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  Abstract  
 

 The study of classical Restricted Three-body Problem (RTBP) and its generalizations 
have been of major interest to researchers over the years. This is due to the rise in the need for 
accuracy in determining astrometric positions which would help to reveal some peculiarities of 
components of motion and draw conclusions on the stability of space vehicles to be launched. 
This has led to the necessity of considering all possible physical properties 
(oblateness/triaxiality, radiation pressure, Poynting-Robertson (PR) drag, perturbing forces etc.) 
that affect the motion of particles in space. The effect of perturbations in the coriolis and 
centrifugal forces on the stability of the generalized photo-gravitational RTBP has been a major 
focus of investigations. However, the effect under the influence of the PR-drag from both 
oblate bodies has received little or no attention. Therefore, the aim of this research work was 
to investigate how perturbations in the coriolis )(  and centrifugal forces )(   affect the 

stability of the triangular libration points of the RTBP when the primaries were considered to be 
oblate, radiating with PR-drag effects. The objectives of this study were to: )(i  determine the 

effect of PR-drag on the stability of the libration of the generalized RTBP; )(ii  investigate the 

effects of   and   on the stability of the generalized RTBP in the linear sense; )(iii  

establish the periodic orbit: period of oscillation, orientation and semi-axes of the proposed 
system; and )(iv  verify the results obtained using astrophysical data for the Kruger 60 and 

RXJ0450, 1-5658 binary systems. 
The Hamiltonian and Lagrangian methods were employed to establish the relevant 

equations of motion, obtain the triangular libration points and investigate their stability using 
Murray’s and Routh &  Hurwitz’s criteria and verifying the results for the two binary systems 
using, MATLAB and Microsoft Excel Mathematical softwares. 

The findings from this study showed that the: 
 

    • generalized system was unstable around the triangular libration points due to the 
presence of the PR-drag effect from both bodies;  

    • presence of the parameter of the stabilizing factor, )( , in the roots of the 

characteristics equation does not change the instability of the system around the libration 
points;  

    • period for the growth of the particle oscillation is dependent on the PR-drag 
parameter only, in the linear sense;  

    • orientation and length of semi- axes are dependent on all the perturbing 
parameters; and  

    • change in the values of   and   affects the values of the libration points and 
roots of the characteristics equations computed for the two binary but does not satisfy the 
criteria for stability.  

 The study concluded that the system remained unstable even with the significant 
influence of perturbations due to the strong destabilizing effect of the PR-drag force. This work 
as a generalization of the classical case and the work of others, is therefore recommended to 



serve as a form of reference to achieving more interesting and vital results in Space Dynamics 
and also an added value to designers of space crafts and aerospace agencies. 
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1  General Introduction 
 

1  Background to the Study 
 Space dynamics is a branch of astronomy which considers the study of celestial 

mechanics and control applied to spacecraft and natural objects. The initial goal of celestial 
mechanics was to explain the motion of the sun, the moon, and the planet. However, 
mathematical methods of celestial mechanics find several applications such as the 
determination of the dynamics of the planet, asteroids, comets, artificial satellites and the 
design of orbit for interplanetary travels. celestial mechanics plays a vital role in all areas of life. 
Space research has brought about lots of progress in, satellite telecommunications, weather 
forecasting, targeting missiles, tourism, exploration of mineral resources, defense and security 
and much more. 

Nigeria is amongst the nations that have shown interest in space science. The Nigerian 
Government have launched five satellites since her intention to venture into space research 
was first made known at an inter-governmental meeting in Addis Ababa in 1976 . The first was 
the world-wide Disaster Monitoring Constellation (DMC) System, the Nigeria Sat-1 built by a 
United Kingdom-based satellite technology company, Surrey Space Technology Limited (SSTL 
Ltd). It has a mass of 100 kg, carries an optical imaging payload which uses green, red and 
near-infrared bands equivalent to Landsat TM+ bands 2, 3 and 4 and 32 m ground resolution 
with an exceptionally wide swath width of over 640 km. NigeriaSat-1 was launched by Kosmos-

M3  rocket from Russian Plesetsk spaceport on 27  September 2003. 
The second Nigerian satellite to be placed into orbit was the NigComSat-1, a 

communications satellite owned and operated by Nigerian Communication Satellite limited. 
This was launched on 13th May, 2007  from the Xichang satellite launch centre in China with 
the aim of providing rural internet access. This satellite was a total loss because it lost both of 
its solar arrays and was switched off.  

The NigeriaSat-2 and NigeriaSat-X of mass, 300 kg each, built to replace the 
NigeriaSat-1, were launched on the th17  of August, 2011. The NigComSat-1R was built to 
replace the lost NigComSat-1 and launched by China on 19th December, 2011 with no cost to 
Nigeria. 

More recently are the NigComSat-2 and NigComSat-3 launched in 2012  and 2013 
respectively. The NigeriaSAT-1-dual-aimed military/civil Earth monitoring satellite with 
synthetic aperture radar was launched in 2015 . The main reason for these activities is to use 
space acquired information to understand and manage our environment and natural resources. 

Isaac Newton was the first to study the motion of particles moving under the influence 
of a mutual gravitational force of attraction. His effort resulted in oral descriptions and 
geometrical sketches. He unified the three laws of motion (the law of inertia, the law of 
conservation of momentum and the law of action and reaction) and proved that these laws 
govern both earthly and celestial mechanics. Using Huygens results on centripetal acceleration, 
Hooke and Wren concluded that this diminishes as the inverse square of the distance. They 
identified this force as the same force that makes objects fall near the surface of the earth and 
hence succeeded in computing the orbits of celestial bodies using the inverse square law.  

Based on Euler extension of Newton’s laws of motion from particles to rigid bodies and 



the reformulation of these laws by Lagrange and Hamilton, it was possible to solve problems 
that seem complicated in space dynamics. Like the two-body, three-body, four-body and 
N-body problems. 

The two-body problem describes the motion of two bodies of finite masses moving 
under the influence of a mutual gravitational force of attraction. For example, the solar system, 
which consists of the sun and its nine planets. This problem has been solved completely. The 
three-body problem studies the motion of three bodies of finite masses attracting it each other 
in pairs under a mutual gravitational force of attraction. An example of this is the sun, earth and 
moon relation.  

Due to the complexity of solving the three-body problem, Mathematicians studied a 
special case, the Restricted Three-body problem (RTBP). This is one of the most important 
components of Space Dynamics which has captured the attention of many researchers over the 
years. The problem is restricted in the sense that it describes the motion of a third body with 
negligible mass moving in the plane of two massive bodies, called the primaries, such that its 
motion does not influence their motion. A typical example is a spacecraft moving between 
planets or the satellites orbiting the planets. 

The history of RTBP began with Euler and Lagrange through their lunar theories. Euler’s 
introduction of the rotational (synodic) coordinate system brought about his major 
accomplishment which led to the discovery of the Jacobian integral by Jacobi. These integrals 
connect the magnitude of the velocity vector of the body to its location. Hill described the 
motion of the moon using these integrals. Poincare initiated the analytical methods which are 
his highest theoretical accomplishment. He considered the study of the Periodic Orbit as the 
only means by which the unsolvable problems of three-body system can be approached. He 
also emphasized the importance of the periodic orbit and suggested it be used as a reference 
orbit. This was adopted by many prominent researchers using ellipse and variational orbit.  

The classical problem assumes that the primaries are spherical. Due to the advancement 
in astrophysical studies, the true nature (oblateness, triaxiality, surface area light, force order 
than the gravitational force, coriolis and centrifugal forces, atmospheric drag, solar wind e.t.c.) 
of the planet and extrasolar bodies became clear.  

In recent times all these properties are taken into consideration in describing the 
motion and stability of satellites (both natural and artificial) and other planetary bodies. The 
Poynting-Robertson drag effect which is the effect of electromagnetic radiation on the moving 
spherical body was first discovered and studied by Poynting (1903)  and Robertson (1937) . 

The effect of this drag force can not be over emphasized.  

In order to solve problems in celestial mechanics exactly in an Earth-bound reference 
frame, the Coriolis and the centrifugal forces must be introduced. Specifically, when objects in 
the inertial frame are transformed to a rotating frame of reference the coriolis and centrifugal 
forces appear. These forces are weak compared to most typical forces in everyday life.  

The coriolis force acts to the left of any object moving in a circular motion in the 
clockwise direction relative to a rotating reference frame. It causes a deflection known as the 
’coriolis effect’ while the centrifugal force acts outward in the radial direction and it is 
proportional to the distance from the axis of the rotating frame. The effect is quite small but 
generally more noticeable only for motions occurring over large distances and long period of 
time.  



In the case of a distant star observed from a rotating spacecraft in the reference frame 
co-rotating with the spacecraft, the star appears to move along a circular trajectory around the 
spacecraft, hence the resultant force of centrifugal and coriolis force must be taken into 
account. Here the magnitude of the coriolis force is twice that of the centrifugal force. 

The periodic orbits is an important topic in celestial mechanics that can not be left 
untouched because it provides vital information on the orbits or spin of the particles. The study 
of of the periodic orbit in the framework of the generalized RTBP putting all the perturbing 
forces (oblateness, triaxality, radiation due to pressure, PR-drag, perturbations in the coriolis 
and centrifugal forces) into account All these properties exhibited by planetary bodies brought 
about many modifications in the formulation and study of the stability of the RTBP. Also, the 
recent increase of the accuracy of ground-based astronautic observation of asteroids makes it 
very essential to consider these properties. 

 

2   Statement of the Problem 
 In the classical case, the RTBP were found to have five equilibrium or libration points, 

three of which are collinear points ),,( 221 LLL  located along the axis connecting the primaries 

and the other two ),( 54 LL  forms triangular points which are symmetrical with respect to this 

axis. The collinear points were found to be unstable while the triangular points are stable for 

the mass values c <0  and unstable for 
2

1
<< c  where c  is the critical mass 

value. 
With the presence of Poynting-Robertson drag force, it was found that six unstable 

libration points existed at most in which the sixth point is located out of the plane of motion.  

In this research work, the effects of small perturbations in the Coriolis and Centrifugal 
forces on the stability of the libration points in the generalized RTBP when the primaries are 
radiating with PR-drag effect is investigated. The problem is generalized in the sense that the 
effects of the perturbing forces are studied when the primaries are considered to be oblate 
spheroid. The results obtained have been further verified using the Kruger- 60  and 

56580450,1RXJ  binary system as a model.  

3  Aim and Objectives of the Research 
 The main aim of this research work is to investigate the effects of small perturbations 

in the Coriolis )(  and centrifugal )(   forces on the stability of the triangular libration 

points of the RTBP when both primaries are considered to be oblate spheroid as well as sources 
of radiation with PR-drag from the primaries. The objectives of the study are to:   

    • determine the effect of PR-drag on the stability of the libration of the generalized 
RTBP;  

    • investigate the effects of small perturbations in the Coriolis and centrifugal forces 
on the stability of the generalised photo-gravitational RTBP in the linear sense;  

    • establish the Periodic orbit: period of oscillation, orientation and semi-axes of the 
proposed system; and  

    • verify the results obtained using astrophysical data for the Kruger 60  and 
56580450,1RXJ  binary systems.  



 

4  Significance of the Study 
 Space dynamics is an important component of Space Science and Technology program. 

It is one of the central problems in space Science. 
The rise in the need for accuracy in determining astrometric positions and radiation 

influence on celestial bodies led to the necessity to take into account the non-sphericity of the 
bodies, phase angle, surface area light, perturbing and drag forces. This would help to plan the 
launching and control of space vehicle would reveal some peculiarities of components of 
motion and to draw the conclusion on their stability. The verification of this result on the 
Kruger 60  and 56580450,1RXJ  binary systems shows its significance when launching a 

space vehicle in their vicinity. This work, therefore, would be of great importance to the Space 
And Research Agencies. 

 

5  Scope of the Study 
 This research work has only considered how small perturbations in the Coriolis and 

Centrifugal forces affects the linear stability of the triangular libration of the circular RTBP 
under the combined influence of the oblateness, radiation pressure force and PR-drag force 
from both primaries. Other important and interesting aspects of RTBP such as other shapes ( 
eg.triaxiality), orbit (elliptic), non-linear form, the collinear points etc have not been considered. 

 

6  Research Methodology 
 In order to achieve the objectives mentioned above, the   

    • Hamiltonian and Lagrangian method was employed to establish the relevant 
equations of motion;  

    • triangular libration points were obtained and their stability investigated using 
Murray’s and Routh &  Hurwitz’s criteria; and  

    • results were verified for the Kruger- 60  and 56580450,1RXJ  binary systems 

using MATLAB and Microsoft Excel Mathematical software.  

