
The Pacific Journal of Science and Technology –182–
http://www.akamaiuniversity.us/PJST.htm Volume 19. Number 1. May 2018 (Spring)

Derivation of Reliability Estimation Model for Metrically Reliable Software Product
Development

Maruf O. Alimi, Ph.D.1*; F.E. Usman-Hamza, Ph.D.1; I.O. Mustapha, M.Sc.1;

and B.S. Ogidan, M.Sc.2

1
Computer Science Unit, Department of Physical Sciences, Al-Hikmah University, Ilorin, Nigeria.

4
ICT Centre, Al-Hikmah University, Ilorin, Nigeria.

E-mail: moalimi@alhikmah.edu.ng
*

ABSTRACT

Flawless software with 100% functionality,
reliability, compatibility, and flexibility is not yet
available. Many researchers, software
developers, and software engineers have tried
their best, but yet are to produce a perfect
software system. This research attempts to derive
a model that can be used to make software more
reliable at the design and development stage.
Reliability formula was derived using existing
serial and parallel reliability formula as applied to
modular systems of software development. For
better error prevention than rework, functionality
profile of modules was suggested and was used
to calculate reliability with minimum acceptance
level for critical and non-critical systems. With
these reliability formulas, if fully implemented will
enhance the productivity and reliability of software
products.

 (Keywords: software, reliability, serial-module, parallel-

module, critical systems)

INTRODUCTION

Software metrics in software engineering serve as
a core standard of measuring or evaluating
software and quantitative way of assessing
parameters with estimators which should originally
be valid formulas. To have software reliability
metrics, there is a need to derive formulas for
estimation. Software reliability metrics compared
to hardware reliability have shown that software
component failures are often transient rather than
permanent since these failures are due to some
inputs and if the data or code is undamaged, the
system can often continue in operation after
failure has occurred.

The reliability of a system uses probability, in a
given period of time, that the system will correctly
deliver services as expected by the user
(Sommerville, 2004). Metrics are unit of measure
for the software reliability, which are used to
measure the reliability of software product. The
measurement of software can be used to plan the
time needed for development and testing before
product release (Kaur et al., 2013).

A reliable, trouble-free (fault tolerant) product
continues to satisfy customers for a long time
after development. In statistics, reliability refers
to the consistency of a measure. A measure is
said to have a high reliability if it produces
consistent results under consistent conditions
(Carlson, 2009). This shows that quality of a
software product also rely on the reliability of
such software.

Related Works

Gokhale et al., (2004) used an analytical
approach to architecture-based software
performance and reliability prediction. They
examined software application treated as a whole
in conventional system while components making
a whole may have effect on the software
performance and reliability. The model used
relates the failure intensity of a component to the
expected number of faults initially present in the
component and it is time–dependent.

Jung-Hua et al., (2004) also did their own on
reliability assessment and sensitivity analysis of
software reliability growth modelling based on
software module structure where they claim that
most of the parameters in software reliability

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –183–
http://www.akamaiuniversity.us/PJST.htm Volume 19. Number 1. May 2018 (Spring)

model are obtained from the failure data just like
usage profile system.

Wen-Li et al., (2005) developed architecture-
based software reliability model, while Marko et
al., (2011) based their own research on
component-based for reliability estimation,
prediction and measuring. The probability for a
failure state is calculated using the probability
vector.

Most of researchers didn't measure reliability
metrics using module functionality profile or a
combination of serial and parallel modules and
were unable to put critical system software into
thoughtfulness. In this research, the derived
formulas used considered functions expected of a
software module as very important to its reliability
while backward module considerations in serial
modules are also very important. The derived
formula can now be used for software reliability
during design stage and used to prove the
dependability especially in critical systems.

