effect of electromagnetic radiation on the moving
spherical body was first discovered and studied by Poynting (1903) and Robertson (1937).

The effect of this drag force can not be over emphasized.

In order to solve problems in celestial mechanics exactly in an Earth-bound reference
frame, the Coriolis and the centrifugal forces must be introduced. Specifically, when objects in
the inertial frame are transformed to a rotating frame of reference the coriolis and centrifugal
forces appear. These forces are weak compared to most typical forces in everyday life.

The coriolis force acts to the left of any object moving in a circular motion in the
clockwise direction relative to a rotating reference frame. It causes a deflection known as the
‘coriolis effect” while the centrifugal force acts outward in the radial direction and it is
proportional to the distance from the axis of the rotating frame. The effect is quite small but
generally more noticeable only for motions occurring over large distances and long period of
time.



In the case of a distant star observed from a rotating spacecraft in the reference frame
co-rotating with the spacecraft, the star appears to move along a circular trajectory around the
spacecraft, hence the resultant force of centrifugal and coriolis force must be taken into
account. Here the magnitude of the coriolis force is twice that of the centrifugal force.

The periodic orbits is an important topic in celestial mechanics that can not be left
untouched because it provides vital information on the orbits or spin of the particles. The study
of of the periodic orbit in the framework of the generalized RTBP putting all the perturbing
forces (oblateness, triaxality, radiation due to pressure, PR-drag, perturbations in the coriolis
and centrifugal forces) into account All these properties exhibited by planetary bodies brought
about many modifications in the formulation and study of the stability of the RTBP. Also, the
recent increase of the accuracy of ground-based astronautic observation of asteroids makes it
very essential to consider these properties.

2  Statement of the Problem
In the classical case, the RTBP were found to have five equilibrium or libration points,
three of which are collinear points (L;,L,,L,) located along the axis connecting the primaries

and the other two (L,,L;) forms triangular points which are symmetrical with respect to this
axis. The collinear points were found to be unstable while the triangular points are stable for

1 . .
the mass values O0< <y  and unstable for ,uc<,u<§ where g is the critical mass

value.

With the presence of Poynting-Robertson drag force, it was found that six unstable
libration points existed at most in which the sixth point is located out of the plane of motion.

In this research work, the effects of small perturbations in the Coriolis and Centrifugal
forces on the stability of the libration points in the generalized RTBP when the primaries are
radiating with PR-drag effect is investigated. The problem is generalized in the sense that the
effects of the perturbing forces are studied when the primaries are considered to be oblate
spheroid. The results obtained have been further verified using the Kruger- 60 and
RXJ0450,1-5658 binary system as a model.

3 Aim and Objectives of the Research
The main aim of this research work is to investigate the effects of small perturbations
in the Coriolis (¢) and centrifugal (&) forces on the stability of the triangular libration

points of the RTBP when both primaries are considered to be oblate spheroid as well as sources
of radiation with PR-drag from the primaries. The objectives of the study are to:

e determine the effect of PR-drag on the stability of the libration of the generalized
RTBP;

¢ investigate the effects of small perturbations in the Coriolis and centrifugal forces
on the stability of the generalised photo-gravitational RTBP in the linear sense;

e establish the Periodic orbit: period of oscillation, orientation and semi-axes of the
proposed system; and

e verify the results obtained using astrophysical data for the Kruger 60 and
RXJ0450,1-5658 binary systems.



4 Significance of the Study
Space dynamics is an important component of Space Science and Technology program.
It is one of the central problems in space Science.

The rise in the need for accuracy in determining astrometric positions and radiation
influence on celestial bodies led to the necessity to take into account the non-sphericity of the
bodies, phase angle, surface area light, perturbing and drag forces. This would help to plan the
launching and control of space vehicle would reveal some peculiarities of components of
motion and to draw the conclusion on their stability. The verification of this result on the
Kruger 60 and RXJ0450,1-5658 binary systems shows its significance when launching a
space vehicle in their vicinity. This work, therefore, would be of great importance to the Space
And Research Agencies.

5 Scope of the Study
This research work has only considered how small perturbations in the Coriolis and
Centrifugal forces affects the linear stability of the triangular libration of the circular RTBP
under the combined influence of the oblateness, radiation pressure force and PR-drag force
from both primaries. Other important and interesting aspects of RTBP such as other shapes |
eg.triaxiality), orbit (elliptic), non-linear form, the collinear points etc have not been considered.

6 Research Methodology
In order to achieve the objectives mentioned above, the
¢ Hamiltonian and Lagrangian method was employed to establish the relevant
equations of motion;
e triangular libration points were obtained and their stability investigated using
Murray’s and Routh & Hurwitz’s criteria; and
e results were verified for the Kruger-60 and RXJ0450,1-5658 binary systems

using MATLAB and Microsoft Excel Mathematical software.

7 Definition of Terms
Here are some basic definitions and concepts used in this work.
Definition 1.7.1
The velocity of a particle of mass m moving at a distance F(X,Y,z) from the origin at

time t is given in vector form as

V=F=—=lim— (1)

Definition 1.7.2
The angular velocity of a body rotating about it axes with an angle say @ is
V=wxr

Where @ = (jj_f is the angular velocity vector. For a rigid body (that is, has invariable shape



and size) the angular velocity is

V'=V+aoxr' (2)
Where, V is the velocity due to a fixed axes
wxT' isthe velocity due to rotating axes.

are (X—awy, y+wX)
Definition 1.7.3

The component of the velocity f in the direction of the moving axes OX' and QY'

The acceleration for the particle described in definition (1.7.1) is
d’r

av -
T ae )

Definition 1.7.4

The momentum L is the product of the mass of the body and it velocity which is
represented as

L=m?=md—r:(m%,mﬂ,m%) (4)
t dt dt dt

Definition 1.7.5

The force acting on a particle is the product of the mass, m of the body and its
acceleration which is
av .. df _, d’x _d’y d*z
m—=mr=m—=(M—,M——=,m—)
dt dt dt dt dt
This is according to Newton’s law of motion.

For two masses m, and m, separated by a distance, r, by Newton’s law of
gravitation,

m
F = SMM, (5)
r
where G is the mutual gravitational constant.
Definition 1.7.6
The Energy E is given by
E =T +V = constant
where

= EmF2 is the Kinetic Energy (energy due to motion)
and

v=der=-9%£k (6)

In the case of motion of a close satellite about a non-spherical planet, the potential is formed
such that

V=V, +R



Where V, is the potential function due to the point mass of the two-body problem and

R is the potential due to any other attracting masses in the system or to the arbitrary shape of
the planet about which the body revolves.
Definition 1.7.7
The circular restricted three-body problem is said to describe the motion of a third body
of infinitesimal mass, m attracted by two bodies of finite masses m, and m,, known as the
primaries moving around their center of mass in a circular orbit under the influence of their
mutual gravitational attraction. Its motion does not influence their motion but it is affected by
theirs. Aside the sun, the heaviest of all planets, Jupiter, moves around the Sun in a circle. There
is a group of tiny planets, the Trojan asteroid whose motion is controlled principally by the sun
and Jupiter. The motion of the Trojan asteroid is described by the restricted three body
problems with the sun and Jupiter as primaries.
Definition 1.7.8
The radiation force F, changes with distance by the same law as the gravitational

force of attraction F, but acts in opposite direction. This result in a reduction in the effective

mass of a particle. This resulting force on the particle is given by

—_ —_ Fp _
F=F,—F,=F|1-> = dF, (7)

9

F
where q=1-—" is the mass reduction factor such that 0<(1-q)<<1, for a particle

9
expressed in terms of particle radius (a), density (6) and solar radiation pressure efficiency

factor (x) (in CGS units)

5.6x1075
ao
Since q is assumed to be a constant, it is adequate to neglect the solar radiation flood
fluctuations and shadow effect of a planet.
For the primaries of masses m;, and m,, the mass reduction factors are denoted by

q=1 x(Radzievsky,1950)

g, and Q, respectively.
Definition 1.7.9
Oblateness is the measure of non-sphericity or the degree of flattening of the primaries.
The coefficient for this can be measured with the expression given below as,

ae? —ap?
A = 1 pl

ERZ (McCuskey, 1963) (8)
where ae,, ap, (i=1,2)are the equatorial and polar radii for primaries respectively and R,

is the distance between the primaries
Definition 1.7.10
The Poynting-Robertson effect, also known as, Poynting-Robertson Drag named after
John Henry Poynting and Howard Robertson is a process by which solar radiation causes
meteors and dust grain orbiting a star to lose angular momentum relative to their orbit. This



causes dust that is small enough to be affected by this drag. Robertson used a precise
relativistic treatment of the first order in the ratio of the velocity of the particle to the speed of

v
light — and the expression for the net drag force which opposes the direction of motion is
c

- F{L_!LL_X} (9)
r crr ¢
where,
_3Lm
P 16ar%psc

denotes the measure of radiation pressure, r the position vector of a particle with
respect to the radiation source, Vv is the corresponding velocity, c is the speed of light, L is the
luminosity of the radiating body, m is the mass of the particle, o isthe density of the particle,

s is the cross section of the particle.

The first term expresses the radiation pressure effect, the second represents the
Doppler shifts owing to the motion of the particle and the third is due to the absorption and
subsequent re-emission of part of the radiation. The last two terms of equation (1.9)

constitute the PR-drag effect.



Definition 1.7.11

Figure 1:The synodic coordinate relative to the sidereal coordinate system,Source: Szebehely
(1967a)

The sidereal (fixed) or inertial coordinate system has zero acceleration since there is no
identifiable force produced in this state. It is associated with the inertial frame of reference.
The synodic or rotating coordinate system is accelerated since it is not fixed. There are forces
associated with the rotating reference frame, which are called the artificial forces.

Definition 1.7.12

Assuming a body is moving at a constant velocity with respect to an inertial frame, here
no net force acts on it. If the body is viewed from a frame of reference which is accelerating (in
this case rotating). In general, the body is no longer observed to move with constant velocity
and it appears as though a force is acting on it. This force is called an “effective” or “fictitious”
force. The acceleration due to such a force is caused solely by the motion of the observer. To
describe the motion of a particle relative to a body that is rotating with respect to an inertial
frame is complicated but can be made relatively easy by the non-inertial, artificial forces; the
Coriolis (fictitious correction force) and Centrifugal (outward force) forces. These forces have
been introduced in an artificial manner as a result of an arbitrary requirement to write an
equation which resembles Newton’s equation since the Newton’s equation is only valid in an
inertia frame of reference. The vector sum of the centrifugal and the Coriolis force is the total
fictitious force given by
F = —M&x(&xT)—2mWxV (10)

Centrifugal
Coriolis

where m is the mass of the object, @ is its angular velocity of the rotating frame, T

the position vectorand V the corresponding velocity as seen in the rotating frame.
Definition 1.7.13

A body is said to be at libration or Equilibrium point if it is stationary at that point or it is
in a steady state. From mathematical point of view, if a dynamical system is in a state of
equilibrium it remain in that state as t— 0. Precisely, considering a system of ordinary
differential equation

X = X(X) (11)
with a point X=a
Where,
X= (X, X,..,X,) and X =(X, X,...,X,)
A solution x(t) is called the equilibrium or libration point when X(t,) =a is a solution
of the equation X (x) =0, thatis X=0 isthe libration point
From the physical point of view, the equilibrium solutions represent points where the

force acting on the third body in the rotating system is balanced. That is, if the body is given a
little displacement, it oscillates and returns to the same point when time elapses the it is stable,



otherwise unstable.
Definition 1.7.14
The third body is also said to be stable near one of the equilibrium or libration points if
given a small displacement with small velocity, it oscillates and returns to the same point when
time elapses, otherwise unstable. The solution X=a orthe point a issaid to be stable if
for any given £<0 thereexita oJ(&) >0 suchthat when the disturbances satisfy

|x(t0)—a| <o
thenforall t>t,,
x(t)—a|<e
Otherwise the equilibrium point or libration point X =a is unstable.
For a Linear System
If the system of differential equation given in equation (1.11) is re-written in the form
x = Ax+ f(x)
where A is a constant matrix and f(x) is a vector function such that
[ ()
X
as |X|—>O forall f>0

then the linearized system of equation is

X = AX (12)
The stability condition for t>t, of the linearized system stated as:
¢ if the roots of the characteristic equation of A are complex which
- have all negative real part then the libration points are stable similarly for

multiple roots.
- have any positive real parts then the libration points are unstable. This is

also valid for multiple roots.

e for pure imaginary roots, the motion is oscillatory and the solution is stable
though not asymptotically stable. If these are multiple roots the solution contains mixed (period
and secular) terms and the libration point is unstable.

e if the roots are real and all negative, the solution is stable. If any of the roots are
positive, then the point is unstable. This is also true for multiple roots.



Routh and Hurwitz Criteria for Stability

The Routh and Hurwtz criteria is a mathematical test used to determine the nature of
the roots of a characteristic polynomial of a linear system and to make conclusions on the
stability of the system without solving directly. It is given as

Let P(x) be alinear homogeneous characteristics equation of order n, given by

P(x)=x"+ax" " +...+a _,x+a =0 (13)
where a,,...,a, are real constant coefficients of the polynomial. Using the coefficients, the

Hurwitz’s determinants are defined as

al a3 ai a3 a5
0.=2/0,= 0.1 e, a
aZ
0 a &
a a; a4 A
1 4q 4 A,
0 ai 3 a‘2]—3
0O 1 a . . . a,
D, = 2 21 (14)
0 0 0 a,

where a =0 for i>n

All the roots of the characteristic polynomial above, would have negative real part if and

onlyifallthe D;>0, j=1,...,n.Consequently, the polynomial P(X) isstableas t— o
Definition 1.7.15

The discriminant of a polynomial with real coefficient gives more information about the
properties and nature of the roots of the polynomial without actually solving it. The resultant
(Res) or determinant of a matrix known as the Sylvester matrix is used to obtain the
discriminant for higher polynomials. This matrix is associated with two uni-variate (one
variable) polynomial and is defined as

let p(x)=a,x"+a, X""+...+a, and q(x)=b,x"+b, X" +...+b, then the
Sylvester matrix associated with p and g is the (m-+n)x(m+n) matrix given as



an a‘n—l a‘n—2 a'2 a:L a0 0 0
0 a, a a a, a o0 0
0 0 a, a a a, O 0
Spq: 0 0 0 a4 a; &, a, a4 a & (15)
“"|b, b, b, , by 0 0
0 . Db , b, 0 0
0 X b, b, b, 0 0
0 O O b, b, b, . . . b by b, b b

The discriminants of the polynomial, p(x) defined by A is described using the Sylvester
matrix in equation (1.15) as the quotient of the determinant of p(Xx) and its derivative,
p'(x) by a,.Therefore,
1 :
A, = a—dEt(p(X), p'(x)) (16)

n
Generally, if:
e A, >0,thenthereare 2k pairs of complex conjugate roots and n—4k real

n
roots for some integer k suchthat 0<k < Z;

e A,<0,thenthere 2k+1 pairs of complex conjugate roots and n—4k -2

real roots in which they are all different, for some k such that 0<k < n;2 ’

o Ap =0 then there exist at least 2 roots which coincide and could either be

real or complex.

Definition 1.7.16

The mean motion n of the massive bodies m; and m,obtained from Kepler’s third

law which state that "the square of the period of planets or binary stars is proportional to the
cube of the semi-major axis," was given by

n2 = G(ml + mz) — 1(m1 + mz) ﬂ

3
r rmm, or

(17)

Definition 1.7.17
A dynamical system is said to be periodic when the same configuration is repeated at a



regular interval of time. For instance, in a sidereal or inertial (fixed) coordinate system, the two
body problem will have a solution which is repeated after a period of
T 27

sidereal —

n

(18)
where n is the mean motion.

And for the synodic (rotating) coordinate system, periodic motion occur when n= P
q

where p and q are integers and n is a rotational number. The period is
27p
Tsynodic = | p|TsidereaI = n = 27Zq
The elliptic motions are always periodic in the sidereal system but not necessarily in the
rotating frame of reference, while the circular motions are always periodic in both systems. In
the three- body problems, a solution is said to be periodic if the mutual distance of the bodies
are periodic function of time.

8 Organization of the Thesis
This thesis comprises of five chapters, references and appendices.

In chapter one, the background, aim and objectives, methodology, justification, scope
and organization of the study were introduced. Chapter two reveals a review of relevant
literature under various headings (radiation pressure, oblateness, PR-drag, Coriolis and
Centrifugal forces and the periodic motion) of the classical RTBP. Chapter three is divided into
three sections in which the equations of motion, equations of the coordinate of the libration
points and the stability around these points were obtained for the study of the problem in
section one (the effects of PR-drag force and oblateness on the stability of the triangular
libration points)and section two (the effects of the Coriolis and Centrifugal forces on the
stability of generalized RTPB) while section three established the equations of the periodic
motion around L,. Chapter four presents the analysis of the results obtained in chapter three

while in cchapter five the summary, conclusion and recommendation were given.
2 Literature Review

1 Introduction
In space dynamics, an understanding of the near-earth objects (NEOs) is essential for

resolving the relationships between asteroids, comets and meteorites. They are the smallest
solar system bodies observable because of their proximity to the earth. They display certain
physical properties such as:

-Possession of irregular shapes

-Possession of small perturbation forces other than the gravitational force of
attraction.

-The ability of the asteroids to emit radiation due to their surface light.



In view of these properties, many papers that generalize the classical Restricted Three
Body Problem (RTBP) have been published. These generalization made the problem more
realistic by incorporating the force of radiation pressure, oblateness/triaxiality and
Poynting-Robertson (PR) drag effect.

The related literature and research works were reviewed and discussed under various
generalizations in this chapter as follows;

2 Classical Case
Duboshin (1958) studied the motion of RTBP and established the rational equations

of motion and later studied the circular RTBP which showed that the collinear libration points
existed and that the triangular points make an isosceles triangle with the primaries and
continued by studying the motion of three rigid bodies whose elementary particles act upon
each other according to arbitrary laws of forces along the straight line joining them. Szebehely
(1967a) discovered that the classical RTBP possesses three collinear (L, L,,L,) which were

found to be unstable and two triangular points (L,,L;) which are stable for 0< u< .
where 4 is the mass parameter and g, =0.03852... is the critical mass value. Sengupta and

Singla (2002) similarly analyzed the stability of the classical RTBP by formulating the equation of
motion using the Langrange’s-Hamiltonian technique.

Here, the primaries were assumed to be spherical and other forces (radiation pressure,
solar wind, Poynting-Robertson (PR) drag, Coriolis and Centrifugal forces etc) other than the
gravitational force of attraction were not put into consideration in establishing the existence
and stability of the libration points.

3 Effect of Radiation Pressure
In the real sense, the planetary bodies: planets and dwarf planets, natural and artificial
satellites, asteroids, comets and meteorite exhibit different properties that affect the motion of
a particular system, thereby leading to a change in the general solution.

One of the immediate generalization of the RTBP was the study of the
photo-gravitational effects. For small particles like asteroids and binary stars, light can cause a
significant change in the altitude and direction of motions over a large period when rotating
relative to the sun. This energy radiated from the celestial bodies known as the
photo-gravitational effect was put into consideration in establishing the stability of RTBP.
Radzievskii (1950), was the first to formulate the problem. He studied the linear stability of
the problem and obtained the five libration points. Kunitsyn and Perezhogin (1978) studied
the stability in the Lyapunov sense with one of the primaries radiating. Mignard (1982)

explored the Astronomical applications of the stability problem by looking into the influence of
radiation pressure from the sun in the planet-satellite-particle system. Simmons, Mc Donald
and Brown (1985) gave the complete solution of the RTBP. They also discussed the existence

and linear stability of the equilibrium points for all values of radiation pressure from both
radiating bodies for all values of mass ratio. Kumar and Choudry (1987) examined the
stability of triangular libration points when the attracting primaries are radiating under the
non-resonance cases. It was discovered that the motion will be stable for all values of the mass



value, x and mass reduction factor due to radiation pressure, ¢;,0, . Kunitsyn and Polyathara
(1995) investigated the photo-gravitational effect on the infinitesimal mass from both
primaries. Khasan (1996) obtained the collinear and triangular libration points for the

averaged equations of motion of the elliptic photo-gravitational RTBP and their stability is
studied to a first approximation. Kunitsyn (2000,2001) investigated the stability of the
relative equilibrium positions (collinear libration points) of the circular photo-gravitational
RTBP, in which a point is passively experiencing the Newtonian gravitational force from the
main bodies (stars) which also experience forces of light pressure from each of them and
analyzed previously obtained conditions of stability from new perspective.

The collinear points were found to be unstable for all values of the mass ratio, x while
the non-collinear points are stable and form isosceles triangles due to the radiation effect from
either or both of the primaries on the RTBP.

4 Effect of Oblateness

The classical RTBP further modified by considering the unusual shape of the planetary
bodies since all the planetary bodies were observed flattened due to their rotation around the
sun. The measure of these flattening is known as Oblateness. Many researchers have studied
the effect of oblateness on the stability of libration points for various system. McCuskey
(1963) established the equation for obtaining the Oblateness coefficients, A,i=1,2 and

consequently, the force due to Oblateness is given by
EF=Gm m;r + 3m AR
2r°

3
i i

. } (i=1,2) (AbdulraheemandSingh,2006) (19)

Where G is the gravitational constant, m the mass of infinitesimal mass and r, = (i =1,2)
is the distance between the primaries m, and the infinitesimal body. Vidyakin (1974)

established the location of the libration points and studied their stability in the Lyapunov sense
when both primaries are oblate spheroids with their equatorial plane coinciding with the plane
of motion. Sharma and Subbarao (1976,1979) studied the of RTBP when one of the primaries

is an oblate spheroid. They established that the decrease in the range of stability was due to
oblateness. Bhatnagar and Khanna (1999) considered the smaller primaries to be triaxial with

one of its axes of symmetry coinciding with the plane of motion. Abouelmagd (2012)

observed that there still exist five equilibrium points for which due to oblateness, the triangular
points deviate from its positions but does not influence the motion of the system in the x-y
plane, in the linear sense. Arrendondo, Gui and Stocia (2012) investigated the linear stability

numerically using J® and J® parameters.

5 Effects of Oblateness and Radiation Pressure
The generalized RTBP were modified by different authors to investigate the effect of
both oblateness and radiation pressure force on the stability of RTBP. Sharma (1982) studied
the linear stability of triangular libration points of the restricted three body problem when the
bigger primary is an oblate spheroid as well as a source of radiation. He generalized the study



(1987) by considering an oblate primary and radiating secondary. Ishwar and Singh (1999),
Tsirogiannis, Doukos and Perdios (2006) also computed the lyapunov’s orbit of a similar
system. They discovered that oblateness of the primary and radiation of the secondary reduced
the stability region of the triangular equilibrium points. like-wise, Shankaran , Ishwar,
Chakraborty and Abdullah (2011) , Jain etal (2013) , Singh and Umar (2012,2013,2014)
worked on related problems by considering the elliptic orbits.

Sharma, Taqvi and Bhatnagar (2001a,2001b) studied the stationary solutions of the
planar RTBP when the primaries are triaxial rigid bodies as well as sources of radiation with one
of the axes as the axis of symmetry and its equatorial plane coinciding of motion. They obtained
five libration points: two triangular points which are stable for a certain range of mass value
and three collinear points which are unstable.

6 Effect of the Poynting-Robertson Drag

The spectacular results of the effect of radiation pressure on RTBP prompted
researchers to generalize previous works further by considering the radiation pressure force
produced from the absorption and subsequent re-emission of sun rays striking small particles
orbiting it thereby retarding the motion of the particle thus lowering the angular momentum
and consequently spiral into the sun. This process is known as the Poynting-Robertson drag
effect. Poynting (1903) was the first to consider this problem and later modified by
Robertson (1937). He established the expression for the net drag force which opposes the
direction of motion using a precise relativistic treatment of the first order in the ratio of the
velocity of the particle to the speed of light. Colombo, Lautman and Shapiru (1996) studied
the effect of radiation pressure and PR-drag on the RTBP. Chernikov (1970) and Schuerman
(1980) established the existence of six libration points in which one lie out of the orbital
plane. He found that due to the PR-drag effect, the triangular libration points are unstable.
Following this discovery, several articles have been published related work. Murray (1994)
explained the dynamical effect of drag in general in the planar circular RTBP. Liou, Zook and
Jackson (1995) studied the effect of radiation, PR and solar wind drag in the RTBP. Ragos and
Zafiropoulos (1995) established the equations of motion for when the primaries are radiating
with PR-drag effect from the expression of the net force acting on the system. He studied this
problem numerically and discovered that the collinear points deviate from the axis while the
triangular points are no longer symmetrical. Lhotka and Celletti (2014) studied the effect of
the PR-drag on the triangular Lagrangian points but in the spatial, elliptic RTBP. Raj and Ishwar
(2017) obtained the diagonalizable Hamiltonian for the photogravitational RTBP with the

PR-drag.

7 Effects of Oblateness and Poynting-Robertson Drag
Kushvah and Ishwar (2004) and Ishwar and Kushvah (2006) examined the linear
stability of the generalised photo-gravitational RTBP when the smaller primary is considered to
be oblate spheroid and the bigger one radiating with PR-drag. Das, Narang, Mahajan and Yuasa
$(2009)$S worked on the out of plane equilibrium points of a passive micron size particle and



examined their stability in the field of radiating binary stars. Lhotka and Celletti (2014)
examined the effect of PR-drag on the triangular libration points in the framework of elliptic
RTBP. This is an extension of Murray (1994) work. Singh and Amuda (2014) studied the
photo-gravitational problem when the bigger primary is oblate and smaller a source of
radiation with PR-drag, Singh, Taura and Joel (2014) using analytical and numerical methods,
obtained the triangular libration points which were found to move towards the line joining the
primaries in the presence of any of perturbations (such as oblateness up to J, of the less
massive primary, electromagnetic radiation of the more massive primary and potential from
the belt), except in the presence of oblateness up to J, where the points move away from
the line joining the primaries and examined their linear stability. A practical application of their
model is the study of the motion of a dust particle near a radiating star and an oblate body
surrounded by a belt. Jaiyeola, AbdulRaheem and Titiloye (2016) extended their works to
understand the effects of various perturbing factors on the dynamics of a particle orbiting the
primaries. They concluded that the P-R drag renders unstable those libration points that are
conditionally stable in the classical case. Lhotka, Celletti, and Gales (2016) investigated the
effect of PR and solar wind drag on space debris. Narayan and Shrivastava (2013), Singh etal
(2016) , and many others have used various binary stars such as Prokyon, Kruger,
RW-Monocerotis, Achird, Luyten, o« Cen AB, Xi-Bootis, Algol etc to verify their results.

8 Effects the Coriolis and Centrifugal Forces
The study of the effects of small perturbation in the coriolis and centrifugal forces on
the stability of libration points of the RTBP cannot be over-emphasized because of their
peculiar nature.
The Classical RTBP has been generalized extensively by prominent researchers. Wintner
(1941) showed that the stability of two equilateral points was due to the presence of the
coriolis parameter in the equation of motion. Szebehely (1967b) considered similar problem

keeping the centrifugal force constant and established for the triangular points a relation
between the critical value of the mass parameter . and the change ¢ in the coriolis (¢)

force as
16¢

He = Hy+ 3769
and thus concluded that the coriolis force is a stabilizing force. Subbarao and Sharma (1975)
showed that with oblateness the coriolis force is not always a stabilizing force. Bhatnagar and
Hallan (1979) extended their work to include the centrifugal (&) force and showed that the
collinear points remain unstable while for the triangular points he obtained a relation
- 4(16¢ —19¢")
He = Hy 3769
which implies that the increase or decrease in the range of stability depends upon the points
(£,&"). Singh and Iswhar (1984) investigated the effect of small perturbations in the coriolis
and the centrifugal forces on the location of libration points in the RTBP with variable mass. In
line with the other results they established that the range of stability of the triangular points



increases or decreases depending on whether the perturbation point (&,&’) lies in either of
the two parts in which (g,¢&) plane is divided by the line 36&—-19¢" =0. Abdulraheem and
Singh  (2006) building upon previous works, studied the combined effects of small

perturbations in the coriolis and centrifugal forces, radiation and oblateness on the stability of
the libration points the RTBP and discovered that the collinear points remained unstable while
the range of stability of the triangular points decreases as seen in the critical mass value g,

obtained as
Mg = Mo+ My + My + 1 (20)
where
——( - ) 368 19g) . . . due to perturbations in the coriolis and
\ 27 P
centrifugal force.
2 2
= 0-q)-—F—(1- ... due to radiation effect.
H 27\/—9( g,) 27\/—9( d,)
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Singh (2009,2011) investigated the non-linear stability of the triangular equilibrium

. . effect due to oblateness.

points under the effects of small perturbations in the coriolis and the centrifugal forces,
together with the effects of oblateness and radiation pressures of the primaries. Singh and
Aminu (2014) examined the influence of small perturbations in the coriolis and centrifugal
forces, both analytically and numerically on the stability of circular RTBP with PR-drag from
both primaries. This was shown for the binary systems Luyten 726-8 and Kruger 60.
Akere-Jaiyeola, Singh, AbdulRaheem and Braimah (2015) considered the effect of

perturbations on the stability of the libration points on RTBP with a triaxial primary and
radiating secondary. The range of stability were found to be affected by the perturbing
parameter as seen in the relation for the critical mass value obtained as

Mo = Mo+ py + 1 + 14 (21)
where
Uy = 1(1—1/§) classical
36 -19¢
=4 due to perturbations
=4 oo 27J_ 69 ) P
U = ——(1—ql) —L(l—q) due to radiation
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Abouelmagd, Alhothuali, Guirao and Malaikah (2015) presented the graphical analysis

due to triaxiality.

for the variations of the angular frequencies for the periodic and secular RTBP under harmonic
effect. Zoto (2015) investigated how the oblateness coefficient influence the nature of orbits



in the RTBP and discovered that the it has a huge impact on the character of orbits. Singh and
Omale (2015) determined the effect of small perturbations in coriolis and centrifugal forces
on the axial equilibrium points and examined stability in Robe’s circular RTBP when the
hydrostatic equilibrium figure of the massive primary is an oblate spheroid; the shape of the
less massive primary is a triaxial rigid body. It was discovered that the locations of the axial
equilibrium points were only influenced by a small change in the centrifugal force and many
other researchers have introduced and studied the effects of the coriolis and centrifugal forces,
radiation pressure force, oblateness, on the stability of the RTBP. They observed that coriolis
force has a stabilizing tendency while the centrifugal force, radiation pressure force and
oblateness have destabilizing effect.

