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-Abstract
m
This paper compares the error estimation of power series solution with
recursive Tau method for solving ordinary differential equations. From the
computational  -viewpoint, the power series using  zeros  of
Chebyshevpolunomial is effective, accurate and easy fo use.
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1.0 Introduction
This paper is concerned with the error estimated of ordinary differential equation of the form:

m

N, . '
Lyx)=3 [ 2B | y9(x)= fix" a<x<h ()
k=0 r=0

=0 =

- together with the associated conditions:

n—|
L*y(xy)=2 a1y (x4)= o, k= 1(1)m @
r=0

by seeking an approximate solution of the form.
n
yn(x)z Z a,x" ,r<+o
r=0

of y(x) which is the exact solution of the corresponding perturbed system

Ly,(x)=>"fx" + H,(x) )
r=0 i
L*y, (k) =,k =1(1)m - @)

where L is the linear differential operator, and Ry L P, N, ,r= O(l)m k= O(I)Nr, aand b are real constants,

'y(") denotes the derivatives of order 7 of y(x), and the perturbation term H, (x) in equation (3) is defined by:

: m+y—1 m+s—| n=m+i+l ( I)
— o n=m-+i+ r
fjn (x) - Z Ti+|j:a—rrr+f+] (x) - Z Tisl Z Cr X (5
i=0 i=0 i=0"

and C"is the coefficient of x” in the n—th degree chebyshev polynomial 7’ (x): that is,
r n

7, (x) = cos (n cos' {gxb_ié}] =Y Clolyr | ©)

—da r=0
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The7's are free parameters to be determined and s, the number of over determination of (1), is defined in [1-10]:
s =max {N,_ -r> 0|O 5 i m} ' (7

2.0 Review of Recursive formulation of the Tau approximant
In this scction, we review the recursive approximant [2, 4, 11, 12, 13] and canonical polynomial [14], by adding perturbation
terms to the right hand sides of (1). We have in [4]:

m+x—| n=ni+l
yalx Z fa )+ 2 ma 2, 6 () @
Assume (), (x) P =], F—O(l)(s—l) thcn. o |

m+x-1 n iln-l ) Z
CH—IMHI— 1) I“ ](]) — ) . (9)
i=0 i
Where q,.(x)——— 0, (x)—]’,_ and for the undetermined canonical polynomials (if any) assume P, =1, when equating the .
coefficient of Q, (x) to zero, otherwise £ =0 for r=0, 1,--',(.5'—1.) (that is cquation (9) is the coefficient of
undetermined canonical polynomials),

= 7 E,l\ i [i j!(f.-."_ N)P.r..l—k} L

Zk =0 k )Pkfm k=1 \_j=k |

(10)

x=l m )

k=0 \_j=0

and
1 s LI N |
Z’" !(” ‘) B . ( p ﬂ(i )P.r..i-kJ ek (x)
A s = J=k

(1)

m

- S5 atr)es )i

3.0  Error estimate for the recursive form (RF) -
The canonical polynomials were generated and generalized []4 19], and this was used in error estimation of the Tau method.

Adeniyi [16, 18] reported a polynomial estimate (e” (Wc)) E . (x) ol degree (n + 1) as:

ml -

n=ntl (- m+l) r
I n m * C
((3” (x))” _— E”“(x) ¢u m( ) n- m+1( ( )Z , (]2)

s C(n —m+l) C n— m||)

n=mtl

n=itil

where v, (x) is to ensure that [, | (t) satisfics some or all the homogenous conditions of €, (x)

Ie also reported that: .

L(E,,(x)=H,,(x)- H,(x) ' | (13)

where
” s n=m-+i-2 . i
[-InJrl (x) = Z Tisl Z CJ('”—”’.H."-) xl 4 (14)
i=0 r=0

After assuming that a transformation has been made such that @ =0, b =1, equation (12) becomes:
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. ¢” (x) Jtm-rl Cr('n—m 'I)xf"l'm
]L,nl (x)= ZJ&?(R_,“.”J- " .

n=mil

as an approximate to the crror - _

| e, (x)=y(x)-,(x) ’ (16)

iny, (x) obtained from the Tau approximation process [4, 5]. The parameter @, is to be determined along with Ff,.'s
parameters | 19] and the exact error (maximum error) is defined as:

£ =igd™ y Ll ﬂy(x)—y,,(x}} ' (17)

4.0 Error estimate for the power series form (PSK)
The error function (16), which satisfics the perturbed error problem

n+s-1 -
L(en (x)) e I{n (JC) = Z Tm~|-.\-—ri':rﬂn-l-r-|-i (JC) (18)
r=0

L¥*e,(a)=0
Satisfics the perturbed error problem [17, 18, 19]

©ms—I ms—1

L(G” (JC))"H = [.-[u (x) i }[H—i—l (x) = Z TIH'F.\"I‘?:I—HF il (JC) + Z ﬁMH .v—r'Y:r—:ﬁ-t-J--l-z (x) (19)
5 _r=0 r=0
L : L’” (a’)rnzl = O

~ where the extra B, r=12,...,ms parameters and @, are to be determined, using zeroes of chebyshev polynomial

together with the given conditions. A forward climination process is recommended for the solution of the resulting linear

system. The value of ¢, is then inserted into (15) and subsequently, we get the estimate:

((3" (x))n—l—[ | - C_'('fjr;'_i_

n=m+l

E, (x)=as™ x<b

(20)

5.0 Numerical Examples

In this section, we applied the presented method to some selected examples. The main objective here is to solve five

examples by power series using zeros of chebyshev polynomial and compare the results with method discussed in section 2.
All the approximant solution are subject to degree 5.
Example 4.1

¥"(x)+ y(x)=0, »(0)=1, y(0)=0,0< x <1
+ With analytical solution y(x)z cos(x)
Example 4.2

Ly(x)= 2(1+x) y'(x)+ y(x)=0, y(0)=1,0<x<1
with analytical solution y(x) = (I + x):{l
Example 4.3

I7(0)= /() ~ y(x)= 0, 5(0)=1

- with analytical solution y(x)= exp (%xﬂj "

Example 4.4 3

Y'(x) =)=y (x)+ ¥(x) =, #0)=2, y(0)=1,1"(0) = 0,0< x < 1[19]
with analytical solution y(x) = (2 - x) exp (x)

Example 4.5 :

»" (%)= 3601y" (x) + 3600p(x) = — 1 +1800x%, y(0)= »'(0)= ¥"(0)=y"(0)=1,0<x<1]16]
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with analytical solution y(x) = % exp (— x) (l + 2 exp (x) + exp (2x) + x? ex_p(x))

Table 4.1: Exact Error :
Method Example 4.1 Example 4.2 Example 4.3 Exainple 4.4 Example 4.5
($) ($) (&) ($) (&)~
RF 1.16 x 10 3.08x 10 2.07x 10* 1.70 x 1073 2.77x 103
PSF 1.16 x 10 1.16 x 10 2.07 x 10 1.70 x 10 2.77x 107
Table 4.2; Error Estimate (Maximum Error) .
Method Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5
RF 1.34 x 107 2.90 x 103 4.94 x 10 4.72 x 10™ 7.68 x 106
PSF 1.20 x 107 2.90 x 10 4.44 x 10 3.93 x 10 7.68 10°°

6.0 Conclusion

In this work, we have studied the power series approach using zeros of chebyshev polynomial to compute the error cstimatc

of ODEs. The error estimate obtained with the presented method are in good agreement with the recursive form, as it is

favourably compared and give accurate results.
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