 

7  Definition of Terms 
 Here are some basic definitions and concepts used in this work. 
 Definition 1.7.1 

The velocity of a particle of mass m moving at a distance ),,( zyxr


 from the origin at 

time t is given in vector form as  

 
t

r
lim

dt

rd
rv







===  (1) 

 

 Definition 1.7.2 

The angular velocity of a body rotating about it axes with an angle say   is  

 rv


=  

 Where 
dt

d
 =


 is the angular velocity vector. For a rigid body (that is, has invariable shape 



and size) the angular velocity is  

 '=' rvv


  (2) 
 Where, v


 is the velocity due to a fixed axes 

'r


  is the velocity due to rotating axes. 
The component of the velocity r  in the direction of the moving axes XO   and YO   

are ( yx  , xy  ) 

 Definition 1.7.3 

The acceleration for the particle described in definition (1.7.1)  is  

 
2

2

==
dt

rd
r

dt

vd





 (3) 

 

 Definition 1.7.4 

The momentum L is the product of the mass of the body and it velocity which is 
represented as  

 ),,(===
dt

dz
m

dt

dy
m

dt

dx
m

dt

rd
mrmL


  (4) 

 

 Definition 1.7.5 

The force acting on a particle is the product of the mass, m of the body and its 
acceleration which is  

 ),,(===
2

2

2

2

2

2

2

2

dt

zd
m

dt

yd
m

dt

xd
m

dt

rd
mrm

dt

vd
m






 

 This is according to Newton’s law of motion. 

For two masses 1m  and 2m  separated by a distance, r , by Newton’s law of 

gravitation,  

 
2

21=
r

mGm
F  (5) 

 where G is the mutual gravitational constant. 
 Definition 1.7.6 

The Energy E is given by 

 

 constantVTE ==   

 where 

2

2

1
= rmT   is the Kinetic Energy (energy due to motion) 

and 

 

 
r

mGm
drFV 21=.=   (6) 

 In the case of motion of a close satellite about a non-spherical planet, the potential is formed 
such that 

RVV 0=  



Where 0V  is the potential function due to the point mass of the two-body problem and 

R is the potential due to any other attracting masses in the system or to the arbitrary shape of 
the planet about which the body revolves. 

 Definition 1.7.7 

The circular restricted three-body problem is said to describe the motion of a third body 

of infinitesimal mass, m attracted by two bodies of finite masses 
1m  and 

2m , known as the 

primaries moving around their center of mass in a circular orbit under the influence of their 
mutual gravitational attraction. Its motion does not influence their motion but it is affected by 
theirs. Aside the sun, the heaviest of all planets, Jupiter, moves around the Sun in a circle. There 
is a group of tiny planets, the Trojan asteroid whose motion is controlled principally by the sun 
and Jupiter. The motion of the Trojan asteroid is described by the restricted three body 
problems with the sun and Jupiter as primaries. 

 Definition 1.7.8 

The radiation force pF  changes with distance by the same law as the gravitational 

force of attraction gF  but acts in opposite direction. This result in a reduction in the effective 

mass of a particle. This resulting force on the particle is given by  

 g

g

p

gpg qF
F

F
FFFF =1==














  (7) 

 where 
g

p

F

F
q 1=  is the mass reduction factor such that 1<<)(1<0 q , for a particle 

expressed in terms of particle radius (a), density )(  and solar radiation pressure efficiency 

factor )(  (in CGS units) 

 

 ,1950)(
5105.6

1= Radzievsky
a

q 



  

 Since q is assumed to be a constant, it is adequate to neglect the solar radiation flood 
fluctuations and shadow effect of a planet. 

For the primaries of masses 1m  and 2m , the mass reduction factors are denoted by 

1q  and 2q  respectively. 

 Definition 1.7.9 

Oblateness is the measure of non-sphericity or the degree of flattening of the primaries. 
The coefficient for this can be measured with the expression given below as,  

 1963)(McCuskey,          
5

=
2

22

i

ii
i

R

apae
A


 (8) 

 where iae , iap  ( 1,2=i ) are the equatorial and polar radii for primaries respectively and iR  

is the distance between the primaries 

 Definition 1.7.10 

The Poynting-Robertson effect, also known as, Poynting-Robertson Drag named after 
John Henry Poynting and Howard Robertson is a process by which solar radiation causes 
meteors and dust grain orbiting a star to lose angular momentum relative to their orbit. This 



causes dust that is small enough to be affected by this drag. Robertson used a precise 
relativistic treatment of the first order in the ratio of the velocity of the particle to the speed of 

light 
c

v
 and the expression for the net drag force which opposes the direction of motion is  

 









c

v

r

r

r

r

c

v

r

r
FF P


=  (9) 

 where, 
 

 
scr

Lm
FP

 216

3
=  

 

denotes the measure of radiation pressure, r  the position vector of a particle with 

respect to the radiation source, v  is the corresponding velocity, c is the speed of light, L is the 
luminosity of the radiating body, m is the mass of the particle,   is the density of the particle, 

s is the cross section of the particle.  

The first term expresses the radiation pressure effect, the second represents the 
Doppler shifts owing to the motion of the particle and the third is due to the absorption and 
subsequent re-emission of part of the radiation. The last two terms of equation (1.9)  

constitute the PR-drag effect. 
 



 Definition 1.7.11 

 

 

Figure  1: The synodic coordinate relative to the sidereal coordinate system,Source: Szebehely 
(1967a) 

 

The sidereal (fixed) or inertial coordinate system has zero acceleration since there is no 
identifiable force produced in this state. It is associated with the inertial frame of reference. 
The synodic or rotating coordinate system is accelerated since it is not fixed. There are forces 
associated with the rotating reference frame, which are called the artificial forces. 

 Definition 1.7.12 

Assuming a body is moving at a constant velocity with respect to an inertial frame, here 
no net force acts on it. If the body is viewed from a frame of reference which is accelerating (in 
this case rotating). In general, the body is no longer observed to move with constant velocity 
and it appears as though a force is acting on it. This force is called an “effective” or “fictitious” 
force. The acceleration due to such a force is caused solely by the motion of the observer. To 
describe the motion of a particle relative to a body that is rotating with respect to an inertial 
frame is complicated but can be made relatively easy by the non-inertial, artificial forces; the 
Coriolis (fictitious correction force) and Centrifugal (outward force) forces. These forces have 
been introduced in an artificial manner as a result of an arbitrary requirement to write an 
equation which resembles Newton’s equation since the Newton’s equation is only valid in an 
inertia frame of reference. The vector sum of the centrifugal and the Coriolis force is the total 
fictitious force given by  

 vwmrmFeff


 2)(=   (10) 

                                                    Centrifugal              
Coriolis  

where m is the mass of the object, 


 is its angular velocity of the rotating frame, r


 
the position vector and v


 the corresponding velocity as seen in the rotating frame.  

 Definition 1.7.13 

A body is said to be at libration or Equilibrium point if it is stationary at that point or it is 
in a steady state. From mathematical point of view, if a dynamical system is in a state of 
equilibrium it remain in that state as t . Precisely, considering a system of ordinary 
differential equation 

 

 )(= xXx  (11) 

 with a point ax =  

Where,  

),,,(= 21 nxxxx   and ),,(= 21 nXXXX   

A solution )(tx  is called the equilibrium or libration point when atx o =)(  is a solution 

of the equation 0=)(xX , that is 0=x  is the libration point 

From the physical point of view, the equilibrium solutions represent points where the 
force acting on the third body in the rotating system is balanced. That is, if the body is given a 
little displacement, it oscillates and returns to the same point when time elapses the it is stable, 



otherwise unstable. 
 Definition 1.7.14 

The third body is also said to be stable near one of the equilibrium or libration points if 
given a small displacement with small velocity, it oscillates and returns to the same point when 
time elapses, otherwise unstable. The solution ax =  or the point a  is said to be stable if 
for any given 0<  there exit a 0>)(  such that when the disturbances satisfy 

 

 atx )( 0  

 then for all 0> tt ,  

 <)( atx   

 Otherwise the equilibrium point or libration point ax =  is unstable. 
For a Linear System 

If the system of differential equation given in equation (1.11)  is re-written in the form  

 )(= xfAxx   

 where A is a constant matrix and )(xf  is a vector function such that  

 
x

xf )(
 

 as 0x  for all 0>f  

then the linearized system of equation is  

 

 Axx =  (12) 

 The stability condition for 0tt   of the linearized system stated as:   

    • if the roots of the characteristic equation of A are complex which   

        - have all negative real part then the libration points are stable similarly for 
multiple roots.  

        - have any positive real parts then the libration points are unstable. This is 
also valid for multiple roots.  

 

 

    • for pure imaginary roots, the motion is oscillatory and the solution is stable 
though not asymptotically stable. If these are multiple roots the solution contains mixed (period 
and secular) terms and the libration point is unstable.  

    • if the roots are real and all negative, the solution is stable. If any of the roots are 
positive, then the point is unstable. This is also true for multiple roots.  

 



Routh and Hurwitz Criteria for Stability 

The Routh and Hurwtz criteria is a mathematical test used to determine the nature of 
the roots of a characteristic polynomial of a linear system and to make conclusions on the 
stability of the system without solving directly. It is given as 

Let )(xP  be a linear homogeneous characteristics equation of order n, given by  

 0==)( 1

1

1 nn

nn axaxaxxP  

   (13) 

 where naa ,,1   are real constant coefficients of the polynomial. Using the coefficients, the 

Hurwitz’s determinants are defined as  
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 where 0=ia  for ni >  

All the roots of the characteristic polynomial above, would have negative real part if and 
only if all the 0>jD , nj ,1,=  . Consequently, the polynomial )(xP  is stable as t  

 Definition 1.7.15 

The discriminant of a polynomial with real coefficient gives more information about the 
properties and nature of the roots of the polynomial without actually solving it. The resultant 
(Res) or determinant of a matrix known as the Sylvester matrix is used to obtain the 
discriminant for higher polynomials. This matrix is associated with two uni-variate (one 
variable) polynomial and is defined as 

Let 0

1

1=)( axaxaxp n

n

n

n  

   and 0

1

1=)( bxbxbxq m

m

m

m  

   then the 

Sylvester matrix associated with p and q is the )()( nmnm   matrix given as 
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 The discriminants of the polynomial, )(xp  defined by p  is described using the Sylvester 

matrix in equation (1.15)  as the quotient of the determinant of )(xp  and its derivative, 

)(xp  by na . Therefore,  

 ))(),((
1

= xpxpdet
an

p
  (16) 

 Generally, if:   

    • 0>p , then there are k2  pairs of complex conjugate roots and kn 4  real 

roots for some integer k such that 
4

0
n

k  ;  

    • 0<p , then there 12 k  pairs of complex conjugate roots and 24  kn  

real roots in which they are all different, for some k such that 
4

2
0




n
k ;  

    • 0=p  then there exist at least 2  roots which coincide and could either be 

real or complex.  

 

 Definition 1.7.16 

The mean motion n  of the massive bodies 1m  and 2m obtained from Kepler’s third 

law which state that "the square of the period of planets or binary stars is proportional to the 
cube of the semi-major axis," was given by  
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 Definition 1.7.17 

A dynamical system is said to be periodic when the same configuration is repeated at a 



regular interval of time. For instance, in a sidereal or inertial (fixed) coordinate system, the two 
body problem will have a solution which is repeated after a period of  

 
n

Tsidereal

2
=  (18) 

 where n is the mean motion. 

And for the synodic (rotating) coordinate system, periodic motion occur when 
q

p
n =  

where p and q are integers and n is a rotational number. The period is  

 q
n

p
TpT siderealsynodic 


2=

2
==  

 The elliptic motions are always periodic in the sidereal system but not necessarily in the 
rotating frame of reference, while the circular motions are always periodic in both systems. In 
the three- body problems, a solution is said to be periodic if the mutual distance of the bodies 
are periodic function of time. 

 

8  Organization of the Thesis 
 This thesis comprises of five chapters, references and appendices. 
In chapter one, the background, aim and objectives, methodology, justification, scope 

and organization of the study were introduced. Chapter two reveals a review of relevant 
literature under various headings (radiation pressure, oblateness, PR-drag, Coriolis and 
Centrifugal forces and the periodic motion) of the classical RTBP. Chapter three is divided into 
three sections in which the equations of motion, equations of the coordinate of the libration 
points and the stability around these points were obtained for the study of the problem in 
section one (the effects of PR-drag force and oblateness on the stability of the triangular 
libration points)and section two (the effects of the Coriolis and Centrifugal forces on the 
stability of generalized RTPB) while section three established the equations of the periodic 

motion around 4L . Chapter four presents the analysis of the results obtained in chapter three 

while in cchapter five the summary, conclusion and recommendation were given. 
 

 

2  Literature Review 
 

 

1  Introduction 
 In space dynamics, an understanding of the near-earth objects (NEOs) is essential for 

resolving the relationships between asteroids, comets and meteorites. They are the smallest 
solar system bodies observable because of their proximity to the earth. They display certain 
physical properties such as: 

    -Possession of irregular shapes 

    -Possession of small perturbation forces other than the gravitational force of 
attraction. 

    -The ability of the asteroids to emit radiation due to their surface light. 



In view of these properties, many papers that generalize the classical Restricted Three 
Body Problem (RTBP) have been published. These generalization made the problem more 
realistic by incorporating the force of radiation pressure, oblateness/triaxiality and 
Poynting-Robertson (PR) drag effect. 

