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ABSTRACT: The study investigates asymptotic 

classification of high dimensional data by adopting 

Gaussian Process, five different kernels(covariance 

functions) were employed and compared to showcase the 

outperformed kernel asymptotically.  Log marginal 

likelihood, Accuracy and log loss were the measurement 

criteria adopted to measure classification performances. 

The study therefore observed that the classification 

performed well asymptotically and found out that 

Gaussian Process Maximum Likelihood(GPML) had 

overall best model improvement asymptotically and 

across the covariance structures. K3 and K4 had the best 

accuracy in classification paradigm at the lower sample 

sizes but GPML and learned kernel had best model 

accuracy as the sample sizes tend to large sizes. 

 

KEYWORDS: Bayesian, Kernels, Classification and 

Gaussian Process. 

 

1. INTRODUCTION 

 

Gaussian processes attempt to use mean and 

covariance function in lieu of mean and covariance 

used in Gaussian distribution. Though support vector 

machine is a celebrated classifier (SVM), it is not 

specifically designed to select features relevant to 

the predictor. In genetic research with thirty-five 

patients, if each patient has 178000 genes out of 

which only 32 genes may be relevant to the specific 

ailment that those patients are suffering from. The 

SVM cannot in anyway select those genes for 

classification since it does not have automatic 

relevance detection (ARD) which had been built 

specifically into Bayesian Gaussian processes. In 

network intrusion, there is need to have relevant 

information for the network defense. Bayesian 

learning algorithm is built with Automatic Relevant 

Determination that is able to predict the posterior 

probability ([Olo17]).  

Gaussian processes are the prior distribution for 

regression and classification models where they are 

not limited to only simple parametric form. It is 

affirmed that Gaussian process had variety of 

covariance function with which it can be chosen 

from for different degree of smoothness. In this 

study four different classes of kernels are adopted. 

GP proved to be the easiest way for classification 

though in a Bayesian paradigm where there is need 

to integrate over posterior density for the 

hyperparameter of the covariance function 

([Rad98]).  

Yi et al ([YSC11]) claimed that GP classification is 

best fit high dimensional covariates compared with 

other non-parametric approaches that can only 

model one to two dimensional covariates. GP has 

Automatic Relevance Determination (ARD)    which 

takes care of the irrelevant features by removing 

them for the model whenever the covariance 

structure is irrelevant to the features input. They 

proposed penalized regression approach to the 

Gaussian process regression model where they 

opined that dealing with high dimensional data often 

resulted in large variances of parameter estimation 

and high predictive errors.  Shi et al ([SMT03]) 

examined Bayesian regression and classification by 

mixing Gaussian Process, their study concluded that 

Bayesian approach leads to robust models as 

compared with optimization approach.  

Kemmler et al ([K+13]) considered homoscedastic 

Gaussian noise in their experiment of one-class 

classification Gaussian process and concluded that 

the Gaussian process based measures is suitable for 

regression and classification of novelty detection 

problems. 

In Bayesian classification paradigm, Gaussian prior 

is adopted since the marginal and conditional 

posteriors are normal, this is advantageous over 

other distribution ([Fon17]). The Gaussian process 

can be regarded as distribution over function and is 

fully specified as                      . Both 

the mean and covariance function of the GP can be 

expressed as       ;  

               
  

 
        . The GP 

involves the covariance function and its 

hyperparameter. There will be no need to adopt 

complicated mean function ([Fon17]). 

There are fundamental task in statistics which 

comprises estimation, classification, selection and 

prediction with the ex ante belief (prior) combined 

with likelihood which lead to posterior density in a 
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Bayesian treatment. Williams and Rasmussen 

([WR86]) claimed that GP prior application over 

function outperformed other state of the art method 

of classification.  Shi et al ([SMT03]) claimed that 

Bayesian learning using GP priors elicit knowledge 

from covariance based kernel parameter with ex ante 

information (prior belief) that yield posterior density 

with respect to training datasets.  Kaiguang et al 

([KPX00]) compared GPC model with k-nearest 

neighbor and support vector machine then concluded 

that  GPC outperformed KNN and SVM thus 

yielded classification accuracy.  

