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ABSTRACT 

Pearson’s X2 is re-examined within the context of small expected cell frequency (eij< 5), for the 
Pearson’s X2statistic to satisfy the asymptotic approximation to Chi-square distribution. This 
paper proposes scalar multiplier ‘ ’, > 0, such that   ≥ 5, where  is the smallest 

expected cell count in the contingency table under consideration. The product of the sample size 
‘n’ and ‘ ’ results in each cell count becoming  nij, which does not cause any change in the 
cell probabilities, .Thus the assumption of independence is thereby satisfied. This approach 

guarantees the safe application of Pearson’s X2 for test of independence under small expected 
cell counts with the degrees of freedom also multiplied by . 

  Keywords: Goodness-of-fit; chi-square; scalar multiplier; small expected cell frequency;
         independence hypothesis.

 

1. INTRODUCTION 

In many field of studies, such as medicine, social sciences, education, and so on, we come 
across categorical data for which a number of observations are cross-classified by some 
categorical variables that satisfy the assumption of independence.Consequently the 
hypothesis testing is made most frequently by the use of goodness-of-fit tests like the 

Pearson's X 2 , the likelihood ratio statistic, Y 2  and Freeman-Turkey statistic, T 2 . Slight 
variations in the data collection scheme usually permits the use of some other assumptions 
regarding the underlying distribution without changing the estimates of the expected cell 
counts (Birch,1963). 

    The most commonly used test statistic in goodness-of-fit tests is Pearson’s X 2  defined as  
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where n ij  are the observed frequencies and the e ij  are the corresponding frequencies 

expected in cell (i,j). Under the hypothesis of independence of row and column 

classifications, then the expected cell frequency (e
ij

) has an estimate given by  
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       where  

It is well known that when all the ije  are not small, the X 2  statistic is distributed approximately 

as chi-square with (r-1)(c-1) degrees of freedom . In cases where not all expected cell counts are 
large enough to meet the assumption, the traditional practice adopted in order to meet the 
requirements of minimum expected cell count was to collapse such cell(s) with the neighbouring 
cell. This method has serious disadvantages in that information on the collapsed cell (s) are lost 
and the structure of the table may be disrupted. There is a wide difference of opinion about how 
small the ije  can be without invalidating the chi-square approximation. Many computer 

programs for goodness-of-fit tests such as Dixion’s BMDP (1981), Dean et. al. Epi-Info (1990),  
Minitab (1991), etc, caution users when expected count of any cell is less than five. Fisher 
(1925) recommends that no expectation be less than five. Cramer (1946) emphasizes the need 
for expectation of at least ten, Kendall (1953) states that the approximation may “confidently be 
applied when all the theoretical cell frequencies are, such that, none is less than 20”. Cochran 
(1954) states that in goodness-of-fit tests of unimodal distributions, such as the Normal or 
Poisson, expectations at one or both tails should be at least one. Lewontin and Felsenstein 
(1965) found that the test was satisfactory with some expected counts equal to 0.5, Yarnold 
(1970) suggested that the minimum cell expected frequency should be greater than 5s/rc, where 
‘s’ is the number of cells with expectations less than 5 and ‘r x c’ is the table dimension. Agresti 
(1990) maintained that it would be sufficient to caution on the use of goodness-of-fit test 
statistics when the contingency table’s sparseness index (Is), which is the ratio of sample size to 

the dimension of the table, (i.e, Is = n/rc), is low. Sanni (1997) found that X 2  can still be used to 
approximate chi-square when the minimum expected cell frequency is as low as 0.1. Sanni and 

Jolayemi (1997) observed that the Pearson’s X 2  achieved correctly any perceived significance 
level when the sparseness index (Is) and the minimum expected cell count are as small as 0.3 

and 0.1, respectively. In this paper, we re-examined the Pearson’s X 2  as an approximation to 
chi-square distribution using a two dimensional r×c (r≥2, c≥2) contingency table under the small 
expected cell counts from another perspective. 

In section 2, we discuss briefly the Pearson’s X 2  test statistic in an r × c contingency table. In 
section 3 a proposal is suggested that deals with some few illustrative numerical examples. This 
paper is concluded with conclusions and recommendation in section 4. 

 

2. THE SCALED PEARSON’S X 2  STATISTIC 

 Consider a two-dimensional r × c contingency table and let n
ij

be the cell frequency  (i,j), 

i=1,2,…,r and j=1,2,…,c. Without loss of generality with respect to any appropriate underlying 
sampling distribution, see for example, Birch (1963). We assume that the cell counts have the 
multinomial distribution. That is, the probability mass function of the set of counts is given by  
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where ),,( 21.. iciii nnnn  ,  ),( ,2,1.. iciii pppp     and  
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The cell counts n ij were simulated such that

 

                
.)( ijij npnE 
                                                                                                                    (2.2)                                             

 
where  p ij ,the cell probability satisfied the independence condition

 

               
jiij ppp ..                                                                         (2.3)

 

 
where .ip 

j

p ij  and jp. 
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In real life situation we often come across situations in which the sample sizes are not large 
enough to guarantee minimum expected cell count of at least five. For example, in medicine and 
biological experiments, where the nature of sample units do not permit the use of large sample 

sizes. Thus the asymptotic approximation of chi-square by Pearson’s X 2  is threatened. In order 
to ensure that the minimum expected cell count satisfies the conventional minimum expected 

cell count of at least five, we choose an integer “a” such that ae* ij =e '
ij  ≥ 5,where now the new 

expected cell count is 
ije . By multiplying vector n by “a” such that the π ij remain unchanged. 