OBJECTIVE

Derivation of reliability formula for software
development, since no software is fully perfected,
is the major reason behind this research. Many
software developers are used to usage profiles for
the finding of software reliability while this
research shows that functionality profile at
software design level will be a better option for
critical systems or life-based and non-critical
systems. This is another way to prove how
reliable a software product is using software
module functionality profile to calculate the
product reliability metrics for its acceptance or
rejection.

METHODOLOGY

The existing reliability formula which have been in
existence for decades were used with simple
probability to calculate probability of module
functions, average value of a function applied to
where there are combinations of modules
functions, and reliability function which is being
substituted with results of the module functions. A
flowchart was developed to show the flow of steps
to follow in getting successful reliability value and
determine if it meets the acceptable standard or
not and determine either to reject or accept such
software product. A sample of real life software

was used to show metrically and analytically, how
it can be used to determine any software
reliability.

Serial and Parallel Modules

Development of software requires modules with
transition from one stage to the other. Often-
times, one module relies on another module
before its own execution. As stated by
Kitchenham et al. (1996), it is generally accepted
that more complex modules are more difficult to
understand and have a higher probability of
defects than less complex modules. Due to
these, one may likely have serial form of modules
whereby one module must finish its execution
before the other with parallel executions whereby
all the modules at a stage must have all their
results for the next input of another module.

Figure 1 is an example of combined serial and
parallel modules. The modules in the figure were
used to calculate the overall reliability of the
software using reliability formula that combined
both the serial and parallel reliability equations
after each module probability has been
calculated. The modules A, B, and H are serially
connected while modules D, C, and E formed first
parallel modules and modules F and G formed
the second parallel modules.

Figure 1: Model of Serial – Parallel Module

Combination.

Symbolic Model for the Serial and Parallel
Modules

Methods to develop the equation from analogue
models along with serial and parallel combination
will depend on the complexity of the software.
This is applicable where there are more modules
probabilities working together to give single
result. This is related to dependability of one
module on the other in which result of a module
is required in another before final output of the
software.

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –184–
http://www.akamaiuniversity.us/PJST.htm Volume 19. Number 1. May 2018 (Spring)

(i) Average value of a function: The concept of
the average value of a function is often useful.
This process suggests that we ought to get an
approximation to the average value of a
function f(x) (Mary, 1966). The average of f(x)
is approximately equal to:

)1(..
)(...)()(21

n

xfxfxf n

This indicates that after finding the probability
of every module or boxes, one can find the
final average of all functionality probability
values.

(ii) Simple Probability: Sometimes reliability
calculation is not possible without probability
as mentioned by some authors or researchers
(Irwin and John, 1965), (Wen-Li et al., 2005).
Mathematically or statistically, probability
calculation in case of this research goes thus;

)2.....(..............................
)(

)(
Pr

ft

sn

funtionsofnoTotal

funtionssuccessfulofNo


This formula was used to calculate each
module or box probability.

(iii) Reliability function: Reliability and life
testing applicability cut across all forms of
manufacturing of products especially software
that drive most of the current and modern
machines world-wide today. The task of
designing and supervising the manufacturing
of a product has been made increasingly
difficult by rapid strides in the sophistication of
modern products and the severity of the
environmental conditions under which they
must perform. Therefore, this research adopts
and adapts the existing reliability models.
Since software development consist of serial
and parallel modules, both approaches are
put into consideration for this research.

(a) Serial System: A series system is one in
which all components are so interrelated that
the entire system will fail if any one of its
components fails. A system of n components
connected in series is said to have probability
to function by the special rule of multiplication
for probabilities. The general formula is:

)3..(..
1

i

n

i
s RR





where Ri is the reliability of the ith component
and Rs, is the reliability of the series system.
This simple product law of reliabilities,

applicable to series systems vividly
demonstrates the effect of increased
complexity on reliability.