By and large, most of the renown authors working 

on GP had not examined asymptotic behaviour both 

at lower and high dimensional data subject to some 

redundancy, this is the gap  this study is try to fill. 

Kemmler ([K+13]) claimed that machine learning 

conjugated with Gaussian prior gave room for the 

formulation of kernel based learning algorithm in a 

Bayesian paradigm. They derived one-class 

classification approach which is based on kernel 

based algorithm of Bayesian framework. They 

claimed that their one class classification approach 

outperformed the well-known support vector data 

description, this may be due to the presence of 

Automatic Relevance Determination (ARD) which 

is embedded in Gaussian process. In pattern 

recognition, it is main goal is to classifying the data 

in to c regions with the decision boundaries as the 

boundaries between the regions.  It has been opined 

in the literature that the optimum classification is 

based on the use of posterior probability of class 

membership         ([AS06]). The supervised 

learning algorithm usually predict outcomes(y) 

given a new set of predictor(X) - testing datasets 

which is totally different from the training datasets 

D that is used to fit the model ([Fon17]). In lieu of 

the above scenario, Gaussian Process adopted 

posterior predictive distribution which is 

probabilistic with mean and covariance functions. 

 

2. METHODOLOGY 

 

Let the input pattern x be assigned to one of C 

classes         . Probabilistic classification is 

adopted in the study where test predictive is of the 

form of class probability rather than guessing of the 

class label. Let        be the joint probability where 

y denotes the class label. The generative 

approach(sampling paradigm)  models the class-

conditional distribution        for            

with the prior probability for each class 

 

       
          

             
 
   

                                    (2.1) 

 

Discriminative approach (diagnostic approach)  

models       . Due to hard problem that usually 

resulted from the density estimation of the class 

conditional distribution, the generative approach 

may be chosen. It could be established that 

discriminative approach can model directly but 

failed in an attempt to proffer solution to overfitting 

and hard problems of Rasmussen and Williams 

([RW06]) 

 

       
          

             
 
   

                                    (2.2) 

 

The case of multi-class GP classification models is 

observed where t=-1, 0 or 1 to label three distinctive 

classes of latent target variable; often denoted by 

  
  
 
 

    . The input vector of n-dimensional features 

is denoted by x-covariates as               .The 

feature variables    were generated by uniform 

distribution with 25 redundant variables. 

Given a set of training data                

1,.., ; =0,1,2 with input  ∗ dimension and   target 

value, with a fixed hyperparameter. In GP 

classification there are possibility of selecting 

covariance prior from sets of covariance available.  

 

                    
 

 
     

     
   

  ( )2+ 1                                                       (2.3) 

 

where                   as the 

hyperparameters. 

For multi class where target variable has 

characteristic of three or more categories form the 

set   [0,1,…,k] . The k latent variable    is defined as  

 

                   
         

          
 
   

               (2.4)    

 

where           Gaussian process. 

The class of a large training set is denoted as    with 

a different value of features and the class conditional 

probability is expressed as          for feature 

vector x. the Bayes theorem based on one 

classification is  

 

        
            

    
.               (2.5)  

 

Thus         is the likelihood( class conditional 

probability) which is expressed with Gaussian 

Distribution(this uses mean and covariance),       
is the prior which is evaluated with Gaussian Prior 

(Process- it uses mean and covariance functions) 

while      is the evidence that is set as unity. The 

study therefore measures the feature, obtain the 
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posterior probability         for each of the classes 

and thereafter select the one with the larger 

posterior. 

