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Abstract—This research demonstrates that the Transmuted 

Inverse Exponential distribution is more robust than the 

Inverse Exponential distribution. The comparison was made 

using two real life data sets and the performance of the 

competing models were rated based on their loglikelihood 

value and Akaike Information Criteria (AIC) value. The 

analysis was performed using R-software. In addition, some 

further statistical properties of the Transmuted Inverse 

Exponential distribution were established. 

 
Index Terms— Distribution, Inverse Exponential, R 

software, Transmutation 

 

I INTRODUCTION 

The Transmuted Inverse Exponential (TIE) distribution was 

obtained by [1] as one of the generalizations of the Inverse 

Exponential (IE) distribution. The TIE distribution was 

derived based on the contents of [2] who studied the 

quadratic rank transmutation map (QRTM). 

     Other generalized models that were proposed using the 

QRTM include; Transmuted Exponential distribution [3], 

Transmuted Weibull distribution [4], Transmuted Rayleigh 

distribution [5], Transmuted Lomax distribution [6], 

Transmuted Log-Logistic distribution [7], Transmuted 

Lindley distribution [8], Transmuted Exponentiated Frechet 

distribution [9], Transmuted Exponentiated Gamma 

distribution [10], Transmuted Inverse Rayleigh distribution 

[11], Transmuted Pareto distribution [12] and many more. 

     The probability density function (pdf) and the cumulative 

density function (cdf) of the TIE distribution with 

parameters   and   are given by; 

  2
exp 1 2 expf x

x x x

  
 

    
        

    
 (1) 

and; 
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respectively 

 

 

For 0x  , 0   and | | 1   

 

where   is a scale parameter and   is the transmuted 

parameter 

     Some possible plots for the pdf and hazard function of 

TIE distribution at various selected parameter values are 

shown in Figures 1 and 2: 

    It is obvious that the shape of the TIE distribution could 

be unimodal (depending on the value of the parameters). 

     This article intends to extend the work of [1] by 

providing some further properties of the TIE distribution and 

to demonstrate the usefulness of the model including its 

potential superiority over its sub-model. 

II SOME FURTHER PROPERTIES OF THE TRANSMUTED INVERSE 

EXPONENTIAL DISTRIBUTION 

Some properties like the moments, moment generating 

function, survival function, hazard function and quantile 

function can be found in [1] but further properties like the 

distribution of order statistics, odds function, reversed 

hazard function, including the estimation of model 

parameters shall be provided in this section. 

Order Statistics 

     The pdf of the ith order statistics for random samples 

1 2, ,..., nX X X  from a pdf  f x  and an associated cdf 

 F x  is given by; 

 
   

     
1

:
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                    (3) 

     Then, the pdf of the ith order statistics for the TIE 

distribution is as given in Equation (4) as; 
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Fig. 1: Plot for the PDF of TIE distribution (where a   and b  ) 

 

Fig. 2: Plot for the Hazard function of TIE distribution (where a   and b  ) 
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The distributions of the minimum and maximum order 

statistics for the TIE distribution are thereby given by; 
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and 
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Odds Function 

Odds function can be defined as: 

 
 

 

F x
O x

S x
               (7) 

 

Therefore, the odds function for the TIE distribution is: 
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  (8) 

For 0x  , 0   and | | 1   

 

Reversed Hazard Function 

Reversed hazard function is given by: 

 
 

 

f x
r x

F x
               (9) 

Therefore, the expression for the reversed hazard function of 

the TIE distribution is given by: 
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For 0x  , 0   and | | 1   

Estimation of Parameters 

The parameters of the TIE distribution can be estimated 

using the method of maximum likelihood as follows ; let 

1 2, ,...., nX X X  be a random sample of size ‘n’ from 

Equation (1), then the likelihood function is given by; 

 1 2 2
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f x x x
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                 (11) 

The log-likelihood function is given by; 
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The solution of 0
l







 and 0

l







 gives the maximum 

likelihood estimates of the parameters. 

     The solution cannot be obtained analytically but it can 

be solved numerically using available statistical software. 

 

III APPLICATIONS TO REAL LIFE DATA 

In this section, the TIE distribution is applied to two real life 

data. The models under consideration are the TIE 

distribution and the IE distribution. R software shall be used 

to perform the analysis and the R-code would be made 

available on request. The pdfs of the competing models are 

given in Table 1. 

 

Table 1: PDF of the competing models 

Distributions PDF 

Transmuted 

Inverse 

Exponential 
  2

exp 1 2 expf x
x x x

  
 

    
        

    
 

Inverse 

Exponential   2
expf x

x x

  
  

 
 

 

DATA I: The first data represents the waiting time (mins) of 

100 bank customers before service is being rendered. It has 

previously been used by [13]. The data is as follows; 

 

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 

3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 

4.9, 4.9, 5, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 

7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 

8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11, 11, 11.1, 11.2, 

11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13, 13.1, 13.3, 13.6, 13.7, 

13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2,, 18.4, 18.9, 19, 

19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27, 31.6, 33.1, 38.5 

The data is summarized in Table 2; 

 

Table 2: Summary of the data on waiting times (in mins.) of 

bank customers 

Min

. 

Max

. 

Mean Var. Skewness Kurtosis 

0.8 38.5 9.877 52.3741 1.4728 5.5403 

 

The performances of the distributions under study are given 

in Table 3; 

 

 

Table 3: Performance of the models with standard errors in 

parenthesis 

Models     Log-

Likelihood 

AIC 

Transmuted 

Inverse 

Exponential 

10.7924 

(0.9876) 

1.8755 

(0.1838) 

-323.3 650.5 

Inverse 

Exponential 

5.3476 

(0.5415) 

- -336.6 675.1 

 

DATA II: The second data represents the vinyl chloride 

data (in mg/l) that was obtained from clean upgradient 

monitoring wells. It has been previously used by [14] and 

[15]. The data is as follows; 
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5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8, 0.8, 0.4, 0.6, 0.9, 0.4, 

2, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1, 0.2, 0.1, 0.1, 1.8, 0.9, 2, 

4, 6.8, 1.2, 0.4, 0.2 

The data is summarized in Table 4; 

 

Table 4: Summary of the data on vinyl chloride 

Min. Max. Mean Variance Skewness Kurtosis 

0.100 8.000 1.879 3.8126 1.6037 5.005 

 

The performances of the distributions under study are given 

in Table 5; 

 

Table 5: Performance of the models with standard errors in 

parenthesis 

Models     Log-

Likelihoo

d 

AIC 

Transmuted 

Inverse 

Exponential 

0.4138 

(0.1089) 

-0.6301 

(0.3078) 

-57.9202 119.8 

Inverse 

Exponential 

0.5725 

(0.0982) 

- -59.1930 120.4 

 

     Remarks: The distribution that corresponds to the 

highest log-likelihood value or the lowest AIC value is 

considered to be the best. 

 

IV CONCLUSION 

The Transmuted Inverse Exponential distribution has been 

successfully extended to involve applications to real life 

data. The shape of the model could be unimodal (depending 

on the value of the parameters). In Tables 3 and 5, the TIE 

distribution has the highest log-likelihood value and it also 

has the lowest AIC value as compared to the Inverse 

Exponential distribution, this implies that the TIE 

distribution is more flexible than the IE distribution. In other 

words, one can confidently say the TIE distribution is an 

improvement over the IE distribution.  
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