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ABSTRACT 

The incidence of insulin-resistance is on the increase globally. Earlier reports linked impaired 

insulin signaling and glucose intolerance to cognitive decline, suggesting that improving 

insulin signaling could enhance neuronal survival. Trans-cinnamaldehyde (TCA) is an active 

component of cinnamon and it has many pharmacological importance. However, the effects 

of TCA on insulin resistance-induced cognitive deficit is unclear. This study therefore aimed 

at evaluating the effects of trans-cinnamaldehyde on hippocampal histomorphology and 

functions in insulin-resistant rats. The objectives of this study were to: (i) evaluate the effects 

of TCA on blood glucose levels and assess insulin resistance in Wistar rats; (ii) assess 

behavioural changes in insulin-resistant Wistar rats after TCA intervention; (iii) investigate 

the histoarchitectural changes in the hippocampus of insulin-resistant Wistar rats treated with 

TCA; (iv) investigate the effects of TCA on inflammatory markers in the hippocampus of 

Wistar rats; (v) and investigate the effects of TCA intervention on the hippocampal NeuN 

expression. 

Sixty-four adult female Wistar rats were divided into eight groups with the following 

treatments: (I) normal control; (II) high-fat diet (HFD) and streptozotocin (STZ) 30 mg/kg 

bw (insulin-resistant control); (III) oral TCA alone at 60 mg/kg bw; (IV) normal diet, HFD, 

STZ (30 mg/kg bw) and oral TCA at 60 mg/kg bw; (V) HFD, STZ (30 mg/kg bw) and oral 

TCA 60 mg/kg bw; (VI) oral TCA alone at 40 mg/kg bw; (VII) normal diet, HFD, STZ (30 

mg/kg bw) and oral TCA at 40 mg/kg bw; (VIII) HFD, STZ (30 mg/kg bw) and oral TCA at 

40 mg/kg bw. Generally, HFD was administered for eight weeks, followed by low dose STZ 

intraperitoneally; and oral TCA administration for four weeks. Fasting blood glucose was 

determined using glucometer, while insulin resistance was determined using homeostasis 

model assessment of insulin resistance (HOMA-IR). Morris Water Maze test was conducted 

for cognitive function. The Wistar rats were sacrificed and the expression of nuclear factor 

kappa B (NF‐κB), tumour necrosis factor alpha (TNF-α), histoarchitectural changes and 

NeuN expression were evaluated using biochemical, histological and immunohistochemical 

techniques. Data were analysed using one-way analysis of variance, with Tukey’s post hoc 

test. A significant difference was defined as p < 0.05.  

The findings of the study were that: 

i. oral TCA significantly reduced (p < 0.05) blood glucose (119±4.9 mg/dl) and insulin 

resistance (22.13± 3 mg/dl) when compared with the untreated rats (217±10 mg/dl) 

and (41.7±2 mg/dl) respectively; 

ii. TCA administration to insulin-resistant rats significantly reduced (p < 0.05) escape 

latency (26.67±1.4 s) when compared with HFD + STZ (38.17±1.3 s) in Morris water 

maze test;  

iii. TCA administration to insulin-resistant rats histologically reduced pyknosis, 

astrogliosis, and neurodegenerative changes in the hippocampus when compared with 

untreated (insulin-resistant) rats; 

iv. TCA significantly reduced TNF-α, NF‐κB when compared with untreated rats; and 

v. hippocampal cyto-architecture was improved in TCA-treated rats as indicated by 

enhanced NeuN expression. 

The study concluded that TCA protected the hippocampus from insulin-resistance-induced 

neuronal degeneration via anti-inflammatory mechanism. The study recommended that trans-

cinnamaldehyde be explored as a therapy for insulin-resistance-induced cognitive 

impairment.



1 
 

CHAPTER ONE 

INTRODUCTION 

1.1  Background of the Study 

Insulin resistance is a state of reduced responsiveness of target tissues to normal circulating 

levels of insulin. It is also a state of impairment in the blood glucose- lowering effect of 

circulating or injected insulin which is the central feature of type 2 diabetes mellitus (T2DM) 

and metabolic syndrome (Feldman, 2012; Czech, 2017).  