Under the high dimensional features, the Gaussian 

Distribution is 

 

           
 

     
 

                   ∗             (2.6) 

 

Then the class –conditional probability is 

 

            
 

                   ∗           (2.7) 

 

The expression                  can be 

regarded as mehalonobis distance as similar to 

          .  

Let        
                  where 

        
            be the regressors or features 

and e is the disturbance term with zero mean and 

covariance function. Considering the expectation: 

 

                                                         (2.8) 

                          
                   (2.9) 

 

thus         
           by adopting the 

Gaussian Process         and the covariance 

function. 

This is obtainable after the model had been fitted as  

 

   ∗      ∗      ∗  ∗     ∗  ∗            (2.10)    

 

Thus posterior mean is obtained as  

 

 ∗  ∗     ∗                               (2.11)                  

   ∗  ∗      ∗           ∗             
 2 −1  ∗,                                                   (2.12) 

 

The covariance function is expressed as    ∗     
  

          adopting the single feature vector xi 

with          we have       
        

        . 

Thus the study imposed redundancy in the data 

generation process. This is therefore affected the 

covariance function thereby corrupting the 

variances, we have        
        

          

where       . 

Exponential Squared Kernel: this is the setting of the 

     element of the covariance matrix for the 

univariate feature vector:              

       
 

          
 
 . The prior indicates that 

   and    are less correlated with reference to the 

distance between     and    . 

Linear kernel let x and y be on the      basis 

function such that                         
The target vector is drawn from multinomial 

distribution of the set         classes and the feature 

drawn from uniform distribution that is   

contaminated with some redundant input, it should 

be noted that Bayesian classification with Gaussian 

process has Automatic Relevance Detection (ARD) 

that can identify the relevant input for classification 

using the transfer function of multinomial logistic 

function. We define the multi-class problem as 

                        
         

           
 
   

  with the 

hyperparameter  v assigned with Gaussian priors as  

         .  
The mean function is attributed with   while the   

implies covariance function is of the various Kernels 

such as 

 

                  
 

 
            

  
     

    
                                                                    (2.13) 

 

  is the jitter that is added to improve  the efficiency 

of the sample ([SMT03]).  

Classification Problems: 

 
 

3. RESULTS 

 

Gaussian prior conjugated with likelihood choosing 

different covariance structure, five different 

covariance functions were adopted out of which two 

were combination of four covariance function. 1000 

features (high dimensional data) with the sample 

sizes: 26; 54; 100; 200; 500 and 1000, 1000 features 

were generated and infused with multicollinearity, 

the study specified 20 redundant features with three 

clases of dependent variables, 2 classes per cluster. 

We used K1 to capture a long term, smooth rising 

trend with RBF kernel with a large length-scale 

enforces the component to be smooth. K2 was used 

to capture a seasonal component of periodic 

ExpSineSquared kernel with a fixed periodicity of 1 

year. The length-scale of this periodic component, 

controlling its smoothness, is a free parameter.  K3 

was adopted to captured smaller, medium term 

irregularities of RationalQuadratic kernel 

component, those length scale and alpha parameter, 
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which determines the diffuseness of the length-

scales, are to be determined whereas K4 captured a 

“noise” term, consisting of an RBF kernel 

contribution of the correlated noise components such 

as local weather phenomena, and a WhiteKernel 

contribution for the white noise.   We therefore sum 

up the four covariance functions with different 

parameters to derive Gaussian process maximum 

likelihood(GPML) and learned kernels. 