(b) Parallel System:A parallel system is one
that will fail if all of its components failed.
The parallel model derivation goes thus:

If Fi=1 - Ri ……………………..………… (4)

is the “unreliability” of the ith component,
then the special rule of multiplication for
probabilities was applied to obtain

)5.....(..
1

i

n

i
p FF





where Fp is the unreliability of the parallel
system, and

Rp=1-Fp ………..……………………………(6)

is the reliability of the parallel system.

For parallel systems we have a product law
of un-reliabilities analogous to the product
law of reliabilities for series systems. This
law in another way for reliability of a parallel
system is:

)7....(..).........1(1
1

i

n

i
p RR 



General Reliability Model (Combined both
Serial and Parallel)

Equations for all necessary metrics calculations
for the software reliability can now graduate to
higher level after combination of all boxes
modules considering those in series and parallel
using Equation 3 and Equation 7.

)8.........(..)1(1
11





















j

m

j
i

n

i
sp RRR

where Rsp =General and final reliability

Ri=Reliability for serial modules
Rj=Reliability for parallel modules

This is possible because of commutative law.
This can be combined as many as possible
depending on the number of series and parallel
modules of the software.

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –185–
http://www.akamaiuniversity.us/PJST.htm Volume 19. Number 1. May 2018 (Spring)

Flowchart for Reliability Determination

Pictorial steps to follow for development of
software using an Object Oriented Programming
Language is necessary, thus the flowchart to
show its flow and development along with
reliability value calculation, and rejection of non-
compliance with confidence level is as shown in
Figure 2.

The flowchart depicts options for user to continue
or quit immediately after starting in case the
operator decides not to continue. The users are
expected to list the system requirements and
experts are to give detail specifications or
functions for the software, module by module, if
not, return to where to specify the functions as
expected. Individual module reliability is expected
to be calculated followed by both serial and
parallel modules reliabilities. The combination of
both calculates the final and general reliability of
the software using reliability formulas. The result
is either accepted or rejected based on life-based
or non-life-based significant level of 99% and
95%, respectively.

Applicability

Model presentation and evaluation is necessary to
have clear understanding of the model using test
data. It can be used for system software,
application software or any other software that
makes quality its priority. The general reliability
model that combined all the modules can be
applied to real life software system development.
Some software are now used to experiment the
model. They are real life software developed in
some reliable and well known organisations and
federal institutions in Nigeria.

Software developed for Staff Multipurpose
Cooperative Society, Usmanu Danfodiyo
University Teaching Hospital, Sokoto was studied
to determine its reliability using the new model.
The modules obtained are home page, login,
menu with three parallel modules such as update
contribution and balances module, View and
Report module; View module has personal
information module in parallel with viewing
balances module.

Figure 2: Reliability Determination Flowchart.

Sample Software

Before exit message module we have warning
module (Figure 3) for each module reliability
value as calculated using new reliability formulas.

Figure 3: Module Reliability for Sample Software.

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –186–
http://www.akamaiuniversity.us/PJST.htm Volume 19. Number 1. May 2018 (Spring)

Each module probability has been calculated. The
reliability for the software, having the reliabilities in
Figure 3, has four modules in series and two
parallel with 3 and 2 modules, respectively. Since
it is commutative, the reliability can be calculated
using the following equation.

)9......(..............................)1(1)1(1
2

1

3

1

4

1





























i

i
i

i
i

i
sp RRRR

The final reliability calculation goes thus:

Let Parallel C, D, E be C’

Parallel F, and G be F’

The we have A,B, C’, F’ H and I

ThenC’=1-(1-0.85)

3
=1-0.15

3
=1-0.003375=0.997

F’=1 - (1 - 0.95)

2
 = 1 – 0.05

2
 = 1 - 0.0025=0.998

The original system, has the reliability:
Rsp=(0.99) (0.98) (0.997) (0.998) (0.98) (0.99)
=0.9366

Equivalent to 93.66% reliability

This is rejected because it is not up to 95% as
minimum reliability for non-life-based requirement.