Insulin resistance, hyperglycemia and hyper-insulinemia are the most common features of 

type two diabetes mellitus (T2DM) (Taylor, 2012). The incidence of diabetes mellitus is on 

steady increase globally. The global prevalence of diabetes in 2019 was 9.3% (463 million 

people). This figure is projected to rise as high as 10.2% (578 million) by 2030 and 10.9% 

(700 million) by 2045 (Thuy et al., 2020). Significant healthcare challenge has resulted 

because of the financial burden due to the treatment of diabetes for many countries of the 

world (Taylor, 2012). Insulin resistance occurs due to the decreased in insulin sensitivity of 

liver, muscle and fat cells to insulin (Leahy et al., 2014). Decreased insulin sensitivity 

ultimately leads to reduction in uptake of circulating blood glucose for glycogenesis which 

subsequently results into chronic hyperglycemia as one of the pathological hallmarks of 

insulin resistance (Leahy et al., 2014). 

Neurodegenerative disease is a progressive impairment in the functionality of the brain 

usually resulting from loss or death of neurons traceable to multiple causes including insulin 

resistance, and it disproportionally affects the elderly and worsens with age (Despa, 2019). 

The causative factor for neurodegeneration is attributable to specific or general neuronal 

impairment (McKusick, 2007; Despa, 2019). The resulting neurodegenerative changes lead to 

a compromise in some specific neuronal functions such as hearing, vision, memory or general 
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brain function. Most neurodegenerative disorders are commonly associated with some age-

related symptoms such as obesity, insulin resistance and diabetes ( Reddy, 2017; 

Madhusudhanan et al., 2020).  

There are both basic and clinical evidences that supports the fact that incidence of 

neurodegenerative disorders is more common among patients with insulin resistance than the 

general population; impaired neuropsychological functions has been reported among the 

diabetics (Teixeira et al.,2020). Several findings reveal that hyperglycemic patients have a 

higher prevalence of global cognitive impairment and greater cognitive decline (Elham et al., 

2016; Lindsay et al., 2016) when compared to normoglycemic population. Insulin resistance 

and diabetes have therefore been implicated as a risk factor for dementia (Jayaraj et al., 

2020). Deficit in hippocampal related function, including memory formation has been 

reported in insulin resistant state (Bonds et al., 2020). 

Alzheimer’s disease (AD) which is the most common form of dementia among the elderly 

population was first diagnosed by German psychiatrist and neuropathologist, Alois 

Alzheimer in 1906, it is a form of dementia associated with gradual loss of cognitive and 

memory abilities (Lynn et al., 2010; Bhumsoo, 2015; Gohar et al., 2015; Sedighi et al., 

2019). The hippocampus has been shown to be one of the first structures in the brain that is 

affected by the disease.  

AD at cellular level is generally characterized by a progressive loss of pyramidal cells in the 

entorhinal cortex and the hippocampus which are responsible for maintenance of higher 

cognitive functions, in its early-stage AD is characterized by loss of synaptic functions that 

interrupts connections between neural circuits, ultimately resulting in gradual loss of memory 

(Kashyap et al., 2019). Recently, AD was declared as the sixth major cause of death in the 
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world, individuals affected with AD suffer a progressive decline of cognitive abilities and 

memory functions until they are unable to perform routine functions (Bryan et al., 2014).  

From clinical perspective, AD can be classified into two subtypes which are; the late-onset 

(sporadic AD) which constitute about 95% of AD cases and occurs in patients aged 65 years 

or older. Secondly, the early-onset (familial AD) which constitute about 5% of AD cases, and 

occurs in people within their thirties, forties, or fifties (Vo et al., 2019). The disease 

pathology is caused by mutation in three known genes which are presenilin-1 (PS-1), 

presenilin-2 (PS-2) and amyloid precursor protein (APP). Although PS-1 mutations account 

for most of the familial AD, there are still some unknown mutations outside these three genes 

(Dorszewska et al., 2016). 