  
Table 3.1. The asymptotic Gaussian Process 

classification using GPML covariance function for 

high dimension data 

 Sample  

size 

LML Accuracy Log-loss 

 26 -18.463 0.167 1.111 

GPML 54 -37.292 0.455 1.086 

 100 -68.243 0.7 1.056 

 200 -125.489 0.4 1.081 

 500 -306.332 0.46   1.058 

 1000 -603.144 0.52 1.032 

 

Table 3.1 showed the asymptotic classification of 

high dimensional data with GPML kernel. It was 

observed that as the sample size increases from 26 to 

1000 the model improved with decrease in negative 

log likelihood from -18.46 to -603.14, thus obeyed 

law of large number. The study observed the 

accuracy and precision of the classification as the 

sample as the sample size increases from 26 to 100 

with increased in accuracy from 0.17 to 0.7 at 

sample size 100 but it upturned when the sample 

size increased to 200, the study revealed that the 

accuracy got increased as the sample size increased 

from 200 up till 1000. The log loss improved 

strategically from sample sizes from 26 to 100 as it 

decreased from 1.11 to 1.06 but upturned as the 

sample size increased to 200, thereafter improved as 

the sample size increased from 200 up to 1000.  

 
Table 3.2. The asymptotic Gaussian Process 

classification using learn covariance function for high 

dimension data 

 Sample  

size 

LML Accuracy  Log-

loss 

 26 -17.421 0.167  

learned 54 -35.955 0.273 1.088 

 100 -66.055 0.75 1.057 

 200 -122.723 .4 1.078 

 500 -300.305 .51 1.053 

 1000 -583.579 .55 1.032 

 

Table 3.2 showed the asymptotic classification of 

high dimensional data with learned kernel. It was 

observed that as the sample size increases from 26 to 

1000 the model improved with decrease in negative 

log likelihood from -17.421 to -583.579, thus 

obeyed law of large number. The study observed in 

the accuracy and precision of the classification, as 

the sample size increases from 26 to 100, the 

accuracy increased from 0.167 to 0.75 but it 

upturned when the sample size increased to 200, the 

study revealed that the accuracy got increased as the 

sample size increased from 200 up till 1000. The log 

loss improved strategically from sample sizes 26 to 

100 as it decreased from 0 to 1.057 but upturned as 

the sample size increased to 200, thereafter 

improved as the sample size increased from 200 up 

to 1000 it decreases from 1.078 to 1.032.  

 
Table 3.3. The asymptotic Gaussian Process 

classification using GPML covariance function for 

high dimension data 

 Sample  

size 

LML Accuracy  Log-loss 

 26 -18.359 .167  

 54 -37.265 .455 1.086 

K1 100 -68.224 .7 1.086 

 200 -125.406 .375 1.081 

 500 -306.19 .44 1.058 

 1000 -603.933 .53 1.029 

 

Table 3.3 showed the asymptotic classification of 

high dimensional data with learned kernel. It was 

observed that as the sample size increases from 26 to 

1000 the model improved with decrease in negative 

log likelihood from -18.359 to -603.933, thus 

obeyed law of large number. The study observed in 

the accuracy and precision of the classification, as 

the sample size increases from 26 to 100, the 

accuracy increased from 0.17 to 0.7 but it upturned 

when the sample size increased to 200, the study 

revealed that the accuracy got increased as the 

sample size increased from 200 up till 1000. The log 

loss improved strategically from sample sizes 26 to 

1000 as it decreased from 1.086 to 1.029.  

 
Table 3.4. The asymptotic Gaussian Process 

classification using GPML covariance function for 

high dimension data 

 Sample  

size 

LML Accuracy  Log-loss 

 26 -13.873 0.333 1.099 

 54 -29.853 0.091 1.100 

K3 100 -55.483 0.300 1.098 

 200 -110.655 0.250 1.099 

 500 -274.736 0.320 1.098 

 1000 -544.358 0.415 1.097 

 

Table 3.4 showed the asymptotic classification of 

high dimensional data with GPML kernel. It was 

observed that as the sample size increases from 26 to 

1000 the model improved with decrease in negative 

log likelihood from -13.873 to -544.358, thus 
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obeyed law of large number. The study observed the 

accuracy and precision of the classification as the 

sample as the sample size increases from 26 to 54 

with decrease in accuracy from 0.33 to 0.091 at 

sample size increases to 100, it upturns with 

accuracy of 0.30, the study revealed that the 

accuracy got increased as the sample size increased 

from 200 up till 1000. The log loss when the sample 

size is 26 is started with improvement of 1.099 then 

later upturn when the sample size increases from 54 

to 100 then later upturned as the sample size 

increased to 200 up till 1000.  