RESULTS AND DISCUSSION

It is a known fact that the possibility to develop
flawless software and have 100% functionality,
reliability, compatibility, and flexibility is not yet
feasible. This can be reduced with the use of
combinations of different software development
techniques. The software functionality approach
used in this research has advantages such as,
satisfactory development of all functions expected
of the software derived from users’ requirements,
programmers, and all other stakeholders.

Functions that were not included at the
development stage can sometimes be discovered
through instinct and this may have important
consequences on such development. This
situation requires continuous software
maintenance for its correction, adaptation,
perfection, enhancement, and prevention of total
failure of the software.

Failure of software can be attributed to so many
parameters (e.g., hardware failure, virus attack,

fragmentations, Operating System (OS) platform,
compatibility, memory capacity, processor speed,
system upgrade (hardware/OS), and the like). All
of these may not be directly related to or have
adverse effect on the design stage of the
software but at the implementation stage.

Comparison

Many theoretical reliability model, lack practical
applicability and use of statistical values to proof
their implementation. This statement is supported
by Mark C. van Paul (1994) which says, “The
preoccupation with model building has resulted in
a large number of theoretical models which seem
to lack immediate appeal from a statistical point
of view and failed to reduce the gap between
statistical theory and applications in the area of
software reliability”.

In addition, Ritika Wasen (2012) added that
traditional software reliability estimation methods
depend on assumptions like statistical
distributions that are dubious and unrealistic. The
new model compared with other models
developed by other researchers, shows that most
of them used to calculate for error prevention,
fault detection and removal, measurements to
maximize reliability, specifically measures that
support the first two activities. Most of them are
based on time, usage profile and a lot of
assumptions.

The new models make use of expected functions
that are realistic of every module of software
during design and development and make sure
they are working perfectly before deployment.
The requirements and specifications given by the
users and those added by the developer or
development team determine the reliability of the
software product. The developed software that
can perform all those functions correctly and
optimally has already encapsulates the error
prevention, fault detection, and removal.

Carlo Copp (1996) added that software reliability
has relationship with the following failure;
Numerical Failure - bad result calculated,
Propagated Numerical Failure - bad result used
in other calculations, Control Flow Failure -
control flow of thread is diverted, Propagated
Control Flow Failure - bad control flow
propagates through code, Addressing Failure -
bad pointer or array index, and Synchronization
Failure - two pieces of code misunderstand each

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –187–
http://www.akamaiuniversity.us/PJST.htm Volume 19. Number 1. May 2018 (Spring)

other's state. Looking at these failures, serial
modules reliability calculation will take care of one
module relying on another along with parallel
modules for better flow of intra-communication
among modules with metric values to support and
proof their reliability.

CONCLUSION

Factors or indicators such as minimum processor
speed, memory capacity, hard disk space, and
OS are sometimes put into consideration during
design and development stage. In addition,
software evaluations require priori and posteriori
analyses to determine the actual problem of the
software and guide against unforeseen
circumstances. But these may not be able to
depict actual functions expected of the software,
therefore, software reliability determination during
design stage will be of immense benefit to all
forms of software product development as any
function expected of the software that cannot be
solved shows where rework or recoding will be
necessary and improve its reliability.

ACKNOWLEDGEMENTS

We are very grateful to all that contributed to the
success of this paper. The developers and users
of the software we used for implementation of the
new model are greatly acknowledged for their
support and valuable information given to us for
this research.

REFERENCES

1. Carlson, N.R. 2009. Psychology: The Science of

Behaviour, 4th Canadian Edition. Pearson:
Toronto, Canada. ISBN 978-0-205-64524-4.

2. Gokhale, S.S., E.W. Wong, J.R. Horgan, and K.S.
Trivedi. 2004. “An Analytical Approach to
Architecture-Based Software Performance and
Reliability Prediction”. Performance Evaluation, An
International Journal. Elsevier. 58:391-412.