The related literature and research works were reviewed and discussed under various 
generalizations in this chapter as follows; 

 

2  Classical Case 
 Duboshin (1958)  studied the motion of RTBP and established the rational equations 

of motion and later studied the circular RTBP which showed that the collinear libration points 
existed and that the triangular points make an isosceles triangle with the primaries and 
continued by studying the motion of three rigid bodies whose elementary particles act upon 
each other according to arbitrary laws of forces along the straight line joining them. Szebehely 

)(1967a  discovered that the classical RTBP possesses three collinear ),,( 221 LLL  which were 

found to be unstable and two triangular points ),( 54 LL  which are stable for c <0  

where   is the mass parameter and 0.03852...=c  is the critical mass value. Sengupta and 

Singla (2002) similarly analyzed the stability of the classical RTBP by formulating the equation of 
motion using the Langrange’s-Hamiltonian technique. 

Here, the primaries were assumed to be spherical and other forces (radiation pressure, 
solar wind, Poynting-Robertson (PR) drag, Coriolis and Centrifugal forces etc) other than the 
gravitational force of attraction were not put into consideration in establishing the existence 
and stability of the libration points. 

 

3  Effect of Radiation Pressure 
 In the real sense, the planetary bodies: planets and dwarf planets, natural and artificial 

satellites, asteroids, comets and meteorite exhibit different properties that affect the motion of 
a particular system, thereby leading to a change in the general solution. 

One of the immediate generalization of the RTBP was the study of the 
photo-gravitational effects. For small particles like asteroids and binary stars, light can cause a 
significant change in the altitude and direction of motions over a large period when rotating 
relative to the sun. This energy radiated from the celestial bodies known as the 
photo-gravitational effect was put into consideration in establishing the stability of RTBP. 
Radzievskii (1950) , was the first to formulate the problem. He studied the linear stability of 

the problem and obtained the five libration points. Kunitsyn and Perezhogin (1978)  studied 

the stability in the Lyapunov sense with one of the primaries radiating. Mignard (1982)  

explored the Astronomical applications of the stability problem by looking into the influence of 
radiation pressure from the sun in the planet-satellite-particle system. Simmons, Mc Donald 
and Brown (1985)  gave the complete solution of the RTBP. They also discussed the existence 

and linear stability of the equilibrium points for all values of radiation pressure from both 
radiating bodies for all values of mass ratio. Kumar and Choudry (1987)  examined the 

stability of triangular libration points when the attracting primaries are radiating under the 
non-resonance cases. It was discovered that the motion will be stable for all values of the mass 



value,   and mass reduction factor due to radiation pressure,
21,qq . Kunitsyn and Polyathara 

(1995) investigated the photo-gravitational effect on the infinitesimal mass from both 

primaries. Khasan (1996)  obtained the collinear and triangular libration points for the 

averaged equations of motion of the elliptic photo-gravitational RTBP and their stability is 
studied to a first approximation. Kunitsyn )(2000,2001  investigated the stability of the 

relative equilibrium positions (collinear libration points) of the circular photo-gravitational 
RTBP, in which a point is passively experiencing the Newtonian gravitational force from the 
main bodies (stars) which also experience forces of light pressure from each of them and 
analyzed previously obtained conditions of stability from new perspective. 

The collinear points were found to be unstable for all values of the mass ratio,   while 

the non-collinear points are stable and form isosceles triangles due to the radiation effect from 
either or both of the primaries on the RTBP. 

 

4  Effect of Oblateness 
 The classical RTBP further modified by considering the unusual shape of the planetary 

bodies since all the planetary bodies were observed flattened due to their rotation around the 
sun. The measure of these flattening is known as Oblateness. Many researchers have studied 
the effect of oblateness on the stability of libration points for various system. McCuskey 

(1963)  established the equation for obtaining the Oblateness coefficients, 1,2=, iAi  and 

consequently, the force due to Oblateness is given by 
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 Where G  is the gravitational constant, m  the mass of infinitesimal mass and 1,2)=(= iri  

is the distance between the primaries im  and the infinitesimal body. Vidyakin (1974)  

established the location of the libration points and studied their stability in the Lyapunov sense 
when both primaries are oblate spheroids with their equatorial plane coinciding with the plane 
of motion. Sharma and Subbarao )(1976,1979  studied the of RTBP when one of the primaries 

is an oblate spheroid. They established that the decrease in the range of stability was due to 
oblateness. Bhatnagar and Khanna (1999)  considered the smaller primaries to be triaxial with 

one of its axes of symmetry coinciding with the plane of motion. Abouelmagd (2012)  

observed that there still exist five equilibrium points for which due to oblateness, the triangular 
points deviate from its positions but does not influence the motion of the system in the x-y 
plane, in the linear sense. Arrendondo, Gui and Stocia (2012)  investigated the linear stability 

numerically using (1)J  and (2)J  parameters. 
 

5  Effects of Oblateness and Radiation Pressure 
 The generalized RTBP were modified by different authors to investigate the effect of 

both oblateness and radiation pressure force on the stability of RTBP. Sharma (1982)  studied 

the linear stability of triangular libration points of the restricted three body problem when the 
bigger primary is an oblate spheroid as well as a source of radiation. He generalized the study 



(1987)  by considering an oblate primary and radiating secondary. Ishwar and Singh (1999) , 

Tsirogiannis, Doukos and Perdios (2006)  also computed the lyapunov’s orbit of a similar 

system. They discovered that oblateness of the primary and radiation of the secondary reduced 
the stability region of the triangular equilibrium points. like-wise, Shankaran , Ishwar, 
Chakraborty and Abdullah (2011) , Jain etal (2013) , Singh and Umar ,2014)(2012,2013  

worked on related problems by considering the elliptic orbits. 
Sharma, Taqvi and Bhatnagar ),2001(2001 ba  studied the stationary solutions of the 

planar RTBP when the primaries are triaxial rigid bodies as well as sources of radiation with one 
of the axes as the axis of symmetry and its equatorial plane coinciding of motion. They obtained 
five libration points: two triangular points which are stable for a certain range of mass value 
and three collinear points which are unstable. 

 

6  Effect of the Poynting-Robertson Drag 
 The spectacular results of the effect of radiation pressure on RTBP prompted 

researchers to generalize previous works further by considering the radiation pressure force 
produced from the absorption and subsequent re-emission of sun rays striking small particles 
orbiting it thereby retarding the motion of the particle thus lowering the angular momentum 
and consequently spiral into the sun. This process is known as the Poynting-Robertson drag 
effect. Poynting (1903)  was the first to consider this problem and later modified by 

Robertson (1937) . He established the expression for the net drag force which opposes the 

direction of motion using a precise relativistic treatment of the first order in the ratio of the 
velocity of the particle to the speed of light. Colombo, Lautman and Shapiru (1996)  studied 

the effect of radiation pressure and PR-drag on the RTBP. Chernikov (1970)  and Schuerman 

(1980)  established the existence of six libration points in which one lie out of the orbital 

plane. He found that due to the PR-drag effect, the triangular libration points are unstable. 
Following this discovery, several articles have been published related work. Murray (1994)  

explained the dynamical effect of drag in general in the planar circular RTBP. Liou, Zook and 
Jackson (1995)  studied the effect of radiation, PR and solar wind drag in the RTBP. Ragos and 

Zafiropoulos (1995)  established the equations of motion for when the primaries are radiating 

with PR-drag effect from the expression of the net force acting on the system. He studied this 
problem numerically and discovered that the collinear points deviate from the axis while the 
triangular points are no longer symmetrical. Lhotka and Celletti (2014)  studied the effect of 

the PR-drag on the triangular Lagrangian points but in the spatial, elliptic RTBP. Raj and Ishwar 
(2017)  obtained the diagonalizable Hamiltonian for the photogravitational RTBP with the 

PR-drag. 
 

7  Effects of Oblateness and Poynting-Robertson Drag 
 Kushvah and Ishwar (2004)  and Ishwar and Kushvah (2006)  examined the linear 

stability of the generalised photo-gravitational RTBP when the smaller primary is considered to 
be oblate spheroid and the bigger one radiating with PR-drag. Das, Narang, Mahajan and Yuasa 
$(2009)$ worked on the out of plane equilibrium points of a passive micron size particle and 



examined their stability in the field of radiating binary stars. Lhotka and Celletti (2014)  

examined the effect of PR-drag on the triangular libration points in the framework of elliptic 
RTBP. This is an extension of Murray (1994)  work. Singh and Amuda (2014)  studied the 

photo-gravitational problem when the bigger primary is oblate and smaller a source of 
radiation with PR-drag, Singh, Taura and Joel (2014)  using analytical and numerical methods, 

obtained the triangular libration points which were found to move towards the line joining the 

primaries in the presence of any of perturbations (such as oblateness up to 
4J  of the less 

massive primary, electromagnetic radiation of the more massive primary and potential from 

the belt), except in the presence of oblateness up to 
4J  where the points move away from 

the line joining the primaries and examined their linear stability. A practical application of their 
model is the study of the motion of a dust particle near a radiating star and an oblate body 
surrounded by a belt. Jaiyeola, AbdulRaheem and Titiloye (2016)  extended their works to 

understand the effects of various perturbing factors on the dynamics of a particle orbiting the 
primaries. They concluded that the P-R drag renders unstable those libration points that are 
conditionally stable in the classical case. Lhotka, Celletti, and Gales (2016)  investigated the 

effect of PR and solar wind drag on space debris. Narayan and Shrivastava (2013) , Singh etal

(2016) , and many others have used various binary stars such as Prokyon, Kruger, 

RW-Monocerotis, Achird, Luyten,   Cen AB, Xi-Bootis, Algol etc to verify their results. 
 

8  Effects the Coriolis and Centrifugal Forces 
 The study of the effects of small perturbation in the coriolis and centrifugal forces on 

the stability of libration points of the RTBP cannot be over-emphasized because of their 
peculiar nature. 

The Classical RTBP has been generalized extensively by prominent researchers. Wintner 
(1941)  showed that the stability of two equilateral points was due to the presence of the 

coriolis parameter in the equation of motion. Szebehely )(1967b  considered similar problem 

keeping the centrifugal force constant and established for the triangular points a relation 

between the critical value of the mass parameter c  and the change   in the coriolis )(  

force as  

 
693

16
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
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 and thus concluded that the coriolis force is a stabilizing force. Subbarao and Sharma (1975)  

showed that with oblateness the coriolis force is not always a stabilizing force. Bhatnagar and 
Hallan (1979)  extended their work to include the centrifugal )(   force and showed that the 

collinear points remain unstable while for the triangular points he obtained a relation  
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 which implies that the increase or decrease in the range of stability depends upon the points 
),(   . Singh and Iswhar (1984)  investigated the effect of small perturbations in the coriolis 

and the centrifugal forces on the location of libration points in the RTBP with variable mass. In 
line with the other results they established that the range of stability of the triangular points 



increases or decreases depending on whether the perturbation point ),(    lies in either of 

the two parts in which ),(    plane is divided by the line 0=1936   . Abdulraheem and 

Singh (2006)  building upon previous works, studied the combined effects of small 

perturbations in the coriolis and centrifugal forces, radiation and oblateness on the stability of 
the libration points the RTBP and discovered that the collinear points remained unstable while 

the range of stability of the triangular points decreases as seen in the critical mass value c  

obtained as 

 

 rbpc  0=  (20) 

 where 

)
27

23
(1

2

1
=0  )

9627

1936
4(=

'



p  . . . due to perturbations in the coriolis and 

centrifugal force. 

)(1
9627

2
)(1

9627

2
= 21 qqr   . . . due to radiation effect. 

21
)

96

13
(1

9

1
)

96

13
(1

9

1
= AAb   . . . effect due to oblateness. 

Singh )(2009,2011  investigated the non-linear stability of the triangular equilibrium 

points under the effects of small perturbations in the coriolis and the centrifugal forces, 
together with the effects of oblateness and radiation pressures of the primaries. Singh and 
Aminu (2014)  examined the influence of small perturbations in the coriolis and centrifugal 

forces, both analytically and numerically on the stability of circular RTBP with PR-drag from 
both primaries. This was shown for the binary systems Luyten 726-8 and Kruger 60. 
Akere-Jaiyeola, Singh, AbdulRaheem and Braimah (2015)  considered the effect of 

perturbations on the stability of the libration points on RTBP with a triaxial primary and 
radiating secondary. The range of stability were found to be affected by the perturbing 
parameter as seen in the relation for the critical mass value obtained as  

 trpc  0=  (21) 

 where 

)
27

23
(1

2

1
=0          classical 

)
9627

1936
4(=

'



p         due to perturbations 

)(1
9627

2
)(1

9627

2
= 1 qqr      due to radiation 

21 )
699

85

18

19
(

2

1
)

699

59

6

5
(

2

1
=  t     due to triaxiality. 