Presently, treatment for AD is limited to the administration of cholinesterase inhibitors 

(donepezil, rivastigmine, galantamine) and memantine an N-methyl-D-aspartate receptor 

antagonist (Jennifer et al., 2016). Some of the recently synthesized drugs affect multiple AD 

pathophysiological pathways and can act as inhibitors of monoamine oxidases (MAO-A, 

MAO-B), modulators of amyloid-beta binding alcohol dehydrogenase and antioxidants, 

inhibitors of cholinesterases (AChE, BuChE), modulators of mitochondrial permeability 

transition pores (Jennifer et al., 2016). 

1.2  Global impact of dementia  

The common cause of dementia is AD, as of 2015, around 46.8 million people worldwide 

suffered from dementia (ADI, 2015). This number by 2050 is expected to reach 131.5 million 

except if there is medical intervention. In terms of gender prevalence, AD is more common 

among women partly because of longer life expectancy among women when compared to 

men (Luy, 2014). AD has pose serious economic burden globally, with studies indicating that 

AD management cost 818 billion USD in 2016 (Wimo et al., 2017). 
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Sub-Saharan African countries are experiencing rapid transitions with increased life 

expectancy, therefore the burden of age-related conditions such as diabetes and dementia is 

on the increase (Alain, 2014). As a result of the increasing aging population in sub-Saharan 

Africa, number of people with dementia is expected to rise above 7.6 million by 2050 (ADI, 

2018). 

Trans-cinnamaldehyde 

Over some decades, there has been a geometrical increase in efforts concerning finding 

treatment for dementia. Phytochemicals derivatives has been used to combat various 

pathological conditions (Saeideh et al., 2018). 

Cinnamon is a derivative of a Greek word meaning sweet wood, it comes from the inner bark 

of tropical evergreen cinnamon trees (Ballal, 2008). Cinnamon is one of the most commonly 

used flavouring agents in the beverage and food industry globally, it is also well recognized 

for its medicinal properties one of the major essential oil is trans-cinnamaldehyde. Cinnamon 

extracts have been used in traditional Ayurvedic medicine for ailments such as diarrhoea, 

arthritis and menstrual irregularities (Bandara, 2014). 

Experimental evidences indicate that trans-cinnamaldehyde possesses antimicrobial activity, 

antioxidant, cholesterol-lowering, antineoplastic, antibacterial and antifungal properties 

(Saeideh et al., 2018).TCA has been reported to inhibit the production of NO and IL-1β and 

expression of iNOS and COX-2 by suppressing activation of NF-κB in LPS-stimulated 

microglia as a model of activated microglia (Yan et al., 2017). 
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1.3  Justification of the study 

The intake of high-fat diets (HFD) containing mainly saturated fats continue rise over the past 

decades leading to increased incidence of insulin resistance, diabetes and other metabolic 

syndromes (Wolfgang, 2019). This increase intake of HFD has directly or indirectly resulted 

to increase in dementia (Alain, 2014). In Sub-Saharan Africa, it is projected that the number 

of people with dementia will rise to 7.6 million by 2050 (ADI, 2018). Despite this alarming 

figure, no effective treatment methods have been found. It is because of these facts that this 

study explored the therapeutic potentials and the mechanisms of trans- cinnamaldehyde on 

the hippocampal histomorphology and functions in insulin-resistance 

1.4 Aim of the Study 

The aim of this research was to explore the therapeutic potentials and the mechanisms of 

trans- cinnamaldehyde on the hippocampal histomorphology and functions in insulin-

resistant rats.  

1.5  Specific objectives of the Study 

The specific objectives of the study were to: 

i. assess behavioural changes in insulin-resistant Wistar rats after TCA intervention;  

ii. investigate the histoarchitectural changes in the hippocampus of insulin-resistant 

Wistar rats treated with TCA; 

iii. evaluate the effects of TCA on blood glucose levels and insulin resistance in Wistar 

rats;  

iv. determine the degree of insulin resistance;  

v. evaluate the effects of TCA on blood glucose level; 

vi. investigate the effects of TCA on inflammatory markers in the hippocampus of Wistar 

rats; and 
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vii. evaluate the therapeutic potentials of TCA on insulin- resistant rats using 

immunohistochemical techniques.  