3. Irwin, M. and J.E. Freund. 1965. Probability and

Statistics for Engineers. Prentice Hall, Inc.:
Englewood Cliffs, NJ. 5-12, 362-370.

4. Jung-Hua, L., H. Chin-Yu, C. Ing-Yi, K. Sy-Yen,
and R.L. Michael. 2004. “Reliability Assessment
and Sensitivity Analysis of Software Reliability
Growth Modelling Based on Software Module

Structure”. Journal of Systems and Software.
Elsevier. 76:3-13.

5. Kaur, M., S. Singh and M. Rakshit 2013. “A
Review of Various Metrics used in Software
Reliability”. International Journal of Computer
Science and Engineering Technology. 4(7) July.

6. Kitchenham, B. and Pfleeger, S.L. 1996. “Software

Quality: The Elusive Target”. IEEE Software. 13:1.

7. Kopp, C. 1996. System Reliability and Metrics of
Reliability. Peter Harding & Associates, Pty Ltd:
Canberra, Australia.

8. Marko, P., E. Antti, and O. Eila. 2011. “The
Reliability Estimation, Prediction and Measuring of
Component-Based Software”. The Journal of
Systems and Software. Elsevier. 84:1054-1070.

9. Mary, B.L. 1966. Mathematical Methods in the

Physical Sciences. John Wiley and Sons Inc.:
New York, NY. 673-679.

10. Sommerville, I. 2004. Software Engineering 7,
Seventh Edition, Pearson Addison Wesley:
London, UK. 217.

11. Wasen, R., P. Ahemed, and M.Q. Rafiq. 2012.
“New Paradigm for Software Reliability
Estimation”. IJCA. 44(14).

12. van Paul, M.C. 1994. “A General Introduction to

Software Reliability”. CWI Quarterly. 7(3).

13. Wen-Li, W., P. Dai, and C. Mei-Hwa. 2005.
“Architecture-Based Software Reliability
Modelling”. The Journal of Systems and Software.
Elsevier. 79:132-146.

ABOUT THE AUTHORS

Dr. Alimi Olasunkanmi Maruf, is a Senior
Lecturer in the Department of Physical Sciences,
Al-Hikmah University-Ilorin-Nigeria. He is a
member of Nigeria Computer Society; Computer
Professional Registration Council of Nigeria, and
Teachers Registration Council. He holds B.Sc.,
M.Sc. and Ph.D. in Computer Science from
Federal University of Agriculture Abeokuta and
Obafemi Awolowo University Ile-Ife, Nigeria
respectively. Currently he serves as the Director,
Centre for ICT and Distance Learning. His
research interest is in software engineering /
software development.

Dr. (Mrs.) Hamza-Usman is a Lecturer in the
Department of Computer Science, University of

http://www.akamaiuniversity.us/PJST.htm
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-205-64524-4

The Pacific Journal of Science and Technology –188–
http://www.akamaiuniversity.us/PJST.htm Volume 19. Number 1. May 2018 (Spring)

Ilorin. She holds a Ph.D. in Computer Science.
Her research interest is in software engineering.

Mr. Mustapha I.O. is a Lecturer in the
Department of Physical Sciences, Al-hikmah
University Ilorin. He holds Masters in Computer
Scoence. His research interest is in software
architecture.

Ogidan B. S. is the Coordinator ICT at ICT

Centre, Al-hikmah University Ilorin. He holds a
Masters in Computer Science. His research
interest is in software development.

SUGGESTED CITATION

Alimi, O.M., F.E. Usman-Hamza, I.O. Mustapha,
and B.S. Ogidan. 2018. “Derivation of Reliability
Estimation Model for Metrically Reliable Software
Product Development”. Pacific Journal of Science
and Technology. 19(1):182-188.

Pacific Journal of Science and Technology

http://www.akamaiuniversity.us/PJST.htm
http://www.akamaiuniversity.us/PJST.htm