Abouelmagd, Alhothuali, Guirao and Malaikah (2015)  presented the graphical analysis 

for the variations of the angular frequencies for the periodic and secular RTBP under harmonic 
effect. Zoto (2015)  investigated how the oblateness coefficient influence the nature of orbits 



in the RTBP and discovered that the it has a huge impact on the character of orbits. Singh and 
Omale (2015)  determined the effect of small perturbations in coriolis and centrifugal forces 

on the axial equilibrium points and examined stability in Robe’s circular RTBP when the 
hydrostatic equilibrium figure of the massive primary is an oblate spheroid; the shape of the 
less massive primary is a triaxial rigid body. It was discovered that the locations of the axial 
equilibrium points were only influenced by a small change in the centrifugal force and many 
other researchers have introduced and studied the effects of the coriolis and centrifugal forces, 
radiation pressure force, oblateness, on the stability of the RTBP. They observed that coriolis 
force has a stabilizing tendency while the centrifugal force, radiation pressure force and 
oblateness have destabilizing effect. 

 

9  Periodic Orbit 
 In addition, the periodic orbits of the classical RTBP and its numerous generalizations 

have been studied extensively by researchers. Poincare (1897)  gave the three definitions of 

the first kind for the periodic solution for an orbit in a synodic coordinate system in terms of its 
inclination as: zero for small mass value   in a circular orbit, zero inclination for particles 

perturbing in a keplerian elliptic orbit and when the inclination are no longer zero. Arenstorf 
(1963)  studied analytically the periodic orbit of the second kind in the planar RTBP. Barrar 

(1965)  examined similar problem using Cartesian rectangular coordinates and Delaunay’s 

canonical variables. This work was later extended to investigate the collision orbits as well. 
Szebehely )(1967a  discussed the periodic motion of a particle in the classical RTBP. Sharma 

(1976)  in line with Barrar’s method, considered the bigger primary to be oblate spheroid and 

established the existence periodic orbits of the first kind. Sharma (1981)  modified this work 

to study the period orbit of the second kind. Sharma and Subbarao (1986)  provided 

approximations to periodic solutions around the triangular libration points with an oblate 
massive primary. Elipe and Lara (1997)  obtained various natural families of periodic orbits of 

the RTBP when the influence of the radiation pressure on the gravitational forces from the 
primaries are put in consideration. Sharma, Taqvi and Bhatnagar ),2001(2001 ba  established 

the existence of the long and short period, orientation and the semi-axes of the RTBP when the 
primaries are triaxial rigid bodies and sources as well as sources of radiation. Mittal, Ahmad and 
Bhatnagar (2009)  examined the effect of oblateness on the periodic orbits around the 

Lagrangian points of the RTBP. Singh and Begha (2011)  established the existence of the 

periodic orbits of the RTBP with oblate (massive) and triaxial (less massive) primaries. They 
deduced their period, orientation and eccentricities are influenced by the small perturbations in 
the coriolis and centrifugal forces, oblateness and triaxiality of the primaries. Singh and Haruna 
(2014)  established the periodic orbits around the triangular libration points when the three 

bodies are considered to be oblate. Abouelmagd etal (2015)  determined the periodic 

structure of the RTBP considering the influence of the zonal harmonics parameters for the 
bigger primary. Singh, Narayan and Ishwar (2015)  showed that oblateness, radiation pressure 

and eccentricity have a significant effect on the trajectories and stability of the infinitesimal 
mass around the libration points. Zoto (2015)  investigated how the oblateness coefficient 



influence the nature of orbits in the RTBP and discovered that it has a huge impact on the 
character of orbits. Many of the previously mentioned researchers have also studied the 
periodic orbits. Recently Pushparaj and Sharma (2017)  studied the Periodic orbits of the 

photo-gravitational RTBP using Poincare approach and found that the period of time of Jupiter 
decreases with increase in radiation pressure from the Sun while due to oblateness of Jupiter 
the period increases. 

Due to the remarkable effects of all these perturbing (coriolis and centrifugal, shape of 
the primaries, radiation pressure, solar wind drag, Poynting-Robertson drag etc.)forces on the 
motion around the orbit of the satellite (both Natural and artificial), this research work hereby 
modify specifically, the works of Ragos and Zafiropoulos (1995) , Ishwar and Kushvah (2006)  

and Singh and Amuda (2014)  to achieve this new and interesting result. 

 

3  Methodology and Results 
 In this chapter, the equations needed to study the effects of small perturbations in the 

coriolis and centrifugal forces on the stability of the generalized photo-gravitational RTBP with 

PR-drag force and the periodic motion around 
4L  were established. 

 

1  Effect Of Poynting-Robertson Drag And Oblateness On The 
Stability Of Restricted Three-Body Problem 

 

1.1  The Equations of Motion  
 The energy (potential and kinetic) of the RTBP when the primaries are considered to be 

both oblate spheroid and source of radiation with PR -drag effect (in the absence of small 
perturbations in the coriolis and centrifugal forces) is obtained and to establish the equations of 
motion for the proposed system. 

 

 

Figure  2: The primaries rotating with respect to the inertial frame of reference. 
Source:Szebehely (1967a) 

 

With reference to an inertial or fixed coordinates OXYZ, let ),,( zyxP , ,0,0)(1 aS   and 

,0)(2 bS  be the coordinates of the infinitesimal body and primaries with masses m , 1m  and 

2m  respectively. let 1r , 2r  be the distances between each of the primary and the 

infinitesimal while r  is the distance between the primaries. Introducing a rotating coordinate 
system Oxyz with the origin O at the barycenter of the primaries in which the axis rotate 
relative to the inertial space with an angular velocity nk=  

The Net Potential 
The net force on the infinitesimal body due to both primaries being oblate spheroid and 

radiating with PR-drag effect is  

 PRO FFF =  

 



 Where the subscripts O and PR indicate the force due to oblateness and PR-drag effect 
respectively. 

Based on equations (1.9)  and (2.1)  the total force becomes 
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 where,  
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which is equivalent to 
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Integrating equation (3.1)  according to equation (1.6)  the net potential of the system is 

 

 dzFkdyFjdxFirdFV zyx   ˆˆˆ==  (23) 

 where zyx andFFF ,  are given in equation (3.1) . 

The Kinetic Energy of the System 

The kinetic of the system is given by  
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 Let yx pp ,  and zp  be the generalized component of momentum then by equations (3.3)  

and (3.4) , I get  
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 then, the Hamiltonian denoted by H is  
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Using equation (3.5) , equation (3.6)  becomes,  

 Vyxmn
m

p
nx

m

p
ny

m

pm
H zyx 








































 )(

2

1

2
= 222

222

 

 

 Vxpypnppp
m

yxzyx  )()(
2

1
= 222  (28) 

 

Using equation (3.6) , the Hamilton’s equations of motion given by  
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yields, (component wise system description) 
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Substituting equation (3.5)  into (3.8) , gives  
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By equation (3.2) , equation (3.9)  results to  
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Adopting the notation of Szebehely, the distance between the primaries along the x- axis is 
taken to be equal to one. The sum of the masses of the primaries is also assumed to be 1  so 

that if =2m  then 1=1m  and the origin as the barycenter of the masses 
1m  at 

.0,0)( a  and 
2m  at ,0,0)(b  which implies that 

 

 0=)()( 21 bmam   

 

 0=)(1 ba    

 

 aba =)(   

Since the distance between the primaries is assumed to be 1, then =a  and 1=b  

where, 
21

2=
mm

m


  is the mass ratio parameter. 

The unit of time is chosen so as to make the gravitational constant G  to be equal to 

unity. The speed of light c  is given as .= dcc  Assuming that 1,2)=(iqi  are constant 

(neglecting fluctuations in the beam of solar radiation and the effect of the planet shadow.). In 
the dimensionless synodic coordinate system, the equations of motion of the 
photo-gravitational RTBP, in the absence of small perturbations in the coriolis and centrifugal 
forces obtained in equation (3.10)  becomes 
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 where, 
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In the yx   orbital plane (z=0) the equations of motion above takes the form  

 xynx  =2   

 

 yxny  =2   (34) 

 where, 
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 The mean motion, n by equation (1.17)  gives  
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 and is found not to be influenced by the mass reduction factor ),( 21 qq  due to radiation 

pressure and PR-drag, ),( 21 WW  effects, but only by the oblateness ),( 21 AA  coefficients. 

(Abdulraheem and Singh, 2006, Ishwar and Kushvah, 2006, Amuda and Singh 2014.) 
The equations of motion (3.13)  and (3.14)  are affected by the radiation pressure, 

oblateness of the primaries and Poyntiing Robertson drag. 
 



1.2  The Jacobi Integral 
 One of the implications of this Jacobi integral is that it allows the making of certain 

general qualitative statements concerning, the motion without actually solving the equations of 
motion which gives great importance to integral applicable unsolvable dynamical problems. 

The angular velocity   of the finite masses is constant because they move in a circular 
orbit and therefore the Hamiltonian is constant. By multiplying the first equation of equation 
(3.13)  by x2  and the second by y2  and then adding, gives  
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PRxF  and PRyF  are the partial derivatives of the PR-drag function with respect to x  and y  

respectively. These are functions of the position and velocity. 
Integrating equation (3.18)  with respect to time t, yields  

 CdtFyFxyx PRyPRx  
 )(22=22   

 where the left hand-side is the square of the velocity of the infinitesimal body which cannot 
be negative and C is the constant of integration known as the Jacobi integral. The motion of the 
body is restricted to the region where  

 0)(22=2  
 CdtFyFxv PRyPRx

  (40) 

 This condition in equation (3.19)  does not tell about the shape of the orbit but it determines 

the region where the particle could move. The equation of the zero velocity curves (ZVC) are 
given by  

 ),(2= yxC   (41) 

 The curve C represent various regions of possible motion. 
 



1.3  Location of the Triangular Libration Points 
 The libration points are the solution of the equations of motion in (3.13) , when the 

velocity and acceleration are equal zero ( i.e. 0==== yxyx  ), therefore,  
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 The triangular libration points are the solutions of equations (3,21)  when 0y .  

In the absence of oblateness 0)=,( 21 AA  and the PR -drag 0)=,( 21 WW  the 

equation (3.21)  above reduces to the photo gravitational RTBP and which is  
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Now, letting 1<<1  and 1<<1  be small perturbation (due to the oblateness and PR

-drag of the primaries) in 1r  and 2r  respectively. Then  
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Furthermore, assuming that, ),(1= 11 wq  )(1= 22 wq  , 1)<<,( 21 ww  so that  
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 Putting equation (3.22)  into (3.15) , gives  
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Solving these equations, 2

1r  and 2

1r  simultaneously for x  and y , neglecting second and 

higher order terms of small quantities, then,  
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 Multiplying the first equation of equation (3.14)  by y , the second by )( x  and then 

the first again by 1)(  x  gives the homogeneous system of equation as  
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 By elimination method equations (3.27) , (3.28)  and (3.29)  reduces to  
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Using (3.17) , (3.22) , (3.24)  and (3.25)  in (3.30)  and by considering only first 

order terms of small quantities ),,,,,( 212121 WWAAww , gives  
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Simplifying, , gives  
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Using equation (3.26) , 1  and )( 1  becomes,  
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 Substituting the values of 1  and 1  from equation (3.31)  into equations (3.23)  and 

(3.25) , then simplifying givess,  
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 Equations (3.32)  and (3.33)  are the coordinates of the triangular points of the RTBP when 

the primaries are assumed to be oblate ),( 21 AA , radiating ),( 21 ww  with PR-drag ),( 21 WW  

effect in the absence of perturbations in the coriolis and centrifugal forces 

 

1.4  Stability of the Triangular Points  
 To determine the stability of the libration points, ),( ** yx  is assumed to be the 

coordinate of the libration point and 1, = , the small displacement in the points such that 

.=,= **   yyxx  is a point in the neighborhood of the libration point. 

Therefore, the equations of motion of the systems in equation (3.13)  becomes,  
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 and by series expansion, equation (3.34)  gives  
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where 0(2)  represents second and higher order terms in   and  . The superscript )(o  

indicates the second order partial derivatives are evaluated at the libration points. 
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 This is the variational equation of motion corresponding to the equations of motion in (3.13) , 

considering only linear terms of   and  . 

Suppose tAe =  and tBe =  are the trial solutions to the variational equation. 

Then equation (3.35)  is written as  
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which on solving yields the characteristic equation corresponding to the variational equation of 
motion in (3.35)  

 

 0=234 dcba    (57) 
 where  

 )(= xx

o

yya    

 

 22 )(4= o

yx

o

yy

o

xx

o

xx

o

yynb    

 

 o

yx

o

yx

o

xy

o

xy

o

yx

o

xy

o

yy

o

xx

o

yy

o

xx nnc   22=  

 

 o

xy

o

yx

o

yy

o

xxd =  

Differentiating equations (3.14)  with respect to x , y , x  and y , resulted to the second 

partial derivatives given as  
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 Evaluating the second partial derivatives in equations equations (3.37) - (3.41)  at the 

libration points obtained in equations (3.32)  and (3.33) . Also using equations (3.17) , 

(3.22)  and (3.31)  (neglecting second and higher order terms of small quantities) so that  
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Therefore, substituting these values from equations (3.42)  to (3.45)  in equation 

(3.35) , neglecting second and higher terms of small quantities, yields,  
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 Now, the four roots of the characteristic equation of the classical RTBP is  
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 Assuming that, due to oblateness and PR drag  
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 is a solution for the equation (3.36) , where 
1 , 

2  are small real quantities. 