 
Table 3.5. The asymptotic Gaussian Process 

classification using GPML covariance function for 

high dimension data 

 Sample  

size 

LML Accuracy  Log-loss 

 26 -13.864 .333  

 54 -29.808 .091 1.099 

K4 100 -55.457 .3 1.099 

 200 -110.915 .3 1.099 

 500 -277.287 .33 1.099 

 1000 -554.573 .33 1.099 

 

Table 3.5 showed the asymptotic classification of 

high dimensional data with GPML kernel. It was 

observed that as the sample size increases from 26 to 

1000 the model improved with decrease in negative 

log likelihood from -13.864 to -554.573, thus 

obeyed law of large number. The study observed the 

accuracy and precision of the classification as the 

sample as the sample size increases from 26 to 54 

with decreases in accuracy from 0.33 to 0.091. Later 

it upturn when the sample size increases to 100 

remains the same till sample size is 200 with 

increases in accuracy to 0.30. The study revealed 

that the accuracy got constant increased as the 

sample size increased from 500 to 1000. The log 

loss improved strategically from sample sizes 

increases from 26 to 1000 has a constant value of 

1.099 

 

4. COMPARISON OF THE 

KERNELS(COVARIANCE FUNCTIONS) 

 

In sample size 26, GPML has overall best model 

improvement with LML value of -18.463, with 

sample 54, GPML has the overall best model 

improvement with LML value of -37.292, as the 

sample size increases to 100, GPML also has overall 

best model improvement with LML of -68.243, for 

sample size 200 and 500 the GPML has overall best 

model improvement with LML value of -125.489 

and -306.332 respectively. Then as the sample size 

increases to 1000, the K1 has the overall best model 

improvement with LML value of -603.933. 

In another words In sample size 26,54,100,200 and 

500 GPML has overall best model improvement 

with LML value of -18.463, -37.292, -68.243, -

125.489 and -306.332 respectively. Then as the 

sample size increases to 1000, the “K1” has the 

overall best model improvement with LML value of 

-603.933. 

For accuracy, as the sample size is 26, “K3 and K4” 

model has the best accuracy of 0.333, when the 

sample increases to 54, ”GPML” model and “K1” 

model are the best accuracy with 0.455 accuracy 

value, as the sample size increases to 100, the best 

model is “learned” with accuracy value of 0.75, 

when sample sizes increase to 200 the best model 

are “GPML and learned” with accuracy value of 0.4, 

as the sample sizes increase to 500 and 1000 the best 

model is “learned” with accuracy values of 0.51 and 

0.55 respectively.  

For log loss, in sample size 54, the overall best log 

loss is GPML and K1 model with value of log loss 

of 1.086, in sample size 100 the overall best log loss 

is GPML model with a log loss value of 1.056, as 

the sample size increases to 200 and 500 the overall 

best log loss model is “learned” with log loss value 

of 1.078 and 1.053 respectively, as the sample size 

increases to 1000 the best log loss model is “K1” 

with a log loss value of 1.029. 

 

5. CONCLUSION  

 

The study modelled and classified high dimensional 

data using Gaussian process with varying covariance 

functions. The classification  found  that GPML had 

overall best model improvement asymptotically and 

across the covariance structures. K3 and K4 had the 

best accuracy in classification paradigm at the lower 

sample sizes but GPML and learned kernel had best 

model accuracy as the sample sizes tend to large 

scales. 
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Figure 4.1. The classification of the multiclass high dimensional data 

 

The charts above depicted the classification of the 

multiclass high dimensional data using Gaussian 

process of different kernels. 
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