9 Periodic Orbit

In addition, the periodic orbits of the classical RTBP and its numerous generalizations
have been studied extensively by researchers. Poincare (1897) gave the three definitions of

the first kind for the periodic solution for an orbit in a synodic coordinate system in terms of its
inclination as: zero for small mass value 4 in a circular orbit, zero inclination for particles

perturbing in a keplerian elliptic orbit and when the inclination are no longer zero. Arenstorf
(1963) studied analytically the periodic orbit of the second kind in the planar RTBP. Barrar

(1965) examined similar problem using Cartesian rectangular coordinates and Delaunay’s
canonical variables. This work was later extended to investigate the collision orbits as well.
Szebehely (1967a) discussed the periodic motion of a particle in the classical RTBP. Sharma
(1976) in line with Barrar’s method, considered the bigger primary to be oblate spheroid and
established the existence periodic orbits of the first kind. Sharma (1981) modified this work
to study the period orbit of the second kind. Sharma and Subbarao (1986) provided
approximations to periodic solutions around the triangular libration points with an oblate
massive primary. Elipe and Lara (1997) obtained various natural families of periodic orbits of
the RTBP when the influence of the radiation pressure on the gravitational forces from the
primaries are put in consideration. Sharma, Taqvi and Bhatnagar (2001a,2001b) established
the existence of the long and short period, orientation and the semi-axes of the RTBP when the
primaries are triaxial rigid bodies and sources as well as sources of radiation. Mittal, Ahmad and
Bhatnagar (2009) examined the effect of oblateness on the periodic orbits around the
Lagrangian points of the RTBP. Singh and Begha (2011) established the existence of the
periodic orbits of the RTBP with oblate (massive) and triaxial (less massive) primaries. They
deduced their period, orientation and eccentricities are influenced by the small perturbations in
the coriolis and centrifugal forces, oblateness and triaxiality of the primaries. Singh and Haruna
(2014) established the periodic orbits around the triangular libration points when the three
bodies are considered to be oblate. Abouelmagd etal (2015) determined the periodic
structure of the RTBP considering the influence of the zonal harmonics parameters for the
bigger primary. Singh, Narayan and Ishwar (2015) showed that oblateness, radiation pressure

and eccentricity have a significant effect on the trajectories and stability of the infinitesimal
mass around the libration points. Zoto (2015) investigated how the oblateness coefficient



influence the nature of orbits in the RTBP and discovered that it has a huge impact on the
character of orbits. Many of the previously mentioned researchers have also studied the
periodic orbits. Recently Pushparaj and Sharma (2017) studied the Periodic orbits of the
photo-gravitational RTBP using Poincare approach and found that the period of time of Jupiter
decreases with increase in radiation pressure from the Sun while due to oblateness of Jupiter
the period increases.

Due to the remarkable effects of all these perturbing (coriolis and centrifugal, shape of
the primaries, radiation pressure, solar wind drag, Poynting-Robertson drag etc.)forces on the
motion around the orbit of the satellite (both Natural and artificial), this research work hereby
modify specifically, the works of Ragos and Zafiropoulos (1995), Ishwar and Kushvah (2006)
and Singh and Amuda (2014) to achieve this new and interesting result.

3 Methodology and Results
In this chapter, the equations needed to study the effects of small perturbations in the
coriolis and centrifugal forces on the stability of the generalized photo-gravitational RTBP with
PR-drag force and the periodic motion around L, were established.

1 Effect Of Poynting-Robertson Drag And Oblateness On The
Stability Of Restricted Three-Body Problem

1.1 The Equations of Motion
The energy (potential and kinetic) of the RTBP when the primaries are considered to be
both oblate spheroid and source of radiation with PR-drag effect (in the absence of small
perturbations in the coriolis and centrifugal forces) is obtained and to establish the equations of
motion for the proposed system.

Figure 2:The primaries rotating with respect to the inertial frame of reference.
Source:Szebehely (1967a)

With reference to an inertial or fixed coordinates OXYZ, let P(x,y,z), S;(-a,0,0) and
S,(0,0) be the coordinates of the infinitesimal body and primaries with masses m, m, and
m, respectively. let r, r, be the distances between each of the primary and the
infinitesimal while r is the distance between the primaries. Introducing a rotating coordinate
system Oxyz with the origin O at the barycenter of the primaries in which the axis rotate
relative to the inertial space with an angular velocity @ =nk

The Net Potential

The net force on the infinitesimal body due to both primaries being oblate spheroid and
radiating with PR-drag effect is

E = Eo +EPR



Where the subscripts O and PR indicate the force due to oblateness and PR-drag effect

respectively.
Based on equations (1.9) and (2.1) the total force becomes

E:_Gm{miri +3miAiri}+Fpi{£_vrir1 _ﬁ}
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by equation (1.2), (1.5) and (1.7) gives,
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which is equivalent to
E:EXi\‘FEyj'FEzIZ (22)
where,

_ _Gmm(x+a) Gmmy(x—b) 3Gmm(x+a)A 3Gmm,(x—b)A,

F
3 5 5
r r, 2r; 2r,

2 r, cr;

~(1-q) Grr”ml {(“a) Dy xray+ yy 2] - EW) ‘C”y)}

[X(x—=Db)+ yy +z2]—

_(1_q2)Gm2mz{(x—b)_(x—2b)
r, r, Cr,

(X—ny)
C

F-_ Gmmy B Gmm,y B 3GmmAY 3 Gmm,A,y
Y I ry 2r) 2ryy




-(1-q, )Gmml {———[x(x+a)+ yy +22] - w}

2
r-l 1 c 1

—(1—q2)Gm—m2{rl—C—y2[X(x—b>+w+zzl—W}

2
I"2 2

F = _Gmmz Gmmaz 3GmmAz 3Gmm,A,z
’ I’ Iy 2r) 2r}

-(1-9)—— Gmml {———[x(x+a)+ yy + zz]——}
I"1 I‘l 1 c

Gm z oz .. Lo L
~(1-0,) T 5 S - IX(x—b) + yy+ 2]

2 2 2 c
Integrating equation (3.1) according to equation (1.6) the net potential of the system is

V = jlfdr = ij dx + iJ‘Fyder IZ'[FZdz (23)
where F,,FandF, are giveninequation (3.1).

The Kinetic Energy of the System
The kinetic of the system is given by

_1 .2 .2 .2 . . 1 27,2 2
T —Em(x +y +12 )+mn(xy—xy)+§mn (X“+y°) (24)
=T, +T,+T,

where

(Y

T, ==m(X* +y® +2?)
T, = m(xy - xy)
T, =%mn2(x2+y2).

N

(25)

Let p,,p, and p, be the generalized component of momentum then by equations (3.3)

X X y a a.

OX
and (26)

p,= m(X-ny), p, = m(y+nx), p, =mz

then, the Hamiltonian denoted by H is
H= ——L
Zq' 8q|



becomes

H=T,-T,+V =%m(xz+y2+z'2)—%mn2(x2+y2)+v (27)

Using equation (3.5), equation (3.6) becomes,
m “(p ’ 211
H=— (&+ny) + —L —nx (&j —=mn*(x* +y?)+V
21\m m m 2

1
%(pf + Py +p7)+n(py—p,x)+V (28)

Using equation (3.6) , the Hamilton’s equations of motion given by

. oH . oH . OH
X = —_—, = —_—, Z = —
op, op, op,
and
oH oH oH

X = &+ny,
m
y = &—nx,
m
7= &
m
and (29)
b= —np,~ 2
X Yooox ]
5= Y
y X 8y’
b OV
‘ 0z

Substituting equation (3.5) into (3.8), gives

m(X—ny) = mn(y + nx) NV
OX

m(y +nx) = —mn(x—ny) N



That is
10V
10V (30)

. _—lov

m oz

By equation (3.2), equation (3.9) results to
Gml{(x+a)_(X+a)[>'<(x+a)+yy+zz']_()‘(—ny)}

K—2ny = n°x+ (1—
y ( ql) 2 Cr12 c

r1 1

sz{(x—b)_(x_b) X(x—b)+yy+zz'_(>'<—ny)}

1—
+(1-0) r2 A cr? c
_Gm(x+a) Gm,(x—b) 3Gm(x+a)A 3CGm,(x-b)A,
r’ Iy 2r) 2ry
y+2n>'<:n2y+(1—q1)G—Tl{X— [x(x+a)+2yy+zz']_y+n(x+a)} (31)
e cr; c

sz{y _y)’((x—b)+yy+zz'_y+n(x—b)}

+(1- =
(1-2;) r? |, cr? c

~Gmy Gm,y 3GmAy GmAy
I ry 2r} 2r)y

. G z X(X+a V+27] .
7=(1-q,) rr}{__z[ (x+ ()::zyy ]_Z}
1 1 1

2

r, Cr,

+(1_q2)e_r?2{ z _Z[X(x—b)+yy+zz‘]_z}

2

~Gmz Gm,z 3GmAz 3Gm,Az
I Iy 2r) 2r)




Adopting the notation of Szebehely, the distance between the primaries along the x- axis is
taken to be equal to one. The sum of the masses of the primaries is also assumed to be 1 so
that if m,=x then m =1-x and the origin as the barycenter of the masses m, at

(-a.0,0) and m, at (b,0,0) which implies that

m,(-a)+m,(b) =0

—(1-wa+u=0
u(@+b)=a
Since the distance between the primaries is assumed tobe 1,then a=x and b=1-yu
- m . .
where, u= is the mass ratio parameter.
m, +m,

The unit of time is chosen so as to make the gravitational constant G to be equal to
unity. The speed of light ¢ is given as c=c,;. Assuming that (,(i=1,2) are constant
(neglecting fluctuations in the beam of solar radiation and the effect of the planet shadow.). In
the dimensionless synodic coordinate system, the equations of motion of the
photo-gravitational RTBP, in the absence of small perturbations in the coriolis and centrifugal
forces obtained in equation (3.10) becomes

X—2ny =n’x+U,
y+2nx=n’y+U, (32)
7=U,
where,
U =npixo GG K+p) (X +p=1)  3(1-p)(x+ 1) A
* r’ ry 2r)
— 3y(X+2,u5—1)A2 _\/\_/21{(X+2y) [X(X+ u)+yy + 2z]+ X—ny}
r I, I

1

—Vﬁ{w[){(x-ﬂu—l)—l- yy+z‘z]+>'<—ny}

r} r;

(I-m)ay  wm,y 3(-w)yA 3uAy
r’ Iy 2r) 2ry

_\:‘lzl{rlz[)'((x+y)+yy+22]+[y+n(x+ﬂ)]}

1 1

U, =n’y-

y

—Vri;{r—yz[X(xw—m g+ z‘z]+[y+n(x+y—1)]} (33)



_ Q-p@oz po,z 3QA-p)zA  3uAz

U

i r’ e 2r® 2r?
—Vlzl{iz[x(XJrﬂ)JrW+Z'Z]+Z}—Vl§{i2[>'<(X+,u—l)+yy+z'z]+z}
n\n r,|n
Inthe x—y orbital plane (z=0) the equations of motion above takes the form
X=2ny=Q,
y+2nx=Q, (34)
where,
QO =n’x- (1—/1)(>§+ﬂ)q1 _u (X+ﬂ3—1)q2 _3(1—#)(>§+ M)A
I’]_ r2 2rl
Su(x+u-1 W, | X+u .. L
i )AZ——;{ 2“[x(x+u>+yy]+x—ny]}
r2 r1 1
Vizz{x+f_l[>'<(x+ﬂ—1)+W]+>'<—ny]}
r-2 r2
1- 3(1- 3
Q, :nzy_( fs)qu—ﬂ%— ( Zfs)y/ﬂ_ ;2%
1 2 1 2
W . . )
—r—z{rlz[x<x+u)+w]+[y+n(x+m]} 35)
1 1

_V%{r_yz[x(x+,u—l)+ yy]+[y+n(><+/z)]}

rF=(x+u)*+y? and r} =(x+u-1)°+y? (36)
W1 — (1_/u)(1_q1) 1W2 — ﬂ(l_qz)’ (37)
Cd Cd
The mean motion, n by equation (1.17) gives
n’ =1+%+% (38)

and is found not to be influenced by the mass reduction factor (0,,0,) due to radiation

pressure and PR-drag, (W,,W,) effects, but only by the oblateness (A,A,) coefficients.

(Abdulraheem and Singh, 2006, Ishwar and Kushvah, 2006, Amuda and Singh 2014.)
The equations of motion (3.13) and (3.14) are affected by the radiation pressure,

oblateness of the primaries and Poyntiing Robertson drag.



1.2 The Jacobi Integral

One of the implications of this Jacobi integral is that it allows the making of certain
general qualitative statements concerning, the motion without actually solving the equations of
motion which gives great importance to integral applicable unsolvable dynamical problems.

The angular velocity @ of the finite masses is constant because they move in a circular
orbit and therefore the Hamiltonian is constant. By multiplying the first equation of equation
(3.13) by 2% andthesecond by 2y and then adding, gives

2XK+2yy = 2(xQ2, +yQ )
which is equivalent to

d,. ) oQ” ) )
a(x2 +y%) = 2? + 2(XFpg, + YFory) (39)

where,

n_(x2+y2)+(1_/u)ql+luq2 +(1—,L13)A1+/1A§
2 r r, 2r; 2r,

o :—V%{(X:Z“)[X(xwwyy]+x'—ny}

r1 1

—%{W[X(Xtu—lyr yy]+>'<—ny}

W,
FPRy :__21{
1

: rlz[(x+ﬂ)x'+y]+y+n(x+ﬂ)}

1

W. . . .
—r—;{r—yz[x(xw—m 1+ y+n(X+ﬂ—1)]}
2 2
For and Fp, are the partial derivatives of the PR-drag function with respect to X and y
respectively. These are functions of the position and velocity.
Integrating equation (3.18) with respect to time t, yields
X2+ Y = 200 +2[(XFoq, + YFpp, )it —C

where the left hand-side is the square of the velocity of the infinitesimal body which cannot
be negative and C is the constant of integration known as the Jacobi integral. The motion of the
body is restricted to the region where

V2 = 20"+ 2[(KFog, + YFpp, )0t —C 2 0 (40)
This condition in equation (3.19) does not tell about the shape of the orbit but it determines

the region where the particle could move. The equation of the zero velocity curves (ZVC) are
given by

C=2Q(x,Y) (41)
The curve C represent various regions of possible motion.



1.3 Location of the Triangular Libration Points
The libration points are the solution of the equations of motion in (3.13), when the
velocity and acceleration are equal zero (i.e. X=y=X=y=0), therefore,

_ 1—)(x+ X+ u-1 3(1—p)(x+
0= nix- om0 Oceu=1)6, 300+ A
r r, 2r;
_3ﬂ(x+/"_1)A2 " nWy n nW,y -0
2r; r’ r} (42)
O = n? _(1_ﬂ)q1Y_ qzy_3(1_ﬂ)yp‘1_3ﬂyA2
y o y r3 H r 2r° 2r>
1 2 1 2
W (X+4)  nW,(X+u-1) _ 0
I‘2 I‘2 -
1 2

The triangular libration points are the solutions of equations (3,21) when y=0.

In the absence of oblateness (A,A, =0) and the PR -drag (W,W,=0) the

equation (3.21) above reduces to the photo gravitational RTBP and which is
1 1

=g and r,=q? (Kunitsynan dPolyakhov a,1995)
Now, letting |al| <<1 and |ﬂl| <<1 be small perturbation (due to the oblateness and PR

-drag of the primaries) in r, and r, respectively. Then
1 1
n=0¢’+o and r, =03 + 4
Furthermore, assuming that, ¢, =(1-w,), g, = (1-w,), (w/,|w,|<<1) sothat
1 1
n=0Q-w)*+q and r,=(1-wW,)3 + 4, (43)
Putting equation (3.22) into (3.15), gives
1
R =[1-w)* + ] = (x+ ) +y?