Using equation (3.50) , neglecting second and higher order terms of small quantities, 

equation (3.52)  gives  
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Putting these in equation (3.36)  considering only first order terms of small quantities yields,  
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 since 1= bbb o  , 1,ba , contain only components of small quantities  
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 where the values of dcba o ,,,  and z  are given in equations (3.49)(3.46)   and (3.51)  

respectively. 

The motion around the triangular libration points is asymptotically stable only if 02   

and the real part, )(Re  of the root are all negative. 

Now, the real part of equation (3.52)  using equation (3.55)  is,  
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Considering only first order term of the quantity  ,  
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 so taking positive sign and 0<)(Re  then by equations (3.56)  and (3.57) ,  
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 On the other hand, taking negative sign  
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 from equation (3.58)  and (3.59) ,  
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 This inequality, according to Murray (1994) is the condition necessary for the stability of 

triangular libration points at 4L  and 5L .  

  



2  Effects of Coriolis and Centrifugal Forces on the Stability of 
Generalised Photo-gravitational Restricted Three-Body Problem 

 

2.1  The Equations of Motion 
 Introducing the parameters   and   into the equations of motion obtained in 

chapter three, to represent small perturbations in the coriolis and centrifugal forces, using the 
parameter   and   respectively such that  
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 The equations of motion (3.13)  now becomes,  
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 which is re-written as,  
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PRxF  and PRyF  are the partial derivatives of the PR-drag function with respect to x  and y  

respectively. These are functions of the position and velocity. 
The equations of motion (3.63)  and (3.64) , which are modifications of those 

obtained in equation (3.13)  shows the presence the parameter for small perturbations in the 

coriolis )(  and centrifugal )(  forces. 

 

2.2  The Jacobi Integral 
 To obtain the Jacobi Integral for the equations of motion obtained above, the first 

equation of (3.62)  is multiplied by x2 , the second by y2  and then added up to give,  
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PRxF  and PRyF  are given in equations (3.64)  and (3.55)  above 

Integrating this with respect to time t, yields  

 CdtFyFxyx PRyPRx  
 )(22=22   

 where the left hand-side is the square of the velocity of the infinitesimal body which cannot 
be negative and C is the constant of integration known as the Jacobi integral. The motion of the 
body is restricted to the region where  
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 This condition determines the region where motion would take place and not the shape of the 
orbit. The equation of the Zero Velocity Curves (ZVC) are given by  

 ),(2= yxC   (87) 

 The curve C represent various regions of possible motion. 
 

2.3  Location of The Triangular Libration Points 
 The triangular libration points are the solutions of equations 0== yx   when 

0==== yxyx   and 0y . From equations (3.62) - (3.64)  
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 In the absence of the radiation, oblateness and PR-drag (i.e. 

0====1,=== 212121 AAWWqqn  ) equations (3.68)  gives,  
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 Substituting equation (3.68)  in (3.15)  and solving simultaneously, neglecting second and 

higher order terms of small quantities, the equation of the coordinates, x  and y  in terms 

  and   is given as,  
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 Also multiplying the first equation in equations (3.68)  by y , the second by )( x  and 

then the first again by 1)(  x  produces the following equations;  
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 By elimination method, the equations (3.70) , (3.71)  and (3.72)  reduces to  
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 taking )(1= 11 wq  , )(1= 22 wq  , 1,2)=1(|| iwi =  and substituting the values for 

yandxrrn    ,, 21  from equations (3.17) , (3.68) , and (3.69)  into equation (3.73)  above, 

considering only linear terms of 212121 ,,,,, WWAAww , yields,  
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 By putting these values of 2  and 2  in equation (3.69)  gives,  
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 Equations (3.74)  are the coordinates of the triangular libration points, ),(4 yxL   and 

),(5 yxL  . Putting equation (3.61)  in (3.74)  neglecting product of   with other small 

quantities ),,,,,( 212121 WWAAww  the coordinates become  
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 where the subscript p indicates the presence of perturbations in the centrifugal forces. In 
order to appreciate the impact of the centrifugal force on the location of the libration points, 
the product of   with the small quantity parameters is further considered, taking only the 
first order terms in  . The coordinate are obtained as  

 


































 

































3)(181

)]23(2711[9

3)(181

)]54(2714[18

.
27

)8(9

27

)8(9

81

)22(9

81

)22(9

9

4
1

2

3
=

3)(127

)]5(917[9

3)(127

)]5(922[18
229

)2(3

9

)2(3

2

1
=

21

2121*

21

2121*






















WW

AAww
y

WW

AAww
x

p

p

 (97) 

 

 

2.4  Stability of the Triangular Libration Points 
 Assuming also that, ),( 00 yx  is the coordinate of the triangular libration points and 

1<<,  are the small displacements such that ),( 00   yx  is a point in the vicinity of 

),( 00 yx , with velocity component ),(   . Then substituting these in the equations of motion 

(3.62)  and using the Taylor series expansion produces,  
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 where 0(2)  represents the second and higher order terms, the superscript )(0  indicate 

that the partial derivatives are evaluated at the libration points which implies that 
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The equation above give the variational equation of motion corresponding to equations 
of motion as,  
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 Let tAe = , tBe =  be the trial solution of equation (3.77) , the we can write  
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 solving this,  

 0=
)(2

)(2
00200

00002

yyyyyxxy

xyyxxxxx

n

n












 

 yields the characteristic equation corresponding to the variational equation of motion (3.77)  

as, 
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 Differentiating equations (3.67)  with respect to yxyx ,,,  respectively and evaluating the 

second order partial derivatives at libration points using equations (3.61) , (3.68) , (3.74) , so 

that  
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 Now substituting these values from (3.80)  to (3.83)  in (3.79) , gives the coefficient of the 

characteristics equation as 

 



 































































3

2

3

10

3

8

23

10

3

8

2

2

3

2

3

10

3

8

23

8

2

1
2

3

23

8

1
3

23

8

2
3

23

8

1
3

23

8

3

23

8

2
3

2

3

4

3

4

3

23

5

1
3

2

3

23

5

3

2

2

3

2

1
2

3

5

2

1
3

5

3

5

2
2

21
3

2

44

)]972(144)942[(60

44

)]972(144)30[(84
)3)(16(1

4

9

)3)(16(1
4

9
))(2(1

2

3

))(2(1
3

2
))(4(1

4

9
=

)](4)4[(4
4

3
)](4[4

4

3
=

44

)812(16
8

3

)8812(16
8

3

4

1216
=

)(3=












































W

W
A

Aw

wd

WWc

WW
A

Ab

WWa

 (105) 

 using equation (3.61)  neglecting second and higher order of small quantities and product of 

  with ),,,,,( 212121 WWAAww , equation (3.84)  takes the form  
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These are all constant coefficients which are seen to depend on the parameters of small 

perturbations in the coriolis and centrifugal forces, (  ,  ), oblateness ( 1A , 2A ), radiation 

pressure force ( 1w , 2w ) with PR- drag force ( 1W , 2W ). And for 

1,,,,,,,<0 212121 =WWAAww  , the coefficients 0>a , 0>b , 0<c , 0>d  

According to Routh and Hurwitz’s criteria for stability, a characteristics equation would 

have all negative real roots if all the isD , ( the Hurwitz’s determinants) have positive values. 

Therefore, 
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 Even with the nature of the values given in (3.85) , it would difficult to predict the nature of 

the 1,2,3,4)=(isD i
 . Therefore their values have been computed for the binary systems: 

Kruger-60 and RXJ0450,1-5856 in table 4 and table 5.  

  



3  Effects of Perturbations on the Periodic Orbit of the 
Generalized Restricted Three-Body Problem 

 It is important to study the periodic orbit of a system in order to obtain a complete 
information about the orbit of a non-integrable dynamical system and as the time, t , the 
behaviour of the solution cannot be predicted. 

The effect of small perturbations in the coriolis and centrifugal forces have been 
examined on some of the periodic elements (the period of oscillation, orientation, semi-major 
and semi-minor axes ) of the oblate RTBP under the effect of the PR-drag force from the 
primaries.  

 

3.1   The Critical Mass 
 The critical mass value c  is expected to exist when the discriminants vanishes, that 

is, 0= . 
Now from the Sylvester equation (1.6) , the discriminant of a polynomial with constant 

coefficient of degree four  

 

 0=01

2

2

3

3

4

4 azazazaza   

is  

 

1234

1234

1234

1234

01234

1234

01234

4

234000

023400

002340

000234

00

000

00

1
=

aaaa

aaaa

aaaa

aaaa

aaaaa

aaaa

aaaaa

a
  

therefore, the discriminants for the characteristics equation (3.78)  gives  
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 considering only first order term of small quantities and since a  and c , given in equation 

(3.85) , are functions of 1<<1,<< 21 WW , then the equation above reduces to  

 dbdbd 4223 16128256=   (107) 
 which gives,  
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 Simplifying, considering only first order terms of small quantities, results to  
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 Here, the discriminant   is a function of the mass parameter   and other perturbing 

factors ),,,,,,( 212121 andWWAAww  .   is studied in the interval 
2

1
0   . 

If 0= , then 0=  

This implies that the discriminant varnishes at this point and since the critical mass 

value, c  is expected to exist when 0=  therefore  

 0== c  (109) 

 

and if 
2

1
= , then equation (3.87)  becomes 
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 and gives 
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 This shows that when 
2

1
= , 0>  and it implies that the solution of the characteristics 

equation (3.78)  would consist of both real and complex conjugate roots (secular terms) and 

the critical mass value 0== c  does not exist in the interval 
2

1
0    and hence the 

triangular libration point is unstable. 
Now the roots of the dynamical system is obtained below. 
In the absence of perturbations in the coriolis and centrifugal forces, radiation pressure, 

oblateness and PR-drag effect from both primaries, the characteristics equation of motion 
obtained in equation (3.78)  using equation (3.85)  reduces to that of the classical case. This 

was found to be, 
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 Assuming that =2  this equation gives a quadratic equation 
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by which solving gives the four roots of the classical characteristic equation of motion 
as,  
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 where  
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 Assuming that due to small perturbations in the coriolis and centrifugal forces, oblateness, 
radiation with PR -drag effect the solutions of equation (3.78)  are  

 ziin ])(1[=)(1= 1221    (113) 

 where R21,  are small quantities. 

By substituting equation (3.90)  and its multiples in equation (3.78) , neglecting 

product of small quantities and comparing coefficients of the real and imaginary part gives  
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 where the values of dcba ,,,  and z  are given in the equation (3.85)  and (3.91)  

Therefore using these values above in equation (3.92) , gives the roots of the 

characteristic equation of the perturbed system as  
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 where 
1)(22

1
=

22 zz
  

The roots, 1,2,3,4=, ii  are functions of the constants coefficients ),,,( dcba  

obtained in equation (3.85) . These are seen to be dependent on the parameters of the small 

perturbations in the coriolis and centrifugal forces, oblateness, mass reduction factor due 
radiation pressure and PR-drag force. This shows that the root is influenced by the 
aforementioned factors.  

3.2  The Period of Motion 
 The folding time (T) for the growth of the particle oscillation about the libration points 

4L  and 5L  is given by 
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T  is always positive for at least one choice of sign in the equation (3.95)  above which imply 

that the particles have no stable equilibrium solution when the PR -drag effect is put into 
consideration. This is based on the fact that in the linear sense, a  and c  are pure functions 

of 21,WW , the PR - drag parameter and not of the perturbations in the coriolis and centrifugal 

forces. 
So it is more convenient to evaluate T  when applied to the solar system. In this case, 

the terms containing )(1   can be ignored. Thus putting the values n , a , c  and z  from 

equations (3.17) , (3.85)  and (3.91) , the equation (3.95)  gives,  
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 The equation (3.97)  is the equation for the Period of oscillation. In the linear sense, the time 



of oscillation is seen to depend only on the parameters of mass reduction factor and the 
PR-drag force but not on the parameters of the mass value, oblateness and small perturbations 
in the coriolis and centrifugal forces. 

 

3.3  The Orientation 
 By Taylor Series expansion, the expression   around 

4L  given in equation (3.63)  

and (3.64)  is 
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 where 0(3)  are the third and higher order terms. 

At libration points 
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therefore equations (3.97)  reduces to 
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 from equation (3.63)  and (3.64) , 
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 which is written as 
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 Evaluating equation (3.99)  above at libration point using equations (3.17) , (3.68)  and 

(3.75) , neglecting second and higher order terms of small quantities, 
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simplifying 
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Using equations (3.80) - (3.82) , (3.100)  and (3.101)  in (3.98)  
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Introducing the variables   and   by the transformation  
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 Choosing   such that the coefficients of 0=  
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 Using the trigonometric identities  
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the new quadratic form becomes 
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s  and t  are given in equation (3.101) 

Now, setting the coefficients of  0= , gives 
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 Simplifying this, considering only first order term of small quantities, gives 

 

 
























3)(19

)189974(16

3)(19

)1872124(32

)32(1
3

4
)34(2

3

4
)911(4

9

4

)97(2
9

4
)2(1

9

8
213=2tan

22

2

32

1

2

2

1

2

2

2

1

2













WW

AAw

w

 

 or  

 Qarctan
2

1
=  (128) 

 where  

 

 
























3)(19

)189974(16

3)(19

)1872124(32

)32(1
3

4
)34(2

3

4
)911(4

9

4

)97(2
9

4
)2(1

9

8
213=

22

2

32

1

2

2

1

2

2

2

1

2













WW

AAw

wQ

 

 The orientation   of the orbit is seen to be dependent on the small perturbation in the 
centrifugal force, mass reduction factor, oblateness and the PR-drag force due to the presence 



of their parameters.  