1.6 Research hypothesis 

The study hypothesizes that trans- cinnamaldehyde confers therapeutic benefits on neurons of 

the hippocampus following the administration of high fat diet and streptozotocin. 

1.7  Significance of the Study 

This study would determine the therapeutic potentials of trans-cinnamaldehyde (TCA) 

following HFD/STZ induced insulin resistance in adult Wistar rats. It would also give clarity 

to the mechanism of the therapeutic potential of TCA on insulin- resistance induced cognitive 

decline in Wistar rats.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  The role of insulin-resistance in the pathophysiology of neurodegenerative 

 diseases 

Insulin resistance (IR) is the reduced sensitivity of target organs to insulin commonly 

associated with metabolic defects and hyperinsulinemia (Shulman, 2018). Proper insulin 

signaling is crucial to maintaining glucose homeostasis, there is impairment of insulin 

signaling at multiple levels in insulin resistant state, leading to imbalance between glucose 

uptake and its production in peripheral tissues (Feldman, 2012). In the pathogenesis of AD, 

IR has been implicated, because of the similarity in some molecular and biochemical features 

between both types of diabetes and AD, AD is commonly described as “type 3 diabetes” 

(Craft, 2017; Hemachandra et al., 2017), The association between diabetes and AD may 

partly be due to the systemic mitochondrial dysfunction that is common to these pathologies 

(Craft, 2017).  

Brain insulin signaling plays vital roles in the regulation of food intake, body weight, learning 

and memory (Zabolotny et al., 2016). Dysregulation of insulin signaling pathway is 

associated with cognitive decline and AD (Hölscher, 2019; Sami et al, 2019). Deficits in 

hippocampal function has been attributed to peripheral insulin resistance and hyperlipidemia 

induced by a high-calorie diet (Biessels & Reagan, 2015; Matteo et al., 2019). Several 

findings linked impaired insulin function and glucose metabolism to the risk of developing 

AD-type neurodegeneration (Madhusudhanan et al., 2020; Yanan et al., 2020).  

Perturbation in insulin signaling pathway is associated with decreased cognitive ability and 

development of dementia. Neurons are metabolically active insulin-dependent tissues, while 

in insulin resistant state the ability to respond properly to the neurotrophic properties of 

insulin is lost, resulting in neuronal injury, neuronal dysfunction, AD and related diseases 
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(Feldman, 2012). Long term IR in the peripheral tissues promoted IR in the brain by 

suppressing the uptake of insulin and accelerating the accumulation of Aβ in the brain (Sima  

et al., 2018), it has been proposed that neurons can develop hyperinsulinemia-induced insulin 

resistance (Feldman, 2012). Chronic hyperinsulinemia may lead to a compromise in blood-

brain barrier and subsequently abrogate insulin activity. Prolong neuronal exposure to 

hyperinsulinemic environment has been reported to result in irreversible cognitive 

dysfunction and neuronal degeneration (Karvani et al., 2019).  

HFD contribute prominently to insulin resistance and cognitive impairment, the effect of such 

diets on the brain are poorly understood but insulin resistance may play an important role by 

acting on brain energy metabolism and neuroprotective mechanisms (Vishal et al, 2017). 

Types of Dementia 

Vascular dementia 

The term vascular dementia substantially means "disease with a cognitive impairment 

resulting from cerebrovascular disease and ischemic or hemorrhagic brain injury 

Vascular dementia is the second leading cause of dementia (Dichgans and Leys, 2017). 

Vascular cognitive impairment can result from widespread small vessel dysfunction, which 

adversely affects cerebral perfusion, cerebrovascular reactivity, and blood brain barrier and 

white matter integrity (Smith and Beaudin, 2018; Frantellizzi et al., 2020). Although vascular 

cognitive impairment and its associated pathophysiology are most commonly attributed to 

hypertension, the degree to which peripheral and brain insulin resistance contributes to the 

underlying pathology requires further investigation, particularly given the multifactorial role 

of insulin in vascular function. Insulin acts as a vasoactive hormone that modulates both 

cerebral and peripheral blood flow (Hughes and Craft, 2016) binding to receptors on 