1
2 3 2 2 2
7 =[(L-w,)? + A = (x+ p-1) +y
Solving these equations, rl2 and rl2 simultaneously for X and Yy, neglecting second and
higher order terms of small quantities, then,

(X+p)? +(x+pu-1)° = {1—%+a1} —{1—%+ﬁ1}

2(X+,u)—1:1—%+2a1—1+%—2ﬂ1
which yields
X=——pu——+—=+o,-pf, (44)

or



x:x0{1+a1_’81} (45)

XO
where,
1 W, W
X = —py——Lt4_2
o T3 M3
and,
1 w w ?
y =[(1- W1)3+051] [2 ?1"'?2"'051_,31}
_1—ZTW+2 —%{1—4;" ﬂ+41—4ﬂ1}
3 4w, 4w,
- e
1
a B ?
y:y 1+_1_|__1:|
{ Yo Ve
or
a B
Y=Y, 1+—1+—1j (46)
[ 2ye  2yq
where
: —iﬁ( —ﬂ—z‘%j (47)
2 9 9

Multiplying the first equation of equation (3.14) by vy, the second by (X+ ) and then
the first again by (x+ ¢ —1) gives the homogeneous system of equation as

Xy — (1- ﬂ)ql(X+u)y ﬂqz(X+ﬂ 1)y 3(—m)(x+u)Ay

r1 r2 2r
2

Bu(x+u-1)Ay nley nWZzy 0 a8

2r I r,
Gt gy — LB )Y 4y ()Y 3=k i) AY
; ry 2r]
CBu(x+ Ay nW(x+ ) nW,(X+ p)(x+p-1) _
5 2 2 =0 (49)
2, n r,



02 (x+ u—1)y - (- (x+u-1)y  pdy(x+pu-1)y 3(1-w)(x+u-1)Ay

3 3 5
A r, 2r,;

CBu(x+p=DAY W (x+u)(x+p=1) W (x+u-1)° _

2ry L’ r;
By elimination method equations (3.27), (3.28) and (3.29) reduces to
n luy__3_3—5_nWl_nW2 _M—Zﬂ-l) =0
2r, r,
and

21— 1)y — (1_ﬁi)qu 33— Ay

1 r-l

1
or

py{n2 —q—g—ﬂ} =nW, + W, +—g\ivzz (r?-1)

2

2 2 2 2

n-n-
2

since X+ u=

L W, +nw, - W)

(50)

(51)

Using (3.17), (3.22), (3.24) and (3.25) in (3.30) and by considering only first

order terms of small quantities  ((w,[w,|,|AL,| A, W], W,|), gives
o 1"‘3_A1+3A2 - ) 3 3 5 || 1+ 0512 + IBlz
2 W, W, 2y, 2Y,
1-2+4| 21-2+4
3 3 |
W, 2]
nwz{(l—l+alj -1
— nWZ 3 .
=nW, + + 5
2 W,
2| 1- 3 + B,
and
(- )y, |1+ 3A1+3A2 o (A-w) 3A 1+ alz + ﬂlz
2Y,  2Yq

2 2 3 5
(1_V;1 + alj 2(1— Vgl + alj



Simplifying, , gives

and,

alte g

0 0

3ﬂyol:%+ﬂ1}: 1 n\;VZ

which implies,

and
nw,
3(1- ﬂ)yo{i"'oﬁ} 5
and yields,
o AL W W,
2 3y, 3wy,
and
@ = i nW, nw,

2 3(1_:u)y0 3(1—/1))/0
Using equation (3.26), «, and (f,) becomes,
_ A nw, 2nW,

%= 2 3(1-u)/3 B 3(1— )3

and
A1 2nW,; LW, nw,

A= _? 3,ux/_ 3,u\/_

(52)

Substituting the values of «, and f, from equation (3.31) into equations (3.23) and

(3.25) , then simplifying givess,

and yields,

X=

wow, A nwW, 2nW, A1 2nW,

2 473737 2 3U- w3 30-m3 2 33 3;1\/'

Wy A A nWR-p) oW, (1+p)

and

2 T332 T2 3u-w)V3 3u(l- )3

(53)



y:iﬁ[l_zl_zw j
2 9 9
_[_i_ nW, 2nW, A1 2nW, nw}
Bl 2 3 uVE 30 mB 2 3 a3

-1
{ _ﬂ_%}
9 9

ﬁ(l_zﬂ_zl_ﬁ_ Az) nW,(2-34) | nW,(1-34)
u(l—p)  u(l-p)

or

54
9 9 3 3 (54)

Equations (3.32) and (3.33) are the coordinates of the triangular points of the RTBP when
the primaries are assumed to be oblate (A,A,), radiating (w,,w,) with PR-drag (W,,W,)
effect in the absence of perturbations in the coriolis and centrifugal forces

1.4 Stability of the Triangular Points
To determine the stability of the libration points, (X.,Y.) is assumed to be the

coordinate of the libration point and |§|,|77| =1, the small displacement in the points such that

X=X.+&, Y =VY.+n. isapointinthe neighborhood of the libration point.
Therefore, the equations of motion of the systems in equation (3.13) becomes,
E-2nn=Q, (x. +&b+n)
j+20E=Q (Y. +E,b+7)
and by series expansion, equation (3.34) gives
E-2n7 = + Q8 £+ n+QE+ Q017 +0(2)

(55)

fi+2né = Q) +Q0 E+Q0 n+Q5 §+Q N+0(2)
where 0(2) represents second and higher order terms in & and 7. The superscript (0)

indicates the second order partial derivatives are evaluated at the libration points.
At Q =Q, =0, wehave

E-2np = Q0 E+ QU+ QL E+ QN
fi+2né = Q)E+Q 77+Q°§+Q° '

This is the variational equation of motion corresponding to the equations of motion in (3.13),

(56)

considering only linear terms of 7 and ¢&.

Suppose &= Ae™ and 7 =Be” are the trial solutions to the variational equation.
Then equation (3.35) is written as

(A =20, — Q0 ) A+[-(2n+Q5,) A -5 1B =0



[n—Q5) A -5 JA+(F -Q) -0 )B=0
and implies
B =208, —Q° —@n+Q)A-Q5 |
(2n-Q5)A - 2 -Q -0
which on solving yields the characteristic equation corresponding to the variational equation of
motion in (3.35)

A+at+bA2+cAi+d=0 (57)

where
a=—(Q), +Q,)
b=4n*+0) Q% —QF —QF —(Q),)°
c=0%0° +O%0° +2nQ, —2nQ°, — Q008 — QO

—_ (o] (0] (o} (o]
d=Q, Q) —Q Q.
Differentiating equations (3.14) with respect to X, y, X and VY, resulted to the second

partial derivatives given as

Q. = n*-(1- )q{l M} {13_3(“%5!—1)2_3(1—#)}
r1 r r r, 2
_i_S(x+y)2 3u i_S(xw—l)2
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2r 2r
2 59
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4
1
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1
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yX 5 5
I’l r2
LBA- @)+ ) Ay 15u(x+ u-1)Ay
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W1{|: rl4 r16 Xy —4 r16 rl4 +n r12 rl4 (60)
1 Ax+u-1?%| . Ax+wu-1)yy* 2(x+u-1)y
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r, r, r, r,
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r2 r2
1 3y? 1 3y?
Q. =n"-(1- el A P s A
A
3(1- 1 5y? 3ul 1 5y?
- (2/,1) LA ANl e 1Y
r I 2|, r, 61)
1 4y? 2 4y, v+ N(X+
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rl rl r-l r1 rl

1 4y? 2 4y . y+n(X+u—1
N R
r2 2 r2 2 r2

o =—Wl_(x+'“)2 +%}—W{(X+ﬂ_l)z +i}

4 4 2

L I’l r1 r2 r2
X+ X+u-1
Qxy = _W1 (—‘ﬂ)y}_wz{(—’t:) y}
L rl r2 (62)
W, W
Q, =—— (X+u)y——F(x+u-1)y
r1 If‘2
2 2
_ y° 1 y° 1
Q. =W|—+—=|-W,|+-—-—
yy 1_ r14 I,.12:| 2|: r24 I,.22:|

Evaluating the second partial derivatives in equations equations (3.37) -(3.41) at the
libration points obtained in equations (3.32) and (3.33). Also using equations (3.17),
(3.22) and (3.31) (neglecting second and higher order terms of small quantities) so that

w, A nw,  2nW,

32 3(1-wV3 3(1-w3

w, A 2nW, nW,
—— =
3 2 3u3 3uV3




X+,u—1{l—gwl+ 2w, . 20W,(2-p) _2nW2(l+/J):|
2l 3 3 Bul—p)  3ul-u)

xﬂ,_lz_{ L2y 2W1(2—ﬂ)+2W2(1+ﬂ)}
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1
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ﬂ P ﬂ o 2WR-p) AW, (Lt p)
. ){1 3 AR B 3#(1—u)\/§}
W TA 7w, 14nW,
{“ 3 72 Y3003 3008 }

{1_2ﬂ_2ﬂ_ﬁ_& 2, (2-3u) | 2W,(1- 3;1)}
99 3 3 9u1-wVB Su(—uN3

153 2w 2w2 W,2-p)  2W,(1+ )
[H 3 AR 3-8 3#(1—/1)\/5}

Tw, TA 1AW, W,
1+ +
3 2 3,u\/— 3,u\/_

2w 2w A A 2WQR3E) (-3 [, 1y W
9 9 3 3 9ul-mVB 9ul-mNB] 2 2



. 3\/_ 2w Aw W,(8-154) W, (4-184)
I )[1 9 A& Az 9u(l- )3 9#(1—;1)\/5}
33 LI W,(14-184) W, (7 -154)

4 ﬂ[1+9w 9" Al Az 9u(l-p)V3 9#(1—;1)\/5}

W, W,
f(l m——f -

Q= ?{3—6;{—%(1+y)w1+§(2—y)w2 +%(19—26,u)Al +%(7—26y)A2}

W83l +2747) W, (4-23u+2745) _
12p(1— p2) 12p(1— p2) "

(64)

@l

Q) —1+ Ai+ A2 1-)(a- W){l—i—w—i— A + B -

9{1_4w1_4w 2 2A,  AW,2-3u) AW,(1- 3;0}

479 9 T3 3 Tou-mVs 9u-mp3

{1+5w1+5A2 5nW, 10W, }
32 30— 30-p3

3 2nW, nW
—u(l-w,)| 1+w, +— A — 12
2 |: 2 2A1 ,u\/é ,u\/g

_g[1_4w1_4w2 2 2A, 4nW,2-3u) AW,(1- 3;1)}
479 9 3 3  oul-u3  9ul—p)3

[ 5w, L5A_10W, 5w,
1+
3 2 3u/3 313

3, [ 5w 5A BW, 10W,
A R +3(l—u)\/§+3(1—,u)\/§}



15{ 4w, 4w, 2A 2A,  AW,(2-3u)  AW,(1- 3;,)}
) —
4 9 9 3 3 9u1-m3 9ul- )3

W AW, 14w,
{“ 3 2 30-u3 30— y)\/_%

2

3 [ 5w, 5A 10W, 5w,
+—ul 1+ +
3 2 3,u\/— 3,u\/—

15{ aw,_4p, 2A 2A, AW,2-3u) AW,(1- 3;1)}
i —
4779 9 3 3 ou-pV3 ou(l-mn3

{1 JTw TA 40w, W, }Az J3,, 3

—W,——W

32 Su\/_ 313 2

2 4 6 21

Q) =1+— A1+ A2+ (1— )[1+5W—5W2—€A1+EA2

W, (8+,u) W ,(4+10u) 4 2 21, 6
+5ﬂ(1 ﬂ)\/_+5ﬂ(1 ﬂ)\/—} {l 515 1 A& 57
CW,(14-10u)  W,(7+ p) _§ ﬁ \/§
Su(l- w3 Su(l-u)V3 } g AT AW

@)

o
-blco
I\JlH

(=300~ =3, + = A+ A,

W(8 17 1 +5u°) W(4 71—54%)

(65)

41— p)3 41— u)3
Q?o‘( = _§W1_§W2

5 4 \/_4
0 3 3 0
), = _Twl_ 4W2 o, (66)
o 7., 7
Q) = —ZW1 4W2

Therefore, substituting these values from equations (3.42) to (3.45) in equation
(3.35), neglecting second and higher terms of small quantities, yields,



5 5 7 7
a= —(—Zwl—zwz —Zwl—zwzj =3\N1 +3VV2

V3 \/_ 7.7
b=4+6A +6 2w, + “fw—Lw
+A1+A2+(4 2w, [~ pw -,

|31 21 _24u 3,24
L 2(1 3 )wl+ (2-3u)w, + 3 3 jA1+[8+ 3 jAz

_W,(8-13u+ 1) _W2(4—11u—u2)}
Apl-uW3  Au(l- )3

Dﬁi(l 3,u)W1——(2 3;1)W2+—A1+—A2 +

W,B-17u+5u%) Wy(d-Tu-54") (V3 3, )
Apu(l- )3 Ap(l- u)3 47 47

3 3 W W
=1-]=—-3 +|=-3 41 _ "2
(2 ”]A& ( ”j 3 3

b=b,+b

where’

A 3_ W, W,
b, =1, b = [2 3,ujA1+(2 3y]A2+\/§ 73

42 2 8 8 4#(1 ,U)\/_

W, (4—7u—-5u%) {—ﬁw —Ew}
au-pN3 | 4 477

3 27 24u 3 24u
{Z—E(l 3w, +— (2 3u)W, (E—?)Aﬁ(g—?)p‘z

_W1(8—13ﬂ—u2)_Wz(4—11ﬂ—ﬂ2)}{—_7 _
Apul-uW3  Au- w3

E- N
N
I

(67)

(68)



4

2\/_{7\/5\/\/ \fwz}[3—6,u—§(1+y)wl+§(2—,u)wz+%(19—26,U)A1

W, (8—13+ 27 11%) _W2(4—23,u+27,uz)}

1
P 3u(l- )3 3u(l- )3

45 45 21 21 3 3
-—W,——W, -—W, -—W W, —=W, |(3—-6
16 * 16 2 16+ 16 2 ( 17 g 2]( )

8
9 21 9u
=— 3+— - ——— 69
( 4,U)W1 (4 4 )Wz (69)
27

d _E{l__(l 3u)w, +— (2 3u)W, +(%—4,ujA1+(;+4,u)A2

_W1(16—22,u—2,u )_W2(8—26y+2,u )
9u(l- )3 9u(l- )3
—%(3—3y—6y2)wl+g(6—15/,1+6y2)wz +(57-192u+1561°) A
2W, (24 —141u + 267 11* —1624°)
3u(l- )3

3 2
——19-36u+36
|- 2 -0

+(21-1201 +1561.°) A, —

| 2W,(12-93u+ 2194 —162/13)}
3/1(1 1)V3

27 117 117
=" ul- )+ ﬂ(l W+ ﬂ(l pwy + == (L= ) A+ B (A ) A,
W (210 - 584,u +324,° )_W (10811 +4324% +32411%)
164(1- 1)V3 164(1- V3
27 117
d =" ull-p)+7 /J(l W, +> u(l W, + =5 (1= i) A
117 2TW,(2—-3u) 27TW,(1-3u)
= u(- : il 70
p— A, - 153 NG (70)
Now, the four roots of the characterlstlc equation of the classical RTBP is
A, =xzi (n=1,234) (71)
where’
1
=%{1i[1—27,u(1— ﬂ)ﬁ} (Szebehely, 1967) (72)

Assuming that, due to oblateness and PR drag
A=A, (1+0,+i0o,)



is a solution for the equation (3.36) , where o,, o, aresmall real quantities.
Using equation (3.50), neglecting second and higher order terms of small quantities,
equation (3.52) gives
A=x(1+o0,+i0,)z =H-0,+(1+0))i]z (73)

A =[-2(1+o)ni—(1+0,)?12* = [-(1+20,) - 20,i]2*
2 =+{30, - (1+30))i}z°
A =[(1+40,) + 40,12
Putting these in equation (3.36) considering only first order terms of small quantities yields,

[(1+40,) +40,i]2* +a[30, — (1+30,)i]z° —b[(1+ 20,) - 20,i]2°
tc[-n+(1+0o,)i]z+d =0.

This implies
(1+40,)z* +3a0,2° —b(1+20,)2°* +co,z+d =0 (74)
40,2* +a(l+30,)2% + 20,bz* +c(1+0,)2 =0
since b=Db, +b,, a,b,, contain only components of small quantities
[(1+40,)2* —b,(1+20,)2* +d]=0
4c,2" +az’ +20,b,2° +cz=0
From which,
(z*-b,z° +d)
o, =—_0- "7 75
Y 47" - 27%, 73
and
+az’F
taz’Fcz (76)

0, = —————
2 47" +2b,7°

where the values of a,b,c,d and z are given in equations (3.46)—(3.49) and (3.51)

1Mo
respectively.
The motion around the triangular libration points is asymptotically stable only if o, #0
and the real part, Re(A1) of the root are all negative.
Now, the real part of equation (3.52) using equation (3.55) s,
c—az’
Re(1)=t0,2=———— 77
() =t02= 50 ) (77)

from (3.51)

7* = %{li{li(z—;y(l—,u)j—i(27,u(1—u))2 +}}

Considering only first order term of the quantity u,



72 = %{1{1—277”(1—#)}

so taking positive sign and Re(1) <0 then by equations (3.56) and (3.57),

Re(A) = {c —a{l—W}HZ—W—Q}l <0

which implies

{c—a[l— 27/1(;_”)}}{“ 27”(21_'”)}<0 sinceb, =1

or
27 27 27
C{1+?ﬂ(1—ﬂ)}—a{1—7ﬂ(1—ﬂ) +?,U(1—,U)} <0
and yields
27
c+7y(1—y)(2c—a) <a

On the other hand, taking negative sign

-1
()= -0+ 22 s |1- 2 -1 | <0
which implies
az27 27
—{C——ﬂ(l—ﬂ)}[lﬂL—ﬂ(l—ﬂ)} <0
4 2
or
{c+%7,u(l—y)(20—a)} <0
and yields
27
0< c+7y(1—,u)(2c—a)
from equation (3.58) and (3.59),
0< c+2747/,z(1—y)(2c—a) <a

as u—0
O<c<a (Murray,1994)

(78)

(79)

(80)

(81)

This inequality, according to Murray (1994) is the condition necessary for the stability of

triangular libration pointsat L, and L.



2 Effects of Coriolis and Centrifugal Forces on the Stability of
Generalised Photo-gravitational Restricted Three-Body Problem

2.1 The Equations of Motion
Introducing the parameters ¢ and &' into the equations of motion obtained in
chapter three, to represent small perturbations in the coriolis and centrifugal forces, using the
parameter ¢ and w respectively such that
o =l+e el

(82)
v =1l+¢&" |&'|F1
The equations of motion (3.13) now becomes,
X—2ngy =nlyx+U,
y+2ngx =nZwy+U,
where,
0. = (I-p)(X+)q  p(X+u-1)q,
x0T r3 r3
1 2
C3(A-p(x+ A Bu(x+pu-1)A
2r) 2ry
W, | (X+ . . .
__21{( Zﬂ) [X(X+ ) + yy]+x—ny}
r1 rl
—Vig{—("“j_l) [X(x+ 11—1) + yy]+>'(—ny}
r-2 r2
U, = (1_ﬂ)q1+ﬂq2 +3(1_ﬂ)p‘1+3/1A2 y
’ I’ r; 2r) 2ry
W, |y o )
——1{—2[(x+y)x+ yyl+ y+n(X+ﬂ)}
r1 r1
W, |y . . . B .
—?{r—;[x(xhu—l) +yy]+y+n(X+u 1)}(Jalyeola et al, 2016)
which is re-written as,
X=2ngy =Q =Q +F., (83)
y+2ngk =Q =Q) +Fy,
where,
2 p— —_
Q* — n W(X2+y2)+(1 lu)ql +luq2 +(1 /us)Ai +/LIA§ (84)
2 r r, 2r; 2r,



W (X;“)[x<x+u)+w1+x'—ny}

r-1 1

—%{%[X(xw—m yy]+>'<—ny}

2
W
FPR =- l{
y r12

_V%{r—yz[x(x+y—1)+ yyl+y+ n(X+#—1)]}

(85)
rlz[(x+u)x'+yy]+ Y+n(X+ﬂ)}

1

For and Fp, are the partial derivatives of the PR-drag function with respect to X and y

respectively. These are functions of the position and velocity.
The equations of motion (3.63) and (3.64) , which are modifications of those

obtained in equation (3.13) shows the presence the parameter for small perturbations in the
coriolis (¢) and centrifugal (w) forces.

2.2 The Jacobi Integral
To obtain the Jacobi Integral for the equations of motion obtained above, the first

equation of (3.62) is multiplied by 2%, the second by 2y andthen added up to give,
2XX+ 2y = 2(XQ} ) + 2(XFpg, + YFeg,)

which implies,
d ., . o’ . .
E(XZ + yz) = 2? +2(XFpgy + yFPRy)
Fere @and Fq.  are givenin equations (3.64) and (3.55) above
Integrating this with respect to time t, yields
X2+ Y = 200 +2[ (XFog, + YFpp, )t —C
where the left hand-side is the square of the velocity of the infinitesimal body which cannot
be negative and C is the constant of integration known as the Jacobi integral. The motion of the
body is restricted to the region where
V2 = 20"+ 2[(KFog, + YFpp, )0t —C 2 0 (86)
This condition determines the region where motion would take place and not the shape of the
orbit. The equation of the Zero Velocity Curves (ZVC) are given by
C=2Q(x,Y) (87)
The curve C represent various regions of possible motion.

2.3 Location of The Triangular Libration Points
The triangular libration points are the solutions of equations Q, =Q =0 when

X=y=X=y=0 and y=0.Fromequations (3.62)-(3.64)



Qx = Q?( + FPRX

1-u)(x+ X+ u—1
:nzwx_( ,U)(r3 )% u( ﬁg )d,
1 2
3A-p)(X+)A Bu(Xx+u-1)A, nWy W,y _
5 5 Tt 2 =0
2r; 2r, I r, (88)
Q, =Q +Fy,
1- 3(1- 3
:[nzl//_( Ast)ql_ﬂclz _ X Ast)Al_ ,Uéz]y
I r, 2r; 2r,
NW,(X+ ) Wi (X+p-1) _
B 2 N 2 =0
r.l r2

In the absence of the radiation, oblateness and PR-drag (i.e.
n=9,=q¢,=1,W, =W, =A =A =0 )equations (3.68) gives,

o1
L=r=—
e
Now, assuming that due to the presence of radiation, oblateness and PR-drag,
1 1
n = _1(1"'“2) and = _1(1+ﬂ2)’ |a2 |=11 |ﬁ2 |:1 (89)
l/,é ‘//5

Substituting equation (3.68) in (3.15) and solving simultaneously, neglecting second and

higher order terms of small quantities, the equation of the coordinates, X and y in terms
a and [ isgiven as,

1 1
X ZE_ﬂ+_1(a2_'B2)
W
[ 2 1 (90)
4_l//3 2 3
1+ (0, + )
2y® 4—y3
Also multiplying the first equation in equations (3.68) by vy, the second by (X+ ) and
then the first again by (X+ x#—1) produces the following equations;

2y — (- (x+ )0y p(x+p-1)q,y

y =

I’ Iy
C3(A-p)(x+ Ay Bu(x+u-1)Ay
2r) 2ry (91)
2 2
N nley N nWZZy ~0

I I



A-p)(x+ oy p(x+p-1)q,y

N’y (X + )y 3 3
r‘1 rZ
31— (x+)AY  Bu(x+u-1)Ay
2r) 2ry (92)
W p)” W (X =D) (X 4) _
r’ r}

_ (- )X+ u-1)a,y _ u(x+p-1)q,y
3

3

N’y (x+u-1)y

rl r2
C3A-p)(x+p-1)AY  Bu(x+u-1)Ay
: 5 (93)
2r; 2r,
NW, (X + ) (X + 12 =1) W, (x+u-1)* _
N 2 N 2 =0
rl r2
By elimination method, the equations (3.70), (3.71) and (3.72) reduces to
3 nwW, nW.
{nzw—q—g—z—Ag}yy =nW, + 22+2—22(r12—1)
r-2 I’2 r-2 (94)
g, 3A _ W nw,  ,
Ny ——= -1 |(1- =——-nW,———(r, -1
|: W 13 2r15 :|( lu)y 2 2 2r12 ( 2 )

taking 0, =(1-w), 0,=(1-w,), |w[=1(i=12) and substituting the values for
nr,r,xand y from equations (3.17), (3.68), and (3.69) into equation (3.73) above,
considering only linear terms of w,,w,, A, A,,W,,W,, yields,

_W _(1_V/§)A1_ A _[\N1(2_'//§)+2\N2]

3y ® 2y° 2y° 31— p)p\b-y?

2 2
_w, A (Lpd)A W AW,R )]
182 - 1 1 1 + 2
3y 2p° 2y° 3;1://\/4—1//3
By putting these values of «, and f, inequation (3.69) gives,




2 2 2
w3 3 3
X :l_ﬂ_ le + W22+ﬁ_i_[wl(2 /’“// )+W2(2 '// +luw )]
2 3 22 2 4\/ 2
A Bu(l- )y *\V4-y?
2 2 2
— 5 _ g _ g
y =+ 4 l{/ 1- 2 5 %+%+(2 V;)AiJr(Z V;)Az (95)
23 4-y3
2 2 2
W @2-p(A -y ) AW, 2 -y —u(d—y?))
2 2
Bu(l—py*\a-y?

Equations (3.74) are the coordinates of the triangular libration points, L,(X,+y) and
L, (x,—y). Putting equation (3.61) in (3.74) neglecting product of &' with other small

quantities (W, [W,|,|Af,| Ay, Wi|,W,|) the coordinates become
1o, w o w, A A W(@2-p)+W,([1+p)]

Xp =——u

2 3 3 2 2 3u(l- u)V3 o)
y o3[y s 2w 2w A A W(2-34)+W,(1-3u) ‘
P2 9 9 9 3 3 9u(1— w)V/3

where the subscript p indicates the presence of perturbations in the centrifugal forces. In
order to appreciate the impact of the centrifugal force on the location of the libration points,
the product of & with the small quantity parameters is further considered, taking only the
first order terms in &'. The coordinate are obtained as

< i_ﬂ_W1(3—28) JWEB-2) A A
2 9 9 2 2
W, [18-22¢'— u(9-5¢)]  W,[9-17¢'+ (9 -5¢")]
27u(1- 1)V/3 27u(1- u)N3
- V3 {1_ 45" 209-28)W, 209-25)w, (9-85)A (9-8)A, (97)
P2 9 81 81 27 27
W,[18-14¢ — p(27-54¢")]  W,[9—11¢'— u(27 - 23¢")]
+ +
81u(1- )3 81u(1- u)3

2.4 Stability of the Triangular Libration Points
Assuming also that, (X,,Y,) is the coordinate of the triangular libration points and

&,n <<1 are the small displacements such that (x,+¢&,Y,+7) is a point in the vicinity of

(%5, Y,), with velocity component (&,77). Then substituting these in the equations of motion
(3.62) and using the Taylor series expansion produces,



S0 = O[S0 + 7 ]+ SO0+, +0(2)
i+2ngE = QY+ &0, +nQd +EQ5 +7Q, +0(2)
where 0(2) represents the second and higher order terms, the superscript (°) indicate
that the partial derivatives are evaluated at the libration points which implies that
0, =00 =0
The equation above give the variational equation of motion corresponding to equations
of motion as,
E=angn = G5+, + 5+ (03)
3] > — 0 0 -0 -0
n+2ngs =80, +nQ, +80Q, +nQ
Let £=Ae™, n=Be" be the trial solution of equation (3.77), the we can write
2 0 0 0 0 —
(A =22 —Q ) A+[-2ng+ Q)1 -Q, ]B=0
[(2ng—Q)A— Q5 JA+(A* - 205, - Q) )B=0
solving this,
2 0 0 0 0
A —=1Q,-Q, —(2ng+Q)A-Q,
@ng-QJ)A-Qf, X -2Q), -Q°

yields the characteristic equation corresponding to the variational equation of motion (3.77)

=0

as,

A +al’+bl+ci+d =0 (99)
where
a= —(Qn+Q))
= 4n%p% +2ngQ5 - 2ngQ5 QL O0 + Q1O —QF —QF
= QRO +Q10° —2ngQd —QF QF +2ngQ° — QL OF
= Q0] -0 Q)
Differentiating equations (3.67) with respect to X,Y,X,y respectively and evaluating the
second order partial derivatives at libration points using equations (3.61), (3.68), (3.74), so
that

(100)

L) W Q-v)A A We-vP)+aW,

R T T SN
y? 3(1—ﬂ)l//3\/4—'//3

2 2

co LW A (A-pi)A L W HW,2-y0)
2t 3 3 2 2 2
ye 3#'//3\/4—W3

and



5 5
5

Q= % 3_[(2!//—w3)—2ﬂ(4w—u/3)] "
N ﬂ(;w V/3)]W2+ (91//5 8uw2)&+§(w2+8w2)%
W1[81//g —#(161//; —31/12) + 1’ (by —3w§)]
4#(1—u)\/4—wg (101)

1 1 5 5

W8y —4y) - p(16y° —8y +3y°) — 11 (Ay 3y °)]

E
4p(l- u)\/4 e
3 5

_Z+4g——(1 3U)W, + = (2 3w, + ¢ 30- 8u)A +2 (1+8ﬂ)Az

W, (8-13u+u’) (4 1u—u®)
41— )3 4/1(1 H)V3

4 2 2 4 2 4
3 _ a3 - ) 3)_ 3_ 3
o _ 3y j v 1—2/1—[(8 8y +2w2) u(4;// 2y * ),
3y (4-y?)
2 2 4 2 2
B—4y®) —uldy® — 2y w,  [(24-5p°) — p(32 -6y °)1A
2 2 2
yid-y?) 204-y?)
2 2
L [8—y®) -~ uB2-6y°)]A,
2 2
iy -y?®)
2 2 4 2 4

(102)

W[(16 -8y %) — 11(56y° — 28y + 3y %) + u* (48y 3 — 24y + 3y %)
2

4u(l- )4 -y?)

2 4 2 4 2 4

W, [(16 16y 2 + 4y ®) — u(40y® — 20y +3p%) + u* (48 ° — 24y ° +y%)]
2
Au(l—p)d-y?)
11 , 2 2 1
= 1—2,u+§(1—2,u)8 —5(1+,u)W1 +§(2—,u)W2 +g(19—26y)A1

W, (8 —31u+ 27 %) W, (4-23u+ 27 %)
9u(1u)V/3 Qu(l-p)

+(7-260)A, -
:Q())/x



5 5 :
g0 =2y =3y°) [y -2y°)—pu@y -2y°Iw,
yy
4 i 4
Ay — u@y -2y %)W, 3 A L3 s
_[ v ,U(';/:1 7a) 2+_(121//_1//3)A1+—(12!//—1//3)A2
1 1 s

L WilBy® — p(16y° + 4y 3y )+/1 By - 3w3)]

4u(1- u)\/ 4-y (103)

1 5
W, [By* —4y) — #(16'// —12y +3y %) — u* 8y — 3w3)]
4#(1—,“)\/4—'//3
9 7, 1 1 33, 33
=—+— '+— 1-3u)w, —=2-3u)w, +— A +—
2°2° (1-3u) ( LW, 3 A 3 A,

W(8 17,u+5,u) W (4 7u—5u°)
4u(l- w3 4u(l- )3

2
g 2
Q5 (4+!//3)(VV1 +W,)
2
_ 1/4_ 3
Q, =%(\/\/1—w2)=9‘;X (104)
2
3
Q) = (8 7 )(VV1+W)

Now substituting these values from (3.80) to (3.83) in (3.79), gives the coefficient of the
characteristics equation as



2
a= 3y*W,+W,)
1612 ~12y 3 > >

b= — 1 g =(16y* 121//—81//3+8ﬂl//3)A1

+§(16v/2—12w—8ﬂw3)A2+ Y

\/4 e \/4 vf
4 2

3) uy P (4—y )W,

5
e

[4+m// (4-y )]Wl

8 8
3 3 2

9 3 £ 2 3 £
d= 'Zu(l—u)(4+w3)+%u(1—u)(2—wg)wl (105)
8 8

3y 8 2 1//3
+Tﬂ(1—ﬂ)(2—l//3)wz +

~ 1)(16-3p%)A

8 8 8 10
L9 3 W, [(841% —30p ) — (144> —T2p% + 9y @
V; u(1— u)(16— 3!//3)A2 1[( 4 w?)—u( ‘2// 4 v 2)]

4\/4—1//3
8w &1
W, [(60y* —42y° + 9y 2 ) — u(144y* —T2p° + 9y * )]
2
4\/4—1//3

using equation (3.61) neglecting second and higher order of small quantities and product of
g with (w,w,, A, A W,,W,), equation (3.84) takes the form
a= 3W,+W,)>0
W.

W
b= 1+8£-3¢—(3/2-3 +(3/2-3 +—2L-—2>0

c= _—3(4+3,u)W —§(7—3ﬂ)w <0

(106)
d = 2747#(1 ﬂ)+?ﬂ(1 e+ ﬂ(l LW, +> ﬂ(l LW,
£ L B W, (54 — 81/,1)_W (27 -814)
+——u(l-p)A+——u(l )Az We 13 >0

These are all constant coefficients which are seen to depend on the parameters of small
perturbations in the coriolis and centrifugal forces, (&, &'), oblateness (A, A,), radiation

pressure force ( w, , Ww, ) with PR- drag force ( W, , W, ). And for
0< |g, eL\W,w,, A, Az,Wl,W2| =1, the coefficients a>0, b>0, ¢<0, d>0

According to Routh and Hurwitz’s criteria for stability, a characteristics equation would
have all negative real roots if all the D's;, ( the Hurwitz’s determinants) have positive values.
Therefore,



D,=a>0
D2:a ¢ =ab-c>0
1 b
a 0 o0
D,=|1 b d =a(bc—ad)-c®
0 a c
i E g 8 b d o [1d o
D4:0 L o ot c 0/-cl0 ¢ 0|=abcd—(ad)*-c’d
1 b d 0O b d
0 1 b d

Even with the nature of the values given in (3.85), it would difficult to predict the nature of
the D’s;(i=1,2,3,4). Therefore their values have been computed for the binary systems:
Kruger-60 and RXJ0450,1-5856 in table 4 and table 5.



3 Effects of Perturbations on the Periodic Orbit of the

Generalized Restricted Three-Body Problem

It is important to study the periodic orbit of a system in order to obtain a complete
information about the orbit of a non-integrable dynamical system and as the time, t — o, the
behaviour of the solution cannot be predicted.

The effect of small perturbations in the coriolis and centrifugal forces have been
examined on some of the periodic elements (the period of oscillation, orientation, semi-major
and semi-minor axes ) of the oblate RTBP under the effect of the PR-drag force from the
primaries.

3.1  The Critical Mass
The critical mass value g, is expected to exist when the discriminants vanishes, that
is, A=0.
Now from the Sylvester equation (1.6), the discriminant of a polynomial with constant
coefficient of degree four

a,z' +a,2° +a,z +a,z+a,=0

a, a a a 4a 0 O

0O a a a a ©0 0

0 0 a a a a&a a
A=—l4a, 3a, 2a, a O 0 O
% 0 0

a O

0 0 4a, 3a, Z2a,
0 0 0 4a, 3a, 2a, a
therefore, the discriminants for the characteristics equation (3.78) gives
A = (a’b’c®—4a’c® —4b’c? +18abc® — 27¢* + 256d°)
+d(—4a’b® +18a’bc +16b* —80ab*c —6a’c? +144bc?)
+d?(-27a* +144a’h —-128b> —192ac)
considering only first order term of small quantities and since a and ¢, given in equation
(3.85) , are functions of [\Nl| << 1,[\N2| <<1, then the equation above reduces to

A = 256d°%—-128b%d? +16b*d (107)

which gives,



A —256{27 u(l- ,u)} {1+?g +9W+ —A1 A2

2,2 2 CW,(2-3p)

9 p(1- )3

_%} ~12 [27;1(1 y)ﬂHSg—3g’—(§—3u)+(g—3ﬂ)ﬂ
W(l(llj‘jl} +16[7y(1— ﬂ)}{1+88—38'—(g—3ﬂ)p~1+(§—3,L1)A2 +%
| e e ]

Simplifying, considering only first order terms of small quantities, results to

or

3
A :256{27#(1— )} {1+2—32s’+§wl+ng+13A1+13Az——3W1(2_3ﬂ)

u(1- )3
ﬂ(l_ﬂ)\/—} 128[ u(l ﬂ)} [1+162—65"—(3—6u)A +(3-61)A,

ZW 2W, ﬁ 4 4 26 26 2W,(2-3u)
\/_ \/_}[1 +9W+9W2+3Al+3A2 (- ﬂ)\/_
_2W,(1-3y)

RN \/_} [ u(l- ,u)}[1+328 126" —(6-12u)A

+(6-121)A, + “J"Y ?Vq[l 220 Sm 2w DA A,

9 ' 9 3
S W(2-3p) W1 S,u)}
w13 u(l-u)V3




3
A :256[27;1(1— )} [ +%8'+%W1+2W2+13A1+13A2

_3W,(2-3u) _&Nz(l—su)}
p- w3 p(d-u3)

_128[247 u(l- ,u)} {1+16£—%8’+§W1+3W2+(%+6,uJA1 08
(§_6 )AQ_W1(4—8,U+2,U2)_W2(2—4,U—2/12)}

3 H(1- u3) (1- )3

27 86 , 2 2 5
+16{ u(l- y)}[1+325—?g +9W1+9W2 (é_ﬂﬂin
(3_1_12 jAz W, 2= Tp+4u’) Wo(L+pu—du )}

3 p(1- V3 p(1-p)V3

Here, the discriminant A is a function of the mass parameter x and other perturbing

factors (e&,&',w,W,, A, A, WandW,). A isstudied in the interval 0< u< %

If #=0,then A=0
This implies that the discriminant varnishes at this point and since the critical mass
value, . isexpectedtoexist when A=0 therefore

o =u=0 (109)

and if ,u=%,then equation (3.87) becomes

1 -1
27 2 2 M) ()
256[—} l+—g+ W, +—w, +13A +13A, — -
16 3 3 1\/5 }\/5
4 4
7 10 4 4 17 35
-128 1+16s ——&"+—W, +—W, +| —+3 —-3
[16“ Fgftgttgt (2 jAl(s ]AQ

() W, (= )
16{27} {1+325—@g'+gwl+zw2
16 9 9

1f jlf 9
1 1
W (-2) W,(%)
L

g 1
“J3 =3
4 4

and gives



A = 27[ 529 1gp., 24449, 1771, 1771 23023
16 72 72 72 48
23023 , 1955 = 1955 }
+ >0

A
(110)

8 e e
This shows that when u = % A>0 and it implies that the solution of the characteristics
equation (3.78) would consist of both real and complex conjugate roots (secular terms) and
the critical mass value gz, = =0 does not exist in the interval OS,uS% and hence the

triangular libration point is unstable.

Now the roots of the dynamical system is obtained below.

In the absence of perturbations in the coriolis and centrifugal forces, radiation pressure,
oblateness and PR-drag effect from both primaries, the characteristics equation of motion
obtained in equation (3.78) using equation (3.85) reduces to that of the classical case. This

was found to be,

/14+ﬂ,2+%,u(1—,u)=0

Assuming that A% = A this equation gives a quadratic equation
A +A+%,u(l—,u) =0

by which solving gives the four roots of the classical characteristic equation of motion
as,
A=A ==zi (n=1,2,3,4) (1112)

n

where
1
7% = %{11 [1-27u(1— 1)]?} (Szebehely, 1967) (112)

Assuming that due to small perturbations in the coriolis and centrifugal forces, oblateness,
radiation with PR -drag effect the solutions of equation (3.78) are

A=A, (1+0,+i0,) =4-0,+(1+0)i]z (113)
where o,,0, €R are small quantities.
By substituting equation (3.90) and its multiples in equation (3.78), neglecting
product of small quantities and comparing coefficients of the real and imaginary part gives
—7" +bz* -d +az’Fez
O\ =—5 5 ——ado,=—_—5——
2z°(2z° -1) 2z2°(2z° -1)
where the values of a,b,c,d and z are giveninthe equation (3.85) and (3.91)

(114)

Therefore using these values above in equation (3.92), gives the roots of the
characteristic equation of the perturbed system as



A, =ty{—az’+cz+i[3z* —(2-b)z* -d]} (115)
Ay, =tp{az’ —cz+i[3z* —(2-b)z* —d][}
1
27°(2z° -1)
The roots, A,i=1,234 are functions of the constants coefficients (a,b,c,d)

obtained in equation (3.85). These are seen to be dependent on the parameters of the small

perturbations in the coriolis and centrifugal forces, oblateness, mass reduction factor due
radiation pressure and PR-drag force. This shows that the root is influenced by the

aforementioned factors.

3.2 The Period of Motion
The folding time (T) for the growth of the particle oscillation about the libration points

L, and L; isgivenby

where y =

1/T =nRe(4) (Schuerman,1980)
using equation (3.94)

— 2 _
UT =ny(Faz® +cz) :w
2z°(2z° -1)
and
2
=220 71 (116)
Fn(az®—c)

T is always positive for at least one choice of sign in the equation (3.95) above which imply
that the particles have no stable equilibrium solution when the PR-drag effect is put into
consideration. This is based on the fact that in the linear sense, a and c are pure functions
of W,,W,, the PR-drag parameter and not of the perturbations in the coriolis and centrifugal
forces.

So it is more convenient to evaluate T when applied to the solar system. In this case,
the terms containing (1— ) can be ignored. Thus putting the values n, a, ¢ and z from
equations (3.17), (3.85) and (3.91), the equation (3.95) gives,

2

n(a-c)

2

3
2 MW, (8+340) + W, (11-30)] (117)
) 2
"3n[W, (L1~ 3(1 - 12)) +W, (8+3(L— 1) )]
) 8
"3n[11W, +8W, ]
The equation (3.97) is the equation for the Period of oscillation. In the linear sense, the time




of oscillation is seen to depend only on the parameters of mass reduction factor and the

PR-drag force but not on the parameters of the mass value, oblateness and small perturbations
in the coriolis and centrifugal forces.

3.3 The Orientation

By Taylor Series expansion, the expression Q around L, given in equation (3.63)
and (3.64) is

. S| :
Q(X, Y, %, Y) =Q°+&00 +nQ5 + &) +7Q, +§(§ZQ‘X’X +17°Q,, +£°Q,

(118)
+17°Q + 281K + 2580 + 2571 + 2812, +257790,) +0(3)
where 0(3) are the third and higher order terms.
At libration points
0 — 0 — & — - —
Q,=Q,=£=7=0
therefore equations (3.97) reduces to
Q=0Q°+ 120 0 v 1200 4003 119
- +E§ Xx+§77§2xy+§77 yy+ ( ) ( )
from equation (3.63) and (3.64),
2
Q :n—WX+y)+( /J)Ch (1 ﬂz)Ai LA,
2 I r2 2r; 2r}
{(XJF’U))HW narctan(iﬂ
X+ u
|:(X+'u 1)X+yy narctan[LH
X+u—-1
which is written as
ny 2 2 (1_/1)ql (1 A ,qu
Q =——|1- ) +ur, |+
2 (A= s0r + ] r, r2 2r? 2r
+W{w —narctan (Lﬂ (120)
2r; X+ u
y

W{(x+,u—12)x+ W_ narctan(—ﬂ
2r, X+u-1

Evaluating equation (3.99) above at libration point using equations (3.17), (3.68) and
(3.75) , neglecting second and higher order terms of small quantities,



g w A W +2W,

r =1-———2——2_
l 33 2 3(1-un3
. & W, Ai 2W, +W,
r, =1-———=-
3 3 3,u\/_

and

Q= %(1+ g')(1+37A1+3—A2H(1ﬂ){18_’ﬁﬁ W, +2W23}

w, A W, +2W, T

3 2
W, arctan Al A 2w 2w, A A AW (@2-3u)+2W,(1-34)
9 9 9 3 3 9u(l- u)V3

{MTW I 2W1(2—ﬂ)+2W2(1+ﬂ)} }

3 3u(l- V3

—W, arctan{ —+/3 1—4_‘9’_ﬂ_%_ﬁ_'°‘2 2W, (2 -3+ 2W, (1-3u))
i 9 9 9 3 3 9u(l— u)V3

{1 TR 2w1(2—u>+2w1(1+u)n

3 3u(l- 13

simplifying



1 3Al 3A, _2_8'_%_ _2W1+4W2
) (1+ )[ 2 j{(l ){ & 3(1-;1)@}

_____ 1+ Wy —)(1— g A
+,u[1 A + e }+(1 w1 Wl)‘:l+3+ +

3 2
W+2W} (1_w2){1+i+w‘2 A 4W1+2vv2}

+
3 2 3,u\/§
+—(1—,u) 1+28+2W1+ +2VV+4W A+ 1 1+2—8+2W2+A1—4W1+2W2 A
2 3,u\/§

—Wlarctan{\@{l—f _ﬂ_%_ﬁ_A%FZW(Z 3p) +2W, (1 - 3#)}
°© 9 3 3 9u(1- )3

Zﬂ_ﬂ 2W, (2~ 1) + 2W, (1+ 1)
{1 3 AR RN }}

—Wzarctan{—\@[l_d'_g'_ﬂ_%_ﬁ_% 2W, (2 -3+ 2W,(1- 3;1))}

9 9 9 3 3 9u(l— )3

2W1(2—u)+2W1(1+u)}}

2w 2w,
{1_7+ 3 AT T s

which reduces to

QO :l(l—ﬂ)l-}-i—ﬂ-i-S—-f-i 2W+4W
2 3 3 2 2 301-un3
+1ﬂ1+£_%+ﬁ+3A2+4W1+2W2
2 3 3 2 2  2uf3
+(1—,U) l+£_%+i+w + 1 i_ZWZ ﬁ_zwl—i_wz
3 3 2 3(1-wpn3 3 3 2 3uf3

+ % (- )A + % pA, —W, arctan (v/3 + s) ~W, arctan (—/3 +1)
or

Q° B+;8—(1 W, ﬂW2+4(5 2u) A+~ (3+2ﬂ)A2}

-W, arctan( 3+ s)—W2 arctan (— V3 +t)

(121)

where



-_f3 ﬂg,_fwl+§wz+ﬂAi_gA2_4W1(4—3y)+8w2
9 9 9 3 3 9u(l- 1)V/3

(122)
LT ‘@B“gwl—fwz —EMEAZ +8W1+4Wz(1+3ﬂ)}

9 9u(l- )3

sl 1t} =
Using equations (3.80)-(3.82), (3.100) and (3.101) in (3.98)