Thus we have  

 

 

N = n  =                                                                                                                                                                                             (2.4)
 

 

When the independence hypothesis (H0) is true, the expected cell count becomes 

                           =   / n =  e ij                                                                                    (2.5)          

From (2.4) and (2.5) the Pearson’s X 2  is given by  

 n 11  n12  n 13        …………………… …. cn1  

 n 21  n 22  n 23      ……………………….. cn2  

    .           .           .       ……………………….. .  
    .           .           .       ..……………………… .    

 n 1r  n 2r  n 3r       ………………………… rcn  
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where  and  are the observed and the corresponding expected cell counts under the scaled 

factor. Thus X2’ has an approximate chi-square distribution with  (r-1)(c-1) degrees of freedom. 

This approach ensures that π ij ’s are unaltered when the overall sample size is now scaled up to  

‘ n..’ instead of n.. 

 

2. NUMERICAL EXAMPLES 

 

Two examples are selected such that their minimum original expected cell counts are less than 5 
in order to demonstrate the application of Pearson’s X2 under these conditions. The first 
example is taken from Sanni (1997) and the second is the example in Gupta (2013) page   .The 

decision rule under this test statistic is such that H0 is rejected if  )1)(1(
2

 crcalX , otherwise 

accept H0 . 

 Given the null hypothesis H0 : p ..i = p j. = 0.25, 0.25, 0.25, 0.25 one of the sample 

configuration from a simulation of a 4×4 contingency table with the associated marginal 
proportions under the null hypothesis of the independence of the rows and columns 
classification variables, is given in table 3.1 see Sanni (1997). 

Table 3.1: A 4 x 4 simulated contingency table under equal marginal probabilities  

  Rows                                 Columns 

1            2              3            4                          

     Total 

1 

2 

3 

4 

4           2               3            5 

3           5               4            2 

3           3               5            3 

4           4               2            4 

14 

14 

14 

14 

Total 14        14            14          14 56 

 

From the above table the minimum expected cell count under independence hypothesis is 

 
ije  14 x 14/56 = 3.5 < 5 
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The scaling multiplier ‘ ’ required such that  ≥ 5 is ‘ ’ = 5/3.5 ≈ 2 (rounded up to the 

nearest integer), this ensures that the minimum expected cell count is not less than 5. As a 
result of factor ‘ ’ the new transformed table with the expected cell frequencies in the 
parenthesis are as presented in the table below.  

Table 3.2: Modified Table of Observed and Expected Frequencies in the Parentheses 

   
Rows                                 

                        Columns 
    1                 2              3                  4                          

     Total 

 1 
2 
3 
4 

8 (7.0)         4(7.0)      4(7.0)         10(7.0)  
6(7.0)         10(7.0)     8(7.0)           4(7.0) 
6(7.0)           6(7.0)    10(7.0)          6(7.0)               
8(7.0)           8(7.0)      4(7.0)          8(7.0) 
 

 28 
28 
28 
28 

Total    28               28             28                 28 112 

The Pearson’s X2’ is 

 


 
4

1

2
4

1

2 '/)''(
j

ijijij
i

eenX  = 9.143 

with 18)14)(14(2)1)(1(  cr  degrees of freedom. 

As an illustration the following exercise is extracted from Gupta (2013) (Exercise 18.1, number 
27). The table below gives the distribution of Mathematics and Economic scores in a sample of 
25 students. 

Table 3.3: Distribution of observed Mathematics scores against Economics scores. 

 
Economics 
Scores 

Mathematics Scores  
Total <70  

<70 5 2 7 

 7 11 18 

 12 13 25 
  

From the above information the following 2 x 2 contingency table can be summarized:  

 

 

 



SANNI, O. O. M., ABIDOYE, A. O. & IKOBA, N. A. 

198 

 

Table 3.4: Distribution of observed Mathematics scores against Economics scores with 

Expected values in parentheses    

 
Economics 
Scores 

Mathematics Scores  
Total <70  

<70 5 (3.36) 2 (3.64) 7 

 7 (8.64) 11 (9.36) 18 

 12 13 25 

It is observed that the minimum expected cell count =3.36, which is less than the minimum 

asymptotic value of 5, thus violating assumption for X 2  to be approximated by χ 2 . In order to 
meet this condition our suggested scaled multiplier is ‘ ’ = 5/3.36=1.5 ≈ 2 (rounded up to next 
integer). This guarantees the minimum expected cell count ≥ 5 with the cell probabilities 

’s remain unchanged. The new resulting table is as reported in table 3.5. 

Table 3.5: Scaled Table of Distribution of Mathematics scores against Economic scores 
with the Expected Frequency in parentheses 

 
Economics 
Scores 

Mathematics Scores  
Total <70  

<70 10 (6.72) 4 (7.28) 14 

 14 (17.28) 22 (18.72) 36 

Total 24 26 50 
 

Under the independence hypothesis, X2’= 4.276 

This leads to the decision that we fail to reject the null hypothesis of independence at the 5% 
level of significance. Hence Mathematics and Economics may be regarded as unrelated on the 
basis of the sample, as was also concluded in exercise 18.1, number 27 in Gupta (2013). 

4.    CONCLUSION 

 By scaling the expected minimum cell frequency to meet the asymptotic conventional 
minimum expected cell count of at least 5, this ensures the approximation of Pearson’s X2 by 
chi-square distribution with the degrees of freedom. Thus scaled by same factor .Thus the 
obtained value of X2 produces the same expected conclusion. The approach presented in this 
paper has been shown to have considerably ameliorated the problem of expected cell count not 
meeting the minimum asymptotic condition.  We recommend that to obtain good approximation 
of Pearson’s X2 by chi–square distribution, we are suggesting a scaling factor 

)(5, '
ijij eethatsuch   where ‘ ’ is an integer (rounded up) and '

ije  is the minimum 

expected cell count. 
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