endothelial cells, where it increases nitric oxide that acts to dilate blood vessels. However, 
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insulin can alternatively constrict blood vessels by stimulating production of endothelin-1 via 

the MAPK pathway (Muniyappa and Yavuz, 2013). Through these effects, insulin acts as 

vasodilator when at normal concentrations and a vasoconstrictor at high concentrations. As a 

result, insulin resistance-associated chronic hyperinsulinaemia promotes vasoconstriction 

resulting in higher blood pressure and reduced cerebral perfusion, a pattern that might be 

observed years before the onset of cognitive symptoms characteristic for vascular cognitive 

impairment (Muniyappa and Yavuz, 2013). 

Lewy Bodies Dementia 

Unlike Alzheimer’s disease, memory impairment is not necessarily a prominent early feature 

in Lewy bodies dementia, but this will usually appear with progression of the disease. 

Instead, deficits in attention, executive function, and visuospatial ability are often prominent 

early symptoms. 

There are three core features for diagnosis. Two of these core features should be present for a 

diagnosis of probable dementia with Lewy bodies, while one core feature should be present 

for a diagnosis of possible dementia with Lewy bodies. The three core features are (i) 

fluctuating cognition with pronounced variation in attention and alertness, (ii) recurrent visual 

hallucinations (iii) spontaneous features of parkinsonism. 

There are also three suggestive features for diagnosis. In the presence of one core feature, the 

additional finding of a suggestive feature justifies a diagnosis of probable dementia with 

Lewy bodies. In the absence of any core features, the presence of a suggestive feature 

justifies a diagnosis of possible dementia with Lewy bodies. The three suggestive features are 

(i) a REM sleep behavior disorder, (ii) severe neuroleptic sensitivity, and (iii) low dopamine 

transporter uptake in the basal ganglia demonstrated by SPECT or PET imaging. 
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Supportive features are often present, but are not sufficient for diagnosis. These include 

repeated falls and syncope; transient, unexplained loss of consciousness; severe autonomic 

dysfunction (eg, orthostatic hypotension, urinary incontinence), nonvisual hallucinations, 

systematized delusions, depression, relative preservation of medial temporal lobe structures 

on CT or MRI scans, generalized low uptake on SPECT/PET perfusion scans with low 

occipital activity, abnormally low uptake on MIBG myocardial scintigraphy, and prominent 

slow wave activity on EEG with temporal lobe transient sharp waves. 

These diagnostic criteria are considered in light of other confounding clinical conditions. 

Thus, a diagnosis of dementia with Lewy bodies is less likely in the presence of clinical or 

imaging evidence of cerebrovascular disease, in the presence of other clinical conditions that 

might explain the clinical findings, and if parkinsonism appears only as a late complication in 

a severely demented patient (Robert, 2007). 

The most specific immunohistochemical method for the detection of Lewy bodies employs 

antibodies to alpha-synuclein. Anti-ubiquitin antibodies will also detect Lewy bodies, but this 

technique also highlights Alzheimer-type neurofibrillary changes, and thus is less useful in 

cases with co-existent Alzheimer pathology. 

Dementia with Lewy bodies (DLB) is one of the most common causes of dementia after 

Alzheimer disease (AD) and vascular dementia. DLB often presents a diagnostic challenge 

given this clinical heterogeneity and overlap with other neurodegenerative diseases. Further, 

it was initially often overlooked pathologically because of the difficulty in identifying cortical 

Lewy bodies with routine histochemical stains. 

Lewy body dementia encompasses both dementia with Lewy bodies and Parkinson’s disease 

dementia (Chouliaras et al., 2020). 
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Dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD) are classified 

together under the umbrella term Lewy Body Dementia (LBD). LBD is the second most 

common type of neurodegenerative dementia in older people, responsible for around 10% of 

all cases (Kane et al., 2018; Vann and O’Brien, 2014). PDD and DLB are closely aligned. 