Q B+;€—(1 M)W, — W, + (5 2u)A+= (3+2,U)Az
—W, arctan (+/3 +s) W, arctan( 3 +t)]

+& {8+8g——(1 U)W, += (2 3u)W, +—(9 8y)A1+—(1+8y)A2

_W@-13u+u?) (4—11u—u )}
8u(l- u)3 * 8u(l- )3

+¥§{1—2u+%(1—2u)8’—§(1+ H)W; +§(2—u)wz +%(19—26ﬂ)A1

_ 2 _ 2
+%(7_26ﬂ)A2_W1(8 Blu+27p%) W,(4—23u+27u )}

9u(l— )3 9u(l- )
9 7 1 1 33 33

+n =+ = ’+— 1-3u)w, ——(2-3u)W, + — A +—

77{8 g ¢ (1-3u)w, ( L)W, 16A1 16A2

L Wi(8- 17,u+5,u) A 7;1 54 )}
8u(1- )3 8u(l- )3

Introducing the variables E and 7_7 by the transformation

& —§cos<x nsma (123)
n —§5|na+77c05a

which is equivalent to a rotation of the coordinate system by an angle «, the quadratic form
becomes,



@)

B+;g_(l W=+ 5= 20) A, + 7 3+ 2,

—W, arctan (/3 +s) —W, arctan (—\/§ + t)]
3 5,1 1 3 3
+ §+§g —Z(l—3ﬂ)Wl+—(2—3,u)W2+—(9—8/1)A1+—(l+8,u)A2

_W1(8—13,U+,U2)_W (4-11u—u®)
8#(1—,U)\/— 8#(1—/1)\/_

+%{1 2p —(1 2u)e’ ——(1+,U)W+ (2 L)W, +— (19 26;1)A1+ Lo 261)A,

W, (8-31u+274") W,(4-23u+274°)
9u(l— )3 9p(1— 1)

+E+%g’+1(l—3y)wl—3(2—3;1)W2+§A1+§A2

+W(8 17 u+5u°) W(4 7u—5u%)
8u(l-u)V3 8u(l- u)V/3

}(é cos’ar+7 sin2a —2&nsin aCOSa)

}[gzsin acosa—1 sin acosa +En(cosia —sin’a)

}(g sin a+77 coS a+2§nsm acosw)

Dl

:{gJF%g'_(i_ﬂ)Wl_ﬂWz+%(5_2#)A1+%(3+2,U)A2
~W, arctan(\/ﬁ +s) ~W, arctan( 3 +t)]
+§{ g'——(l 3,u)W+ (2 3u)W, +—(9 8,u)A1+—(1+8,u)A2

_W1(8—13/1+,U ) _w (4—11u—u )}

8/1(1 H)V3 i 8#(1—ﬂ)\/—
7{1 2 +—(1 2u)e’ ——(1+,u)W+ (2 L)W, +— (19 261) A

W, (8—31p +274° )_w2(4—23ﬂ+27y )}
9u(l- u)f 9#(1 1)

9 7 33

+n {8+85+ (1-3u)w, ——(2 3u)W, +—A1+—A2

16
 WiB-17p+5u%) W,(4-Tu-5u )}

+g(7—26ﬂ)Az—

8u(1- )3 8u(l- )3

Choosing « such that the coefficients of §77 =0



— 3 1, 1 1
O :[§+§e—(1—u)w1—w2+Z(5—2u)A1+Z(3+2ﬂ)A2

—W, arctan (/3 +s) —W, arctan (—/3 + t)]
+ gcoszoﬂr%sinza +¥(1—2y)sin acosa

5 2 7 2
+| —cos’a+—sin’a +

3 sin acosc |’
8 8 }

+ —%(1—3/1) cosza+%(1—3ﬂ)sin2a —%(H w)sin acosw}wl

+ %(2—Sy)cosza—%(Z—By)sin2a+§(2—,u)sin acosa}wz

+ %(9—&1) cosza+§sin2a+§(19—26u)sin ozcosw}A1

3 33 V3 .
+|—(1+8 2a+—sina+—(7—-26x)sin a cos
16( 1) cos’ & S @ 8( w)sin o Q}Az
W, { 1
+— R
p-w3L 8

8
12

(8—13,u+,uz)cosza+%(8—17,u+5,u2)sin2a

(8—31u+274%)sin acosw} [—%(4—11u—u2)cosza

p(1l-p)V3

+%(4—7y—5u2)sin2a—§(4—23y+27/,12)sin aCOSa}}EZ



+{§sin2a+§c052a%(1—2y)sin a cosa

8
+ gsin2a+gcosza—%(l—2y)sin aCOSa}g'

+ —%(1—3y)sin 2a+%(:|.—3,u) c032a+§(l+ ) sin 0(COSOt:|Wl

+ %(2—3y)sin2a—%(Z—By)cosza—g(Z—y)sin ozcos(;z}w2

+ %(9—8y)sin2a+%cosza—§(19—26y)sin occosw}Al

3 33 V3 .
+| —(1+8u)sin’a+—cos’a —— (7 —26 1) sin a cos
_16( H)sin“a 16005 @ 8( w)sin a a}AZ
W, { 1
_l’_— —_——
p-u3L 8

V3
+_
12

(8-13u+ 1*)sin’a +%(8—17,u+5ﬂ2)00520!

(8—31u+274%)sin aCOSa:|+ﬂ(1_—;)\/§{—%(4—llﬂ_,u2)sin 20

+%(4—7;1—5#2)005205+§(4—23y+27/f)sin acosa}}n

Using the trigonometric identities

sin 2a

cos’a+sin?a =1, sin @cosa = and cos’a —sin?a = cos2a

the new quadratic form becomes

Q= pé_gz + qﬁz +r (124)
where



"5t 8 gty 24
— —(1—3,u) cos 2a+§(1+ L) sin Za}wl{%(Z—&l) cos 2a+§(2—y)sin ZCZ}WZ
+ 2+35|n a—EﬂCOS a+£(19 26)sin 2a |A
16 8 2 (125)
3 15 3, 3 .
T it = +X2(7-264)sin>
16 +g S 2o+ 5 Hoos a ( ) sin oz}A2
- (\1N1 )\/_{ (8—13u+ u°)cosa + = ,u(l 1) sin 2 a+£(8 31u+ 27 4%)sin 24
Y7,
W, J3
( 11— u)COSZa——y(l 1)sin? a+—(4 2310+ 27 11%) sin 2ax
u(l- ,U)\/_
35 5 1 1143
=—+>¢ ——12 sina +| =+ 2 ——12 sin 2
q =3 805a (1-2u)sin o [8 4cosa (1-24) a}
+ l(1—3,u) Ccos 2a+£(1+ ) sin Zoz}w1 —F (2—-3u)cos 205+§(2—y)}w2
(27 3 3
+| —+ ——= ——(19-26)sin 2
16 8cosa 2,LlSIn ‘a ( ) a:|A1
3 15 3 f (126)
+|—+— + ——7 261)sin 2
16 Scosa o Hsin ‘o 16 ( %) Q}Az
(\lNl )\/_{ 8- 13,u+u)0082a—%u(1 1) cos’ a+£(8 3lu+27u )sm2a}
Y7,
+ W, \/_ (4 1u— ,u)COSZa+1,u(1 1) cos” a+£(4 231+ 27 1% sin %o
p(1- ) 2
and
3 1
ro=—+—-&-(1-ww W+ (5 2u)A += (3+2ﬂ)A2 (127)

4 2
—Wlarctan(\/_ 3+53)-W, arctan( V3 3+t)

S and t aregiven in equation (3.101)
Now, setting the coefficients of &7 =0, gives



E+§e’+1(1—3u)wl—1(2—3ﬂ)w2+§(1+4ﬂm+§(5—4u>A2

W(8 151 +34%) W(4 9u—3u?)
Ap(1-3uV3  Au(l- )3

+%\/§{1—2y+§(1—2,u)8'—§(1+ L)W, +§(2—,u)w2 +%(19—26y)Al

}sin 2

W, (8-31u+274%) W, (4—23u+27u%)
9u(l— )3 91— )

+%(7—26,u)A2— }c052a=0

which implies

tan2a = —%x/él:l— 2y+%1(1—2/1)3'—§(1+ L)W, +§(2—,u)w2

W, (8 — 31+ 27 u?)
9u(l-p)f3

}{4 4 g'+= (1 3u)w, — (2 - w)w,

+1(19—26y)A+1(7—26y)A2—

~W,(4-23u+ 27 1%)
9u(1- )3

£ 20)A S (5-120) A+

 WiB-154+3u%) W,(4-9u+3u )}
Ap(1- p)V3 41— V3

Simplifying this, considering only first order term of small quantities, gives

tan2a = —\/5{1—2,u+8(1—2;1)5’—%(2—7y+9,uz)w1

+g(4—11y+9,ﬁ)w2 +%(2—4,u+3,u2)A1—%(1—2,u+3,u2)A2
W, (321241 —724° —184°) W, (16 —T74u+99u° —18u°)
Qu(l-u)\/3 9u(l-1)\/3

or

1
a —arctan Q

l\.)

where

= —\/§[1—2,u+§(1—2/1)8’—%(2—7,u+9,uz)wl

+g(4—11y+9,u2)wz+§(2—4,u+3,u2)A1—%(1—2,u+3,uz)A2
W, (321244 724" —184°) W, (16 —74u+994° —184°)
9u(l-u)V/3 9u(l-u)V/3

(128)

The orientation « of the orbit is seen to be dependent on the small perturbation in the
centrifugal force, mass reduction factor, oblateness and the PR-drag force due to the presence



of their parameters.

3.4 The Semi-axes
Using the equation (3.103), the Jacobian constant in equation (3.66), C =2Q(x,y)
becomes
C=2(pE +qn +1) (129)
where p,q and r aregivenin equations (3.104), (3.105) and (3.106) respectively.

The equation (3.108) is rewritten to give a corresponding equations of an ellipse as
—2 —2

g N n _

1 2 2
C-2r)2 C-2r
2p 2q

and the length of the semi-major (a’) and semi-minor (b’) are
1 1
_ 2 —_ 2
a'= C-ar and b'= c-2r respectively
2 2q

p
Using equations (3.100) and (3.106), knowing that C =2Q, the equation of the length of

the semi-major, a' and semi-minor b’ axes, reduces to

N

ar_§2+q 2 |2 P o ]?
= —n°|and b'=|—¢& +p (130)
2p 29
where p and g are given in equations (3.106) and (3.108).

The value of the semi axes depends on the direction of motion, (), the mass
parameter, (u), centrifugal force, (&), mass reduction factor due to radiation pressure force,

(W, w,), oblateness, (A, A,), and the PR-drag force, (W,,W,). This is due to the presence of
the aforementioned parameters.

4 Analysis and Discussion

1 Effect Of Poynting-Robertson Drag And Oblateness On The
Stability Of Restricted Three-Body Problem

This research work considered the effect of small perturbations in the coriolis and
centrifugal on the stability of the RTBP, specifically when the primaries are considered to be
oblate spheroid, radiating with PR-drag force.

In order to achieve this, the effect of PR-drag on the stability of oblate,
photo-gravitational RTBP was investigated first. The equations of motion of the infinitesimal
body under the influence of mass reduction factor due to radiation (W, W,), oblateness ( A, A,

) and Poyting Robertson Drag (W,,W,) of both primaries were obtained and given by the
equations (3.13) to (3.17) (i.e. the absence of small perturbations in the coriolis and
centrifugal forces). The presence of these parameters in the equations, shows that its motion is



affected by the perturbing factors.

The coordinates, (x,ty) of the triangular libration point L, and L. are given in
equations (3.32) and (3.33). They are also seen to depend on the mass ratio, x and the
aforementioned parameters.

In the absence of the parameters (W, =w, = A = A, =W, =W, =0) equations (3.32)
and (3.33) reduces to the classical RTBP (Szbehely, 1967). When both primaries are radiating
and spherical (w; #0, w,#0, A=A, =W, =W, =0) the equations coincides with those of
Kunitsyn and Perezhogin (1979) and others. when oblateness of both primaries are considered
W, =w,=0,A #0,A =0,W, =W, =0) the result agrees with those of Vidyakin (1974). When
both primaries are radiating with PR effect in (W, #0,w, 0, A = A, =0,W, #0and W, =0) the
equations are in agreement with those of Ragos and Zafiropoulos (1995).

When the smaller primaries is oblate and the bigger primary is considered as radiating
with PR effect (W, #0,w, =0,A =0,A, #0,W, z0and W, =0) the result agrees with those of
Kushvah and Ishwar (2006a,b). When the bigger primary is oblate and the smaller primary is
radiating with PR effect (w, =0,w, #0, A #0,A, =0,W, =0andW, #0) the equations (3.32)
and (3.33 ) agrees with those of Singn and Amuda (2014). The variation in the value of
coordinate points can be seen in the computation for the kruger-60
(£ =0.3937,c, =48002.33,q, =0.99992,q, = 0.99996) binary system shown in the Table 1
below.

Table 4.1: Effects of Radiation, Oblateness and PR-drag on the location of the triangular
points for Kruger-60 Binary

Case W, W, A A, WA W,

Case (1) 0 0 0 0 0 0

Case (2) 0 0 0.01 0 0 0

Case (3) 0 0 0 0.02 0 0

Case (4) 0 0 0.01 0.02 0 0

Case (5) 0.00008 0 0 0 0 0

Case (6) 0 0.00004 0 0 0 0

Case (7) 0.00008 0.00004 0 0 0 0

Case (8) 0.00008 0.00004 0.01 0.02 0 0

Case (9) 0.00008 0.00004 0 0 1.01045E -9 [3.28067E —-10
Case (10) 0.00008 0 0 0.02 1.01045E -9 0
Case (11) 0 0.00004 0.01 0 0 3.28067E-10
Case (12) 0.00008 0.00004 0.01 0.02 1.01045E -9 [3.28067E —-10

This table shows that the coordinate of the triangular libration points deviate from the
result of the classical case due to the presence of these perturbing factors.
When W, =w, =0,A =A =0 and W, =W, =0,




then a=0,b=Db, =1, d= 2747#(1—;1) and the roots of the characteristics equation

(3.36) obtained gives

-1+ 1-27u(1-
2= . HA=H) s ehehely, 1967)
and for stable motion 1> 27u(1— x) which implies x<0.0385. This reduces to the case of

the classical RTBP.
When A =0,A,=0,W, =W, =0 then a=0,b=1,c=0 and

d= g u(l- y)[% +W, + wz} (Schuerman, 1979)

This gives the case of photo gravitational RTBP.
When w, =0,A =A,=0 and W, =0. Then

W 21 9
a=3W,,b=1-—2c=—- —-=
2 \/§ (4 4/U)W2

and
d :W%ﬂ(l—u)wl—%\l@_sﬂ)
1
i Tan (-
Re(4) = T
i4E—247,,1(1—/,¢)T

This agrees with the result of Schuerman (1979). When w, #0, w,=0, A =0, A #0,
W, #0 and W, =0,

3 W, 9
then a=3W,, b:1+(§_3ﬂjA2+T;' C=—(3+Z,u)\/vl and

27 3 117 27W, (2 —31)
=)+ u(l- )W+ = u(1— Bt L it nds
2 u(l—p) 2#( )W, 2 u(l- ) A, 23

(Ishwar and Kushvah, 2006)
When w, =0,w, #0,A #0,A, =0,W, =0 and W, #0 then

3 W 21 9u
a=3W, b=1-{ 234 |a -2 c= |22 TH
? (2 ”)A* 3 (4 4)%

27 3 117 W, (27 —81.)
d=—u(l-p)+—=puld—ww, +— u(1- -
2 u(—p) 2#( L)W, 2 p(1-p)A Al

d=

and

(Singh and Amuda, 2014)
The roots of the characteristics equation (3.36) corresponding to the variational

equation (3.35) was given by equations (3.52), (3.54) and (3.55) where values of the



coefficients of the characteristics equation, a, b, ¢ and d are given in equations (3.46)
to (3.49). These equations all depend on the parameters of the PR-drag force and other

perturbing factors.
According to Murray (1994), the inequality in equation (3.60), is the necessary

condition for the stability of triangular libration points at L, and L. . But by equation
(3.48) as u—0

c= —(3\/\/1 +%sz <0 (W, W,>0).

This contradicts the Murray’s condition for stability. So, due to oblateness, radiation pressure
and PR-drag effects from both primaries the motion remains unstable in the linear sense.



2 Effects of Coriolis and Centrifugal Forces on the Stability of

Generalised Photo-gravitational Restricted Three-Body Problem
The effects of small perturbations in the coriolis and centrifugal forces on the stability
of the triangular Libration points of the RTBP in the presence of oblateness, radiation and P-R
drag effects was studied.
The equations of motion in equations (3.62) and (3.63) which are modifications of

those obtained in equations (3.13) and (3.14) are seen to possesses a force function
(3.64) which is dependent on the parameter &' of the centrifugal force. The equation of the
Zero Velocity Curve (ZVC) (3.66) is a function of the force function in equation (3.64) and
consequently the value of the ZVC also depends on the parameter ¢'.

The equations (3.74) and (3.75) are the coordinates of the triangular libration
points, L,(Xx,+Yy) and L(X,—Yy). They are seen to be influenced by the small perturbation in
the centrifugal force due to the presence of the parameter v (v =1+¢',|&'|=1). Furthermore,
to appreciate the impact of the centrifugal force on the location of these points, the product of
&' with the small quantity parameters is considered, taking only the first order terms in &'.
This produces the equations (3.76) .

In line with the work of Narayan and Shrivasta (2013), Umar and Singh (2014), Singh
et al (2016) a range of values for the parameters &' are used in studying the effect of small
perturbation in the centrifugal force on the location around the triangular libration points.
Specifically for the binary system Kruger - 60
(1 =0.3937,c, =48002.33,q, = 0.99992,q, = 0.99996) and

RXJ0450,1-5856( 4 = 0.0967,cd = 299792458, ¢, = 0.9963,¢, =0.9965) with the aid of

micro-soft Excel and Maple 18 Mathematical Software. The values obtained are given in the
table below.



Table 4.2: Effects of & on L,; and on the Jacobi Constant, C associated with the ZVCs

that contain those point for kruger - 60.

g X, x; +y, + y; C L
—0.50 0.10129 0.10128 1.04979 1.04594 1.17436
-0.10 0.10129 0.10129 0.89583 0.89506 1.36673
—-0.05 0.10129 0.10129 0.87659 0.87620 1.38593

0.00 0.10129 0.10129 0.85734 0.85734 1.40428
0.05 0.10129 0.10129 0.83810 0.83848 1.42185
0.10 0.10129 0.10129 0.81885 0.82488 1.43872
0.50 0.10129 0.10129 0.66489 0.66874 1.55635

X, =0.1063 y, =+0.866025 C,=1.380065 (subscript c indicates that the coordinate

evaluation for the classical case)

Table 4.3: Effects of &' on L,; and on the Jacobi Constant, C associated with the ZVCs

that contain those point for RXJ0450,1-5856 .

*

& Xy X, Yy x y:, C, .
—-0.50 0.39718 0.39681 1.04904 1.04510 1.21060
-0.10 0.39718 0.39711 0.89508 0.89429 1.43331
-0.05 0.39718 0.39715 0.87583 0.87544 1.45631

0.00 0.39718 0.39718 0.85659 0.85659 1.47846
0.05 0.39718 0.39722 0.83734 0.83773 1.49985
0.10 0.39718 0.39726 0.81810 0.81888 1.52052
0.50 0.39718 0.39756 0.66414 0.67129 1.66886

X, =0.4033 y=10.866025 C_=1.456325 Itis observed from the tables 2 and 3 that
there is a significant change in the value of X, and Yy, (coordinate of the classical case of the

system) due to the presence of all the perturbing factors. It is also seen that as &' is increasing
the values of the X coordinate is not affected by it, but when X is extended to
accommodate more of &' up to the first order product of & and other small quantities
(W, w,, A, A W,,W,), there is a significant increase in the value of X as &' is increasing. On
the other-hand the values of y is seen to be decreasing as &' is increasing at the same rate.

This can be seen in the figures below.

Figure 3: Location of Triangular Libration points for Kruger-60



Figure 4: Location of Triangular Libration points for RXJ0450, 1-5856

The effect of small perturbation in the centrifugal force on the X and y coordinate
of L, can also be seen in the graph of ¢ plotted against the coordinates of the triangular
points below.

Figure 5: Effect of &' on the coordinate of Kruger-60 Binary system

Figure 6: Effect of &' the coordinate of RXJ0450, 1-5856 Binary system

The equations in (3.77) are the constant coefficients a, b, ¢ and d of the
characteristics equation (3.76) with eigenvalue A, corresponding to variational equation of
motion (3.75) . The values of these coefficients are obtained in equation (3.85) and seen to

be dependent on the the perturbing parameters.
The Hurwitz’s determinants, D were obtained for the characteristics equation (3.76)

and the values of the D's,(i =1,2,3,4) have been computed for the binary systems: Kruger-60
and RXJ0450,1-5856 in table 4 and table 5. below.



Table 4.4: Effectsof ¢ and &' onthe D's; for kruger-60 binary system

g £ D, D, D, D,
~0.50 1.00  |4.01556E —09|4.75343E —08|—2.52302E —163.7479E —17
~0.10 020  |4.01556E —09|1.70161E —08 |~1.14183E —16—1.62925E —16
~0.05 010  |4.01556E —09|1.32013E — 08 |—9.69183E —1}-1.57376E —1
0.00 000  |4.01556E —09|9.38654E —09|—7.96534E —17-1.45027E —1
0.05 —0.10 | 4.0156E—09 |5.57176E —09|—6.23886E —1/-1.25879E —1
0.10 —0.20 |4.01556E —09|1.75699E — 09 |—4.51237E —1/-9.99303E —1
0.50 ~1.00  |4.01556E —09 |—2.87612E —08.29952E —17 |3.52452E —16

Table 4.5: Effects of ¢

and &' onthe D'S, for RXJ0450,1-5856 binary system

¢ ¢ D, D, D, D,
—0.50 1.00  |3.37839E—11|3.91579E —10|—1.42073E — 20 7.6498E — 22
~0.10 020  |3.37839E—11|1.34821F —10 |—5.50928E — 2fl- 2.87948E — 2
~0.05 010  |3.37839E—11|1.02726E —10|—4.42203E — 2it-2.62989E — 2
0.00 000  |3.37839E—11|7.06317E —11|—3.33478E — 2t 2.22359E — 2
0.05 —0.10 |3.37839E —11|3.85369E —11|—2.24753E — 21-1.66059E — 2
0.10 ~0.20 |3.37839E —11|6.44221F —12 |-1.16028E — 2}-9.40889E —2
0.50 ~1.00  |3.37839E —11|— 2.50316E —1007.53771E — 21|1.04579E — 20




It is observed that D, is always positive for the two binary system. Due to the

presence of the parameters of the small perturbations in the coriolis (&) and centrifugal (&)
forces in the coefficients b and d of the characteristic equation of motion (3.78), it is expected

that the nature of the roots of the equation (3.78) would be influenced by a change in the

value of the perturbation.
However, it is seen that an increase in the value of &' brings about changes in the
value of D,, that is, from positive to negative, D, from negative to positive and D, from

positive to negative and again to positive. Since the values of D, is always fluctuating no
matter the strength of g’,|g’|:1 then the D,’s cannot be all positive in the chosen range

which implies that the real part of the roots of the characteristics equation cannot be all
negative. Therefore according to Routh and Hurwitz’s criteria for stability, the proposed system
remains unstable.

3 Effects of Perturbations on the Periodic Orbit of the

Generalized Restricted Three-Body Problem.

The discriminant, A of the perturbed, generalized, photo-gravitational RTBP with
PR-drag force was obtained in equation (3.87) and was found to be dependent on the

1
parameters &,¢', A,A,wW,W,, W, and W, and when ,u=§,the discriminant, A>0 and it

implies that the solution of the characteristics equation (3.78) would consist of both real and
complex conjugate roots. But when x4 =0 the discriminant vanishes. That is

A=0
and since the critical mass value, . is expected to exist when A=0, then g =ux=0

which implies that the critical mass value, . does not exist in the interval 0< < 2 for this

particular system.
The roots, A,i=1,2,3,4 obtained in equation (3.94) are seen to be affected by the

small perturbations in the coriolis and centrifugal forces, oblateness, radiation pressure and the
PR-drag force due to the presence of their parameters. The tables below shows the
computation of the discriminant and roots of Kruger-60 and RXJ 0450, 1-5856 binary systems
used as models to see the effects of small perturbations in the coriolis, & and centrifugal, &'
forces on the RTBP under the influence of oblateness and radiation pressure force with
PR-drag.

Table 4.6: Effectsof ¢ and & on A and A, i=1234 forkruger-60

&' & A 11,3 /12,4
-0.5 1 —2.92373E +04:0.1188458174- 2.2594 76994 E — 09 + 3.243040908I




-0.1 0.2 1.69031E + 02 | 2.387068724 E|—@B0ASRIPYHD 2079+ 1.508765248|
-0.05 0.1 1.86641E + 02 |0.3858037786 1008888033806 +1.06086 73631
0 0 1.14764E + 03 |0.651056557 7 1= 00382621 +.96201332911
0.05 -0.1 2.10125E +03]0.83481991 75 1=00658439P30°B30 + 0.8505993757 |
0.1 -0.2 2.29849E +03]0.9840108877 =00 A84G2N08BH +0.72102179571
0.5 -1 1.97267E + 05 |1.088952547 + 0-8 A233WRZEYA + 0.87234004361

Table 4.7: Effectsof ¢ and & on A and 4, i=1234 forRXJ0450, 1-5856

&' &£ A As Aps
-05 —1.05611E + 04+ 0.0715487518601.861523864E —11+ 3.243026245
-01 0.2 3.41427E + 02 (8.491802263E —12 3384 3823682601 +1.6492245001
—-0.05 0.1 2.05885E +01(2.024011448E —Bl HARB120788 /581 +1.25994641 11
0 0 2.87922E +010.394031 7902 +=0083BXBBA#II + 0.8132103367 |
0.05 -01 1.02985+02 |0.6436279371+-006643323298%]1 + 0.66731321091
0.1 -0.2 7.82166E +010.8198949364 =00E108MB3H-0.47778416341
0.5 -1 9.81527E + 04 |+ 0.4083305543- 2.884643160

The equation of the period of oscillation obtained in equation (3.95) is a function of
the mass parameter, u, the coefficients of the characteristics equation of motion, a and ¢
given in equation (3.85) and not dependent on the parameters of perturbations in the

coriolis (&) and centrifugal (') forces, mass reduction factors, (W,,w,) and the PR-drag
force, (W,,W,) inthe linear sense.
The orientation of the orbit, () and the semi-axes, (a’,b’) of the elliptic orbit



obtained in equations (3.107) and (3.109) respectively are seen to be influenced by all the
aforementioned perturbing factors due to the presence of their parameters.

5 Summary, Conclusion and Recommendation

1 Brief Introduction
In Space Dynamics, the study of Classical RTBP and its many generalizations have been
of great interest to researchers over the years. This is due to the rise in the need for accuracy in
determining astrometric positions, revealing peculiarities of components of motion and to draw
conclusions on the stability of space vehicles to be launched. This has led to the necessity to
take into account all possible physical properties (non-sphericity of the bodies, phase angle,
surface area light, perturbing and drag forces) that affect the motion of particles in space.

2 Summary and Conclusion
The effects of small perturbations in the coriolis and centrifugal forces on the stability
of the libration points (precisely the triangular points) of the RTBP was considered when the
primaries are taken to be both oblate spheroids, radiating with PR-drag effect.

The equations of motion and the coordinates of the triangular libration points were
obtained and their stability at these points was determined. The results obtained are given
thus:

* The PR-drag force were seen to affect the equations of motion and libration
points of the oblate photo-gravitational RTBP due to the presence of its parameters W,, W,
in the equations. Also due to the nature of the value of the coefficient, ¢ in equation (3.48)
which contradicts the condition necessary for stability by Murray (1994) shows that the motion
of=1the infinitesimal body in the RTBP become unstable due to the Poynting-Robertson Drag
effect from the primaries.

* The equations of motion obtained were perturbed further by introducing the
parameters ¢ (p =1+¢&) to the coriolis force and y ( =1+¢&') to the centrifugal force. Its
libration points were found to be influenced by the centrifugal force only. The coefficients of
the characteristics equation corresponding to the variational equations of motion were seen to
depend on the perturbing parameters, therefore the roots are affected by them and hence the
stability of the system.

* |t was discovered that the critical mass value g, does not exist in the interval
0< u<1/2 forthis particular system. The roots of the characteristics equation were

determined and used to obtain the equation of the period of oscillation (T) which were not
affected by the small perturbations in the coriolis and centrifugal forces and oblateness but on
the PR-drag force. Furthermore, the orientation or direction of the orbit () was seen to be

elliptic in nature and the semi-axes, (a’, b’) are found to be influenced by all the perturbing
factors.

* The results obtained were verified by computing for the Kruger-60 and
RXJ0450,1-5856 binary system. It was observed that the X coordinate is not affected by



the change in value &' of the centrifugal force while the values of the y coordinate
decreases with increase in ¢’ thereby affecting the isosceles triangle obtained from other
generalization. These can be seen in the figures given.

The values of the coefficients of the characteristics equation were computed and used
to determine the Hurwitz’s determinants, D,s. According to Routh and Hurwitz criteria for

stability, it was observed that the system remains unstable.

Therefore in line with existing research, results of various generalizations involving
small perturbations in the centrifugal force, radiation pressure forces, oblateness of primaries,
Poynting-Robertson drag and even with the stabilizing nature of the coriolis force, it has been
shown that the aforementioned are destabilizing forces and that this work is a generalization of
the classical case and the work of others.

3 Contribution to Knowledge
This research work has answered the question on the stability of a small particle to be
launched in the vicinity of oblate and radiating bodies, putting into consideration the
Poynting-Robertson drag force and small perturbations in the coriolis and centrifugal forces.
Furthermore, this work would serve as form of reference to achieving more interesting
and vital results in the subject area, Space Dynamics and would be of great and added value to
researchers in space science and aerospace agencies.

4 Recommendation

Astrophysical evidence has revealed that the perturbing forces: oblateness, radiation
pressure forces, PR-drag force, coriolis and centrifugal forces are all natural activities in our
solar, extrasolar and stellar systems. A satellite (natural or artificial) is expected to navigate in
the vicinity of the planets in our solar system in their stable orbits under the influence of these
forces. Hence, our result provides information for Space/Astronomical Engineers to take into
consideration, the destabilizing effects of all these small but significant perturbing forces when
designing spacecraft that will navigate in the vicinity of the planets and binary stars. This work
as a generalization of the classical case and the work of others is therefore recommended to
serve as a form of reference to achieving more interesting and vital results in Space Dynamics
and also an added value to researchers in space science and aerospace agencies.
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