 

3.4  The Semi-axes 
 Using the equation (3.103) , the Jacobian constant in equation (3.66) , ),(2= yxC   

becomes  
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 where qp,  and r  are given in equations (3.104) , (3.105)  and (3.106)  respectively. 

The equation (3.108)  is rewritten to give a corresponding equations of an ellipse as  
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Using equations (3.100)  and (3.106) , knowing that 2=C , the equation of the length of 

the semi-major, a  and semi-minor b  axes, reduces to  
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 where p and q are given in equations (3.106)  and (3.108) . 

The value of the semi axes depends on the direction of motion, )( , the mass 

parameter, )( , centrifugal force, )( , mass reduction factor due to radiation pressure force, 

),( 21 ww , oblateness, ),( 21 AA , and the PR-drag force, ),( 21 WW . This is due to the presence of 

the aforementioned parameters.  

4  Analysis and Discussion 
 

1  Effect Of Poynting-Robertson Drag And Oblateness On The 
Stability Of Restricted Three-Body Problem 

 This research work considered the effect of small perturbations in the coriolis and 
centrifugal on the stability of the RTBP, specifically when the primaries are considered to be 
oblate spheroid, radiating with PR-drag force.  

In order to achieve this, the effect of PR-drag on the stability of oblate, 
photo-gravitational RTBP was investigated first. The equations of motion of the infinitesimal 

body under the influence of mass reduction factor due to radiation ),( 21 ww , oblateness ( 21, AA

) and Poyting Robertson Drag ( 21,WW ) of both primaries were obtained and given by the 

equations (3.13)  to (3.17)  (i.e. the absence of small perturbations in the coriolis and 

centrifugal forces). The presence of these parameters in the equations, shows that its motion is 



affected by the perturbing factors.  

The coordinates, ),( yx   of the triangular libration point 
4L  and 5L  are given in 

equations (3.32)  and (3.33) . They are also seen to depend on the mass ratio,   and the 

aforementioned parameters. 

In the absence of the parameters 0)======( 212121 WWAAww  equations (3.32)  

and (3.33)  reduces to the classical RTBP (Szbehely, 1967). When both primaries are radiating 

and spherical ( 01 w , 02 w , 0==== 2121 WWAA ) the equations coincides with those of 

Kunitsyn and Perezhogin (1979) and others. when oblateness of both primaries are considered 

0)==0,0,0,==( 212121 WWAAww   the result agrees with those of Vidyakin (1974). When 

both primaries are radiating with PR effect in ( 0  00,==0,0, 212121  WandWAAww ) the 

equations are in agreement with those of Ragos and Zafiropoulos (1995).  

When the smaller primaries is oblate and the bigger primary is considered as radiating 

with PR effect ( 0=  00,0,=0,=0, 212121 WandWAAww  ) the result agrees with those of 

Kushvah and Ishwar (2006a,b). When the bigger primary is oblate and the smaller primary is 

radiating with PR effect ( 0  0=0,=0,0,0,= 212121  WandWAAww ) the equations (3.32) 

and (3.33 ) agrees with those of Singn and Amuda (2014). The variation in the value of 
coordinate points can be seen in the computation for the kruger-60 

0.99996)=0.99992,=48002.33,=0.3937,=( 21 qqcd  binary system shown in the Table 1 

below.  

Table 4.1: Effects of Radiation, Oblateness and PR-drag on the location of the triangular 
points for Kruger-60 Binary 

 Case  
1w  2w  1A  2A  1W  2W  x  y

Case (1)  0  0  0  0  0  0  0.1063  0.86603

Case (2)  0  0  0.01  0  0  0  0.1113  0.86314

Case (3)  0  0  0  0.02  0  0  0.0963  0.86025

Case (4)  0  0  0.01  0.02  0  0  0.1013  0.85737

Case (5) 0.00008 0  0  0  0  0  0.10623  0.86601

Case (6) 0  0.00004  0  0  0  0  0.10631  0.86602

Case (7) 0.00008 0.00004  0  0  0  0  0.10629  0.86600

Case (8) 0.00008 0.00004  0.01  0.02  0  0  0.10129  0.85734

Case (9) 0.00008 0.00004  0  0  91.01045 E  103.28067 E  0.10623  0.86600

Case (10) 0.00008 0  0  0.02  91.01045 E  0  0.09627  0.86024

Case (11) 0  0.00004  0.01  0  0  103.28067 E  0.11131  0.86313

Case (12) 0.00008 0.00004  0.01  0.02  91.01045 E  103.28067 E  0.10129  0.85734
 

 

 

This table shows that the coordinate of the triangular libration points deviate from the 
result of the classical case due to the presence of these perturbing factors. 

When 0==0,== 2121 AAww  and 0,== 21 WW  



then 1==0,= obba , )(1
4

27
=  d  and the roots of the characteristics equation 

(3.36)  obtained gives  
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This agrees with the result of Schuerman (1979). When 01 w , 0=2w , 0=1A , 02 A , 
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(Ishwar and Kushvah, 2006) 
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(Singh and Amuda, 2014) 
The roots of the characteristics equation (3.36)  corresponding to the variational 

equation (3.35)  was given by equations (3.52) , (3.54)  and (3.55)  where values of the 



coefficients of the characteristics equation, a , b , c  and d  are given in equations (3.46)  

to (3.49) . These equations all depend on the parameters of the PR-drag force and other 

perturbing factors.  

According to Murray (1994), the inequality in equation (3.60) , is the necessary 

condition for the stability of triangular libration points at 
4L  and 5L  . But by equation 

(3.48)  as 0  

 0).,(    0<
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21
3= 2121 
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
 WWWWc  

This contradicts the Murray’s condition for stability. So, due to oblateness, radiation pressure 
and PR-drag effects from both primaries the motion remains unstable in the linear sense.  

 

  



2  Effects of Coriolis and Centrifugal Forces on the Stability of 
Generalised Photo-gravitational Restricted Three-Body Problem 

 The effects of small perturbations in the coriolis and centrifugal forces on the stability 
of the triangular Libration points of the RTBP in the presence of oblateness, radiation and P-R 
drag effects was studied.  

The equations of motion in equations (3.62)  and (3.63)  which are modifications of 

those obtained in equations (3.13)  and (3.14)  are seen to possesses a force function 

(3.64)  which is dependent on the parameter   of the centrifugal force. The equation of the 

Zero Velocity Curve (ZVC) (3.66)  is a function of the force function in equation (3.64)  and 

consequently the value of the ZVC also depends on the parameter  .  

The equations (3.74)  and (3.75)  are the coordinates of the triangular libration 

points, ),(4 yxL   and ).,(5 yxL   They are seen to be influenced by the small perturbation in 

the centrifugal force due to the presence of the parameter  1)||,1=( =  . Furthermore, 

to appreciate the impact of the centrifugal force on the location of these points, the product of 
  with the small quantity parameters is considered, taking only the first order terms in  . 
This produces the equations (3.76) .  

In line with the work of Narayan and Shrivasta (2013) , Umar and Singh (2014) , Singh 

et al (2016)  a range of values for the parameters   are used in studying the effect of small 

perturbation in the centrifugal force on the location around the triangular libration points. 
Specifically for the binary system Kruger - 60 

0.99996)=0.99992,=48002.33,=0.3937,=( 21 qqcd  and 

0.9965)=0.9963,=299792458,=0.0967,=5856(0450,1 11 qqcdRXJ   with the aid of 

micro-soft Excel and Maple 18 Mathematical Software. The values obtained are given in the 
table below.  

  



Table 4.2: Effects of   on 4,5L  and on the Jacobi Constant, C  associated with the ZVCs 

that contain those point for kruger - 60.  

 

 

  px  *

px  py  *

py  
4

LC  

0.50  0.10129  0.10128  1.04979  1.04594  1.17436  

0.10  0.10129  0.10129  0.89583  0.89506  1.36673  

0.05  0.10129  0.10129  0.87659  0.87620  1.38593  

0.00  0.10129  0.10129  0.85734  0.85734  1.40428  

0.05  0.10129  0.10129  0.83810  0.83848  1.42185  

0.10  0.10129  0.10129  0.81885  0.82488  1.43872  

0.50  0.10129  0.10129  0.66489  0.66874  1.55635  
 

 

 

1.380065=    0.866025=    0.1063= ccc Cyx   (subscript c indicates that the coordinate 

evaluation for the classical case) 
 

Table 4.3: Effects of   on 4,5L  and on the Jacobi Constant, C  associated with the ZVCs 

that contain those point for 58560450,1RXJ .  

  px  *

px  py  *

py  
4

LC  

0.50  0.39718 0.39681  1.04904  1.04510  1.21060  

0.10  0.39718 0.39711  0.89508  0.89429  1.43331 

0.05  0.39718 0.39715  0.87583  0.87544  1.45631 

0.00  0.39718 0.39718  0.85659  0.85659  1.47846  

0.05  0.39718 0.39722  0.83734  0.83773  1.49985  

0.10  0.39718 0.39726  0.81810  0.81888  1.52052  

0.50  0.39718 0.39756  0.66414  0.67129  1.66886  
 

 

1.456325=    0.866025=   0.4033= cc Cyx   It is observed from the tables 2 and 3 that 

there is a significant change in the value of cx  and cy  (coordinate of the classical case of the 

system) due to the presence of all the perturbing factors. It is also seen that as   is increasing 
the values of the x  coordinate is not affected by it, but when x  is extended to 
accommodate more of   up to the first order product of   and other small quantities 

),,,,,( 212121 WWAAww , there is a significant increase in the value of x  as   is increasing. On 

the other-hand the values of y  is seen to be decreasing as   is increasing at the same rate. 

This can be seen in the figures below. 
 

 

Figure  3: Location of Triangular Libration points for Kruger-60 



 

 

 

Figure  4: Location of Triangular Libration points for RXJ0450, 1-5856 

 

The effect of small perturbation in the centrifugal force on the x  and y  coordinate 

of 
4L  can also be seen in the graph of   plotted against the coordinates of the triangular 

points below. 
 

 

Figure  5: Effect of   on the coordinate of Kruger-60 Binary system 

 

 

 

Figure  6: Effect of   the coordinate of RXJ0450, 1-5856 Binary system  

 

The equations in (3.77)  are the constant coefficients a , b , c  and d  of the 

characteristics equation (3.76)  with eigenvalue  , corresponding to variational equation of 

motion (3.75) . The values of these coefficients are obtained in equation (3.85)  and seen to 

be dependent on the the perturbing parameters.  

The Hurwitz’s determinants, D  were obtained for the characteristics equation (3.76)  

and the values of the 1,2,3,4)=(isD i
  have been computed for the binary systems: Kruger-60 

and RXJ0450,1-5856 in table 4 and table 5. below.  

  



Table 4.4: Effects of   and   on the isD  for kruger-60 binary system 

 

 

    
1D  

2D  3D  
4D  

0.50  1.00  094.01556 E  084.75343 E  162.52302  E

 
173.7479 E  

0.10  0.20  094.01556 E  081.70161 E  161.14183  E

 
161.62925  E

 

0.05  0.10  094.01556 E  081.32013 E  179.69183  E

 
161.57376  E

 

0.00  0.00  094.01556 E  099.38654 E  177.96534  E

 
161.45027  E

 

0.05  0.10  094.0156 E  095.57176 E  176.23886  E

 
161.25879  E

 

0.10  0.20  094.01556 E  091.75699 E  174.51237  E

 
179.99303  E

 

0.50  1.00  094.01556 E  082.87612  E

 
179.29952 E  163.52452 E  

 

 

 

 

Table 4.5: Effects of   and   on the iSD  for RXJ0450,1-5856 binary system 

 

 

    
1D  2D  3D  

4D  

0.50  1.00  113.37839 E  103.91579 E  201.42073  E

 
227.6498 E  

0.10  0.20  113.37839 E  101.34821 E  215.50928  E

 
212.87948  E

 

0.05  0.10  113.37839 E  101.02726 E  214.42203  E

 
212.62989  E

 

0.00  0.00  113.37839 E  117.06317 E  213.33478  E

 
212.22359  E

 

0.05  0.10  113.37839 E  113.85369 E  212.24753  E

 
211.66059  E

 

0.10  0.20  113.37839 E  126.44221 E  211.16028  E

 
229.40889  E

 

0.50  1.00  113.37839 E  102.50316  E

 
217.53771 E  201.04579 E  

 

 

 



It is observed that 
1D  is always positive for the two binary system. Due to the 

presence of the parameters of the small perturbations in the coriolis ( ) and centrifugal ( ) 
forces in the coefficients b and d of the characteristic equation of motion (3.78) , it is expected 

that the nature of the roots of the equation (3.78)  would be influenced by a change in the 

value of the perturbation. 
However, it is seen that an increase in the value of   brings about changes in the 

value of 
2D , that is, from positive to negative, 3D  from negative to positive and 

4D  from 

positive to negative and again to positive. Since the values of 3D  is always fluctuating no 

matter the strength of 1, =   then the iD ’s cannot be all positive in the chosen range 

which implies that the real part of the roots of the characteristics equation cannot be all 
negative. Therefore according to Routh and Hurwitz’s criteria for stability, the proposed system 
remains unstable. 

 

3  Effects of Perturbations on the Periodic Orbit of the 
Generalized Restricted Three-Body Problem. 

 The discriminant,   of the perturbed, generalized, photo-gravitational RTBP with 
PR-drag force was obtained in equation (3.87)  and was found to be dependent on the 

parameters  , , 12121 ,,,, WwwAA  and 2W  and when 
2

1
= , the discriminant, 0>  and it 

implies that the solution of the characteristics equation (3.78)  would consist of both real and 

complex conjugate roots. But when 0=  the discriminant vanishes. That is  

 0=  

and since the critical mass value, c  is expected to exist when 0= , then 0== c  

which implies that the critical mass value, c  does not exist in the interval 
2

1
0    for this 

particular system. 

The roots, 1,2,3,4=, ii  obtained in equation (3.94)  are seen to be affected by the 

small perturbations in the coriolis and centrifugal forces, oblateness, radiation pressure and the 
PR-drag force due to the presence of their parameters. The tables below shows the 
computation of the discriminant and roots of Kruger-60 and RXJ 0450, 1-5856 binary systems 
used as models to see the effects of small perturbations in the coriolis,   and centrifugal,   
forces on the RTBP under the influence of oblateness and radiation pressure force with 
PR-drag. 

 

Table 4.6: Effects of   and   on   and i , 1,2,3,4=i  for kruger - 60 

 

 

      1,3  2,4  

0.5  1 042.92373  E

 
740.11884581

 
IE 83.243040900942.25947699 

 



0.1  0.2  021.69031 E  IE 270.791718020942.38706872 

 
IE 81.508765240944.39484872 

 

0.05  0.1  021.86641 E  I81.06086735860.38580377 

 
I31.06086736060.38580378 

 

0  0  031.14764 E  I620.96201332770.65105655 

 
I1.962013329970.65105655 

 

0.05  0.1  032.10125 E  I380.85059937750.83481991 

 
I570.85059937950.83481991 

 

0.1  0.2  032.29849 E  I450.72102179770.98401088 

 
I570.72102179970.98401088 

 

0.5  1  051.97267 E  I270.8723400471.08895254 

 
I360.8723400491.08895254 

 
 

 

 

 

Table 4.7: Effects of   and   on   and i , 1,2,3,4=i  for RXJ 0450, 1-5856 

 

 

      1,3  2,4  

0.5  1 041.05611  E

 
1900.07154875

 
IE 53.243026241141.86152386 

 

0.1  0.2  023.41427 E  IE 600.438358921238.49180226 

 
IE 01.649224501162.53837522 

 

0.05  0.1  012.05885 E  IE 540.612074371182.02401144 

 
IE 11.259946411183.71320644 

 

0  0  012.87922 E  I670.81321033020.39403179 

 
I670.81321033020.39403179 

 

0.05  0.1  021.02985  I090.66731321710.64362793 

 
I090.66731321710.64362793 

 

0.1  0.2  017.82166 E  I340.47778416640.81989493 

 
I340.4777841660.81989493 

 

0.5  1  049.81527 E  430.40833055

 
02.88464316

 
 

 

 

The equation of the period of oscillation obtained in equation (3.95)  is a function of 

the mass parameter,  , the coefficients of the characteristics equation of motion, a  and c  

given in equation (3.85)  and not dependent on the parameters of perturbations in the 

coriolis ( ) and centrifugal )(   forces, mass reduction factors, ),( 21 ww  and the PR-drag 

force, ),( 21 WW  in the linear sense. 

The orientation of the orbit, )(  and the semi-axes, ),( ba   of the elliptic orbit 



obtained in equations (3.107)  and (3.109)  respectively are seen to be influenced by all the 

aforementioned perturbing factors due to the presence of their parameters.  

5  Summary, Conclusion and Recommendation 
 

1   Brief Introduction 
 In Space Dynamics, the study of Classical RTBP and its many generalizations have been 

of great interest to researchers over the years. This is due to the rise in the need for accuracy in 
determining astrometric positions, revealing peculiarities of components of motion and to draw 
conclusions on the stability of space vehicles to be launched. This has led to the necessity to 
take into account all possible physical properties (non-sphericity of the bodies, phase angle, 
surface area light, perturbing and drag forces) that affect the motion of particles in space.  

2  Summary and Conclusion 
 The effects of small perturbations in the coriolis and centrifugal forces on the stability 

of the libration points (precisely the triangular points) of the RTBP was considered when the 
primaries are taken to be both oblate spheroids, radiating with PR-drag effect. 

The equations of motion and the coordinates of the triangular libration points were 
obtained and their stability at these points was determined. The results obtained are given 
thus:   

    • The PR-drag force were seen to affect the equations of motion and libration 

points of the oblate photo-gravitational RTBP due to the presence of its parameters 1W , 2W  

in the equations. Also due to the nature of the value of the coefficient, c  in equation (3.48)  

which contradicts the condition necessary for stability by Murray (1994) shows that the motion 
of=1the infinitesimal body in the RTBP become unstable due to the Poynting-Robertson Drag 
effect from the primaries. 

 

    • The equations of motion obtained were perturbed further by introducing the 
parameters  )1=(    to the coriolis force and  )1=(    to the centrifugal force. Its 

libration points were found to be influenced by the centrifugal force only. The coefficients of 
the characteristics equation corresponding to the variational equations of motion were seen to 
depend on the perturbing parameters, therefore the roots are affected by them and hence the 
stability of the system. 

 

    • It was discovered that the critical mass value c  does not exist in the interval 

1/2<<0   for this particular system. The roots of the characteristics equation were 

determined and used to obtain the equation of the period of oscillation (T) which were not 
affected by the small perturbations in the coriolis and centrifugal forces and oblateness but on 
the PR-drag force. Furthermore, the orientation or direction of the orbit )(  was seen to be 

elliptic in nature and the semi-axes, (a’, b’) are found to be influenced by all the perturbing 
factors. 

 

    • The results obtained were verified by computing for the Kruger- 60  and 
58560450,1RXJ  binary system. It was observed that the x  coordinate is not affected by 



the change in value   of the centrifugal force while the values of the y  coordinate 

decreases with increase in   thereby affecting the isosceles triangle obtained from other 
generalization. These can be seen in the figures given.  

The values of the coefficients of the characteristics equation were computed and used 

to determine the Hurwitz’s determinants, sDi . According to Routh and Hurwitz criteria for 

stability, it was observed that the system remains unstable.  

 Therefore in line with existing research, results of various generalizations involving 
small perturbations in the centrifugal force, radiation pressure forces, oblateness of primaries, 
Poynting-Robertson drag and even with the stabilizing nature of the coriolis force, it has been 
shown that the aforementioned are destabilizing forces and that this work is a generalization of 
the classical case and the work of others. 

 

3  Contribution to Knowledge 
 This research work has answered the question on the stability of a small particle to be 

launched in the vicinity of oblate and radiating bodies, putting into consideration the 
Poynting-Robertson drag force and small perturbations in the coriolis and centrifugal forces. 

Furthermore, this work would serve as form of reference to achieving more interesting 
and vital results in the subject area, Space Dynamics and would be of great and added value to 
researchers in space science and aerospace agencies. 

 

4  Recommendation 
 Astrophysical evidence has revealed that the perturbing forces: oblateness, radiation 

pressure forces, PR-drag force, coriolis and centrifugal forces are all natural activities in our 
solar, extrasolar and stellar systems. A satellite (natural or artificial) is expected to navigate in 
the vicinity of the planets in our solar system in their stable orbits under the influence of these 
forces. Hence, our result provides information for Space/Astronomical Engineers to take into 
consideration, the destabilizing effects of all these small but significant perturbing forces when 
designing spacecraft that will navigate in the vicinity of the planets and binary stars. This work 
as a generalization of the classical case and the work of others is therefore recommended to 
serve as a form of reference to achieving more interesting and vital results in Space Dynamics 
and also an added value to researchers in space science and aerospace agencies. 

 

  



 
  References  
 

 

    AbdulRaheem, A. and Singh, J. (2006). Combined Effects of Perturbations 
Radiations and Oblateness on the Stability of Equilibrium Points in the Restricted Three-body 
Problem. Astronomical Journal, 131, 1880-1885.  

    Abouelmagd, E.I. (2012). Existence and Stability of Triangular Point in the 
Restricted Three-Body Problem with Numerical applications. Astrophysics and space science, 
342, 48-53.  

    Abouelmagd, E.I. Alhothuali, M.S., Guirao L.G. and Malaikah, H.M. (2015) . 

Periodic and Secular Solutions in the Restricted Three-Body Problem under the Effect of Zonal 
Harmonic Parameters. Applied Mathematics and Information Science, 9(4), 1659-1669.  

    Akere-Jaiyeola, S.B., Singh, J., Abdulraheem, A. and Braimah, J. (2015). On the 
Effects of Perturbation, Radiation and Triaxiality on the Stability of Libration Points in the 
Restricted Three-body Problem. IOSR: Journal of Mathematics, 11(1), 69-79.  

    Arenstorf, R. F. (1963). Periodic Solutions of the Restricted Three-Body Problem 
Representing Analytic Continuations of Keplerian Elliptic Motions. American Journal of 
Mathematics, 85, 27-45.  

    Arrendondo, J.A., Gui, J. and Stoica, C. (2012). On the Restricted Three-body 
Problem with Oblate Primaries. Astrophysics and Space Science, 341, 315 -322.  

    Barrar, R. B. (1965). Existence of Periodic Orbits of the Second Kind in the 
Restricted Problem of Three Bodies . Astronomical Journals, 70, 3-4.  

    Bhatnagar, K. B. and Hallan, P. P. (1979). Effects and Perturbations in the Coriolis 
and Centrifugal Forces on the Stability of Libration Points in the Restricted Problem. Celestial 
Mechanics, 18, 105-112.  

    Bhatnagar, K. B. and Khanna, M. L.(1999). Existence and Stability of Libration Points 
in the Restricted Three-Body Problem when the small Primary is triaxial Rigid Body and the 
Bigger one is an Oblate Spheroid. Indian Journal of Pure and Applied Mathematics, 30(7), 
721-733.  

    Chernikov, Y. A. (1970). The Photo-gravitational Restricted Three-body Problem. 
Soviet Astronomy Astrophysics, 14(1), 176 -181.  

    Classical Mechanics. (n.d.). Retrieved January 29, 2009, from  

https://en.wikiversity.org/wiki/PlanetPhysics  

    Colombo, G. D., Lautman and Shapiru I.I. (1966). The Earth’s Dust Belt: Fact or 
Fiction? 2 Gravitational Focusing and Jacobi Capture. Journal of Geophysics. Res., 71, 
5705-5717.  

    Das, M. K., Narang, P., Mahajan, S. and Yuasa, M. (2009). On Out of Plane 
Equilibrium Points in Photo-gravitational Restricted Three-body Problem. Journal of 
Astrophysical Astrophysics, 30, 177-185.  

    Duboshin, G. N. (1958). The Differential Equations of Translational - Rotational 
Motion of Mutually Attracting Rigid Bodies. Journal of Soviet Astronomy, 2, 239-250.  

    Duboshin, G.N. (1958). Celestial Mechanics. Analitical and Qualitative Methods. 



Nauka, Moscow.  

    Elipe, A. and Lara, M. (1997). Periodic Orbits in the Restricted Three Body Problem 
with Radiation Pressure. Astrophysics and Space Science Library, 223, 289-297.  

    Ishwar, B., and Kushvah, B.S. (2006). Linear Stability of Triangular Equilibrium 
Points in the generalized Photogravitational Restricted Three-body problem with 
Poynting-Robertson drag. Journal of Dynamical system, 4(1), 79-86.  

    Ishwar, B., and Singh, J. (1999). Stability of Triangular Points in generalized 
Photogravitational Restricted Three-body problem. Bulletin of Astronomical Society of India, 27, 
415 -424.  

    Jain, M., Chakraborty, S.B. and Abdullah (2013). Restricted Three-body Problem 
with Robertson Drag Effect. International Journal of Applied Mathematics and Mechanics, 
10(3), 32-44.  

    Jaiyeola, S.B, Abdulraheem, A. and Titiloye, E. O.(2016). Effects of 
Poynting-Robertson Drag and Oblateness on the Stability of Photogravitational Restricted 
Three-Body Problem. Advances in Astrphysics, 1(1), 36-46.  

    Khasan, S.N. (1996). Libration Solutions to the Photogravitaional Three-body 
Problem. Cosmic Research, 34(2), 146 -151  

    Kumar, V. and Choudhry, R.K. (1987). On the Stability of the Triangular Libration 
Points for the Photogravitaional Circular Restricted Problem of three bodies when both of the 
attracting bodies are well radiating. Celestial Mechanics, 40, 155-170  

    Kunitsyn, A.L. and Polyathara, E.N. (1995). The Restricted Photogravitational 
Three-body problem. Astronomical Astrophysics, 6, 283-293  

    Kunitsyn, A.L. and Perezhogin, A.A. (1978). On the Stability of Triangular Libration 
Points of the Photogravitational Restricted Circular Three-body problem Celestial Mechanics, 
18, 395-408.  

    Kunitsyn, A.L. (2000). Stability of Triangular Libration Point in the 
Photogravitational Three-body Problem. Journal of Applied Mathematics and Mechanics, 65 (5), 
757-760.  

    Kunitsyn, A.L. (2001). Stability of collinear Libration Point in the photogravitional 
Three-Body Problem.Journal of Applied Mathematics and Mechanics, 65(4), 703-706.  

    Kushvah, B.S. and Ishwar, B. (2004). Triangular equilibrium Points in the 
generalized Photo gravitational Restricted three-body Problem with Poynting-Robertson drag. 
Review Bull. Cal. Math. Soc., 12(1 & 2) 109-114.  

    Lhotka, C. and Celletti, A. (2014). The effect of Poynting-Robertson drag on the 
triangular Lagrangian points. ICARUS, 11, 39-86.  

    Lhotka, C., Celletti, A. and Gales, C. (2016). Poynting-Robertson drag and solar wind 
in the space problem. MNRAS, 10, 927-950.  

    Liou, D.C., Zook, H.A. and Jackson, A.A. (1995). Radiation Pressure Poynting 
Robertson drag and Solar wind drag in the Restricted Three-body. Icarus, 116, 186-201.  

    McCuskey, S.W. (1963). Introduction to Celestial Mechanics. Addition Wesley 
Publishing Company Inc. New York.  

    Mignard, F. (1982). Radiation Pressure and Dust Particle Dynamics. Icarus, 49, 
347-366  

    Murray, C.D. (1994). Dynamical Effect of Drag in the Circular Restricted Three-body 



Problem Location and Stability of Lagrangian Equilibrium Points. Icarus, 112, 465-484.  

    Narayan, A. and Shrivastava, A. (2013). Pulsating Different Curves of Zero Velocity 
Around Triangular Equilibrium Points in Elliptical Restricted Three-Body Problem. Journal of 
Mathematics, 936, 59-67.  

    National Space Research and Development Agency. (n.d.). Retrieved January 22, 
2017 from https://en.m. wikipedia.org.  

    Planetary Orbit. (n.d.). Retrieved October 4, 2015 from  

https://en.wikipedia.org/wiki/Orbit 

 

    Poincar´e, H. (1892) Les Methods Nouvell’dela Mecarique. Celestial Mechanics, 13, 
AIP, New York.  

    Poynting, J.H. (1903). Radiation in the Solar System: Its Effect on Temperature and 
its Pressure on Small Bodies. MNRAS, 64, A1.  

    Pushparaj, N. and Sharma, R. K. (2017). Interior Resonance Periodic Orbits in 
Photogravitational Restricted Three-body Problem. Advances in Astrophysics, 2(1), 25-33.  

    Radzievskii, V.V. (1950). The Restricted Problem of Three-bodies Taking Account of 
Light Pressure. Astronomical Journal, 27, 250-256  

    Ragos, O.and Zafiropoulos, F.A.(1995). A Numerical Study of the Influence of the 
Poynting Robertson Effect on the Equilibrium Points of the Photogravitational Restricted 
Three-body problem Coplanar case. Astronomical Astrophysics, 300, 568-578.  

    Raj, M. J. and Ishwar, B. (2017). Diagonalization of Hamiltonian in the 
Photogravitational Restricted Three Body Problem with Poynting-Robertson Drag. International 
Journal of Advanced Astronomy, 5(2), 79-82.  

    Robertson, H.P. (1937). Dynamical Effect of Radiation in the Solar System. MNRAS, 
97, 423-437.  

    Schuerman, D.W. (1980). The Restricted Three-body Problem Including Radiation 
Pressure. Astrophyics Journal, 238(1), 337-342.  

    Roy, A.E. (1978). Orbital Motion, Adam Hilger LTD, Bristol  

    Sengupta, P. and Singla, P. (2002). An Analysis of Stability in the Restricted 
Three-body Problem. MEEN 689 project.  

    Shankaran, Sharma, J.P., Ishwar, B. (2011). Equilibrium Points in the Generalized 
Photogravitational Non-Planar Restricted Three Body Problem. International Journal of 
Engineering Science and Technology, 3(2), 63-67.  

    Sharma, R.K. (1981). Periodic Orbits of the Second Kind in the Restricted 
Three-Body Problem when the more Massive is an Oblate Spheroid Astrophysics and Space 
Science, 76, 255-258.  

    Sharma, R.K. (1982). On Linear Stability of Triangular Libration Points of the 
Photo-gravitational Restricted Three-Body Problem when the Massive Primary is an Oblate 
Spheroid. Sun and Planetary System, 435-436.  

    Sharma, R.K. (1987). The Linear Stability of Libration Points of the 
Photogravitational Restricted Three-Body Problem when the Smaller Primary is an Oblate 
Spheroid. Astrophysics and Space Science, 135, 271-281.  

    Sharma, R.K. and Subbarao, P.V. (1976). Stationary Solutions and Their 
Characteristics Exponents in the Restricted Three-body Problem when the more Massive 



Primary is an Oblate Spheroid. Celestial Mechanics, 13, 137-149.  

    Sharma, R.K. and Subbarao, P.V. (1979). Effect of Oblateness on Triangular 
Solutions at Critical Mass. Astrophysics Space Science, 60, 247-250.  

    Sharma, R.K. and Subbarao, P.V. (1986). On Finite Periodic Orbits around the 
Equilateral Solutions of the Planar Restricted Three-Body Problem. Space Dynamics and 
Celestial Mechanics, 71-85.  

    Sharma, R.K., Taqvi, Z.A. and Bhatnagar K.B. (2001a). Existence and Stability of 
Libration Points in the Restricted Three-Body Problem when the Primaries are Triaxial Rigid 
Bodies. Celestial Mechanics and Dynamical Astronomy, 79, 119-133.  

    Sharma, R.K, Taqvi, Z.A. and Bhatnagar, K.B. (2001b). Existence and Stability of 
Libration Points in the Restricted Three-Body Problem when the Primaries are Triaxial Rigid 
Bodies and Source5 of Radiations. Indian Journal of Pure and Applied Mathematics, 32(7), 
981-994.  

    Simmons, J.F.L., Mc Donald, A.J.C., Brown, J. C. (1985). The restricted 3-body 
problem with radiation pressure.Celestial Mechanics, 35(2), 145-187.  

    Singh, J. (2009). Effect of Perturbations on the Nonlinear Stability of Triangular 
Point in the restricted Three-Body Problem with Variable mass.Astrophysics and Space science, 
321, 127-135.  

    Singh, J. (2011). Combined Effect of Perturbations, Radiation and Oblateness on 
the Nonlinear Stability of Triangular Point in the restricted Three-Body Problem.Astrophysics 
and Space science, 332 (2), 331-339.  

    Singh, J. and Aminu, A. (2014). Instability of Triangular Libration Points in the 
Perturbed Photogravitational R3BP with Poynting-Robertson Drag. Astrophysics and Space 
science, 351, 473-482.  

    Singh, J. and Amuda, T.O. (2014). Poynting-Robertson Drag and Oblateness Effects 
on Motion around the Triangular Equilibrium Points in the Photogravitational 
R3BP.International Journal of Astronomy, Astrophysics and Space science, 350, 119-126.  

    Singh, J. and Haruna, S. (2014). Periodic Orbits around the Triangular Points in the 
Restricted Problem of Three Oblate Bodies. American Journal of Astronomy and Astrophysics, 2, 
22-26.  

    Singh, J. and Ishwar, B. (1984). Effect of Perturbations on the Location of 
Equilibrium Points in the Restricted Problem of Three Bodies with Variable Mass. Celestial 
Mechanics, 32 (4), 297-305.  

    Singh, J. and Omale, A.J. (2015). Effects of perturbations in Coriolis and centrifugal 
forces on the locations and stability of libration points in Robe’s circular restricted three-body 
problem under oblate-triaxial primaries.Advances in Space Research, 55(1), 297-302.  

    Singh, J., Taura, J., Joel, J. (2014).Stability of Equilibrium Points in a Circular 
Restricted Three-body Problem with Oblate Bodies Enclosed by a Circular Cluster of Material 
Points. Astrophysics &  Space Science, 349, 681-697.  

    Singh, J. and Umar, A. (2012). Motion in the Photogravitational Elliptic Restricted 
Three Body Problem under an Oblate Primary.The Astronomical Journal, 143(5), 109-121.  

    Singh, J. and Umar, A. (2013). Collinear Equilibrium Points in the R3BP with 
Oblateness and Radiation. Advances in Space Research, 52, 1489-1496.  

    Singh, J. and Umar, A. (2014). The Collinear Libration Points in the Elliptic R3BP 



with a Triaxial Primary and Oblate Secondary. International Journal of Astronomy and 
Astrophysics, 4, 391-398.  

    Singh, N., Narayan, A. and Ishwar, B. (2013). Trajectories of the Infinitesimal Mass 
around the Triangular Equilibrium Points in the Elliptical Restricted Three Body Problem under 
Oblate and Radiating Primaries for the Binary Systems. International Journal of Advanced 
Astronomy 3(2), 107-116.  

    Subbaorao, P.V. and Sharma, R.K. (1975). A note on the stability of Triangular 
Points of the Equilibrium in the Restricted Three Body Problem. Astronomical Astrophysics , 43, 
381.  

    Szebehely, V. (1967a). Theory of Orbits. Academic Press, New York, 242-265.  

    Szebehely, V. (1967b). Stability of the point of Equilibrium in the Restricted 
Problem. Astronomical Journal, vol. 72(1), 7-9.  

    Tsirogiannis, G.A., Doukos, C. N. and Perdios, E.A. (2006). Computation of the 
Liapunov Orbits in the Photogravitational RTBP with Oblateness. Astrophysics and Space 
Science, 305, 389-398.  

    Vidyakin, V.V. (1974). A Plane Circular Limited Task Pertaining to Three Spheroids. 
Astronomical Journal, 51(5), 1087-1094.  

    Wintner, A. (1941). The Analytical Foundations of Celestial Mechanics. Princeton 
University Press, 372-373.  

    Zoto, E.E. (2015) How does the Oblateness Coefficient Influence the Nature of 
Orbits in the Restricted Three-Body Problem?. Astrophysics and Space Science. 35, 508-527.  

 


	Certification
	Dedication
	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	1  General Introduction
	1  Background to the Study
	2   Statement of the Problem
	3  Aim and Objectives of the Research
	4  Significance of the Study
	5  Scope of the Study
	6  Research Methodology
	7  Definition of Terms
	8  Organization of the Thesis

	2  Literature Review
	1  Introduction
	2  Classical Case
	3  Effect of Radiation Pressure
	4  Effect of Oblateness
	5  Effects of Oblateness and Radiation Pressure
	6  Effect of the Poynting-Robertson Drag
	7  Effects of Oblateness and Poynting-Robertson Drag
	8  Effects the Coriolis and Centrifugal Forces
	9  Periodic Orbit

	3  Methodology and Results
	1  Effect Of Poynting-Robertson Drag And Oblateness On The Stability Of Restricted Three-Body Problem
	1.1  The Equations of Motion
	1.2  The Jacobi Integral
	1.3  Location of the Triangular Libration Points
	1.4  Stability of the Triangular Points

	2  Effects of Coriolis and Centrifugal Forces on the Stability of Generalised Photo-gravitational Restricted Three-Body Problem
	2.1  The Equations of Motion
	2.2  The Jacobi Integral
	2.3  Location of The Triangular Libration Points
	2.4  Stability of the Triangular Libration Points

	3  Effects of Perturbations on the Periodic Orbit of the Generalized Restricted Three-Body Problem
	3.1   The Critical Mass
	3.2  The Period of Motion
	3.3  The Orientation
	3.4  The Semi-axes


	4  Analysis and Discussion
	1  Effect Of Poynting-Robertson Drag And Oblateness On The Stability Of Restricted Three-Body Problem
	2  Effects of Coriolis and Centrifugal Forces on the Stability of Generalised Photo-gravitational Restricted Three-Body Problem
	3  Effects of Perturbations on the Periodic Orbit of the Generalized Restricted Three-Body Problem.

	5  Summary, Conclusion and Recommendation
	1   Brief Introduction
	2  Summary and Conclusion
	3  Contribution to Knowledge
	4  Recommendation
	References