The essential difference lies in the order of clinical symptom onset. In PDD the motor 

features associated with PD precede the memory problems associated with dementia by at 

least one, and usually several, years. In DLB, however, memory and motor problems start 

within one year of each other (Aarsland et al., 2017). Hence, the two conditions may be 

viewed as a continuum under the term LBD, combining PDD and DLB, rather than two 

separate conditions (Walker et al., 2015). 

DLB shares features with both Alzheimer’s (AD) and Parkinson’s disease (PD). As well as 

well-described differences in clinical features, compared to AD people with DLB have a 

higher risk of falling, lower quality of life, greater caregiver burden and a higher mortality 

rate (Mueller et al., 2019; Price et al., 2017). DLB primarily affects people over 65, more 

commonly men. Suspected cases are diagnosed on the basis of neuropsychiatric assessment, 

neuroimaging, and biomarker assays (Walker et al., 2015). 

The consensus criteria for diagnosis of DLB involve presence of dementia syndrome along 

with two core clinical features or one core clinical feature and an indicative biomarker 

(Walker et al., 2015). 

Core clinical features of DLB are visual hallucinations, parkinsonism, fluctuating cognitive 

function and REM sleep behaviour disorder. Indicative biomarkers are reduced basal ganglia 

dopamine uptake (single-photon emission computed tomography (SPECT)/positron emission 

tomography (PET), low cardiac Iodine-123 meta-iodobenzylguanidine (MIBG) and 

confirmation of REM sleep disorder without atonia on polysomnography. Case series of 
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postmortem studies have shown that pathology consistent with a diagnosis of LBD is the 

second most common finding after AD pathology (Beach et al., 2008). 

Pathophysiology of LBD 

The major pathological hallmark of LBD is the intraneuronal deposition of α-synuclein, 

including in the form of Lewy bodies, protein aggregates which also contain ubiquitin. As the 

disease progresses, Lewy bodies manifest throughout the brainstem, limbic areas and 

neocortex (McKeith et al., 2017; Montine et al., 2012). Apart from the Lewy bodies 

themselves, α-synuclein also accumulates in axons, forming amyloid fibrils of distinct 

morphology (Jellinger, 2018). These Lewy neurites are characteristically abundant in the 

amygdala, hippocampus and striatum and may emerge early in disease progression. 

Mixed Dementia 

Mixed dementia is the coexistence of Alzheimer's disease and cerebrovascular disease (CVD) 

in the same demented patient (Nilton, 2017). 

2.2  Common models of dementia 

Different animal models are used in dementia research. They mimic the various pathological 

stages involved in the condition thereby providing insight into how dementia is initiated and 

propagated (Gotz and Gotz, 2009). Dementia is a complex condition attributable to several 

etiological factors, impacting a multitude of biological pathways. Developing a research 

model that truly encapsulates this complexity has, thus, been a scientific challenge. Even so, 

many models have been developed to gain insights into various aspects of dementia. Animal 

models of dementia include both transgenic animals as well as natural, non-transgenic 

models. Together, these animal models can be used to simulate dementia pathology to 

understand disease progression. Several in vitro models have also been developed to 
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understand the more complex tissue-specific pathologies associated with dementia (Li et al., 

2016). 

2.2.1  Animal models 

Rodents are the most widely used animal for study of dementia because of their biological 

similarity to humans, low cost, ease of manipulation, well characterized behaviours, short 

life-cycles, and existing tools to induce mutations. 

 Additionally, researchers can have total control of the environment for rodents, increasing 

the ability to limit extraneous variables in experiments. The investigation of AD mechanisms 

in these models range from very precise mutations to study specific pathological features to 

combined mutations to generate more comprehensive models of AD pathology (Arnold et al., 

2019). 

2.2.2  Transgenic Animal Models  

Transgenic mice have served as a genetic tool to study the effects of several genes implicated 

in etiology of AD. The most widely-used and notable mouse models express the human 

(hAPP). The levels and spatial expression of the hAPP protein are driven by varying the 

promoters used in mice. Commonly used promoters are platelet-derived growth factor B-

chain PDGF-B (e.g., J20), thymocyte differentiation antigen 1 Thy-1 (e.g., 5xFAD), and 

prion protein (PrP) genes (Arnold et al., 2019). 

 Other mice models include Tau transgenic mice that express the human tau protein using 

various promoters, APP-tau double transgenic mice, triple transgenic mice that express APP, 

PSEN11, and Tau, and five transgenic mice that express 5 familial AD mutant genes. These 

mice exhibit the expected, hallmark neurological symptoms associated with AD such as 
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cognitive deficits, motor deficits, and memory loss, albeit at varying levels (Arnold et al., 

2019). 

2.2.3  In vitro models  

In vitro models facilitate a more direct and in-depth examination of dementia related 

pathologies on a cellular and molecular level. These include tissue models such as brain 

slices and cultured brain tissue, as well as cell models such as AD-derived induced 

pluripotent stem cells and neuroblastoma cells, and molecular simulation models such as 

antibubble biomachinery developed to study the impact of inflammation on AD. 

Summarily, experimental models of dementia have greatly enhanced our understanding of the 

disease process in dementia and promoted the development of novel therapies. While 

transgenic animal models enable researchers to explore the genetic etiology of AD, and have 

led to the establishment of more complete models of AD which may be used for genetic 

manipulation and the identification of novel therapies, non-transgenic animal models 

recapitulate the natural process of AD including its occurrence, evolution and prognosis, 

which has shown a high application value in earlier studies. By contrast, in vitro models 

isolate specific molecular pathways from others in AD, permitting therapeutic screening in a 

rapid and direct way. Among them, transgenic models are the most popularly used in AD 

research (Arnold et al., 2019). 

Insulin 

Insulin plays a central role in the regulation of human metabolism. The hormone is a 51-

residue anabolic protein that is secreted by the β-cells in the Islets of Langerhans. Containing 

two chains (A and B) connected by disulfide bonds, the mature hormone is the post-

translational product of a single-chain precursor, designated proinsulin (Michael et al., 2014). 
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 Insulin enhances glucose uptake by increasing the number of transporters in the plasma 

membrane of target cells. This was first demonstrated in adipocytes and subsequently in 

skeletal and cardiac muscle. Insulin stimulation of such cells mobilizes transporters from 

intracellular compartments to the plasma membrane to facilitate glucose transport. 

Translocation of receptors to the plasma membrane has been demonstrated to occur within 30 

seconds of insulin stimulation; as the stimulus dissipates the decrease in the number of 

plasma membrane receptors declines coincident with a decline in glucose transport. The 

impaired ability of insulin, on binding and activation of the IR, to signal Glut4 translocation 

from intracellular stores contributes to postprandial hyperglycemia in Type 2 DM. Animal 

studies have also demonstrated that insulin resistance is associated with a decreased 

translocation of glucose transporters to the plasma membrane in muscle cells. In fact, 

decreased insulin levels in animal models of DM have been shown not only to decrease 

transporter translocation, but also to attenuate expression of Glut4 in muscle cells. Thus, it 

appears that insulin provides both a short-term signal to increase glucose-transporter 

translocation and a long-term signal to maintain a basal level of expression of such 

transporters in target cells. The combination of acute and basal actions provides a common 

mechanism in Type 1 DM (characterized by low or vanishing endogenous insulin levels) or 

Type 2 DM (characterized by insulin resistance) could cause pathologically high plasma 

glucose levels: loss of regulation and expression of transmembrane glucose transporters. 

Glut2, expressed on surface of β-cells, contributes to the regulation of insulin secretion. 

Accordingly, a β-cell specific IR knock-out (KO) model indicated that insulin likely 

positively regulates its own secretion from the β-cell (Michael et al., 2014) 
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 Figure 2.1:  Structure of insulin (Michael et al., 2014) 
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2.3  The pathological link between insulin resistance and Dementia 

Insulin resistance is a state of decreased responsiveness of target tissues to insulin, and a 

major feature of type 2 diabetes, glucose intolerance, hypertension, dyslipidemia, and 

cardiovascular disease. Some large population studies support an association between type 2 

diabetes caused by insulin resistance and dementia (Chatterjee et al., 2016; Gudala et al., 

2013). In several recent studies that involved both human and animal models, insulin 

resistance was suggested to have negative effects on cognition, particularly learning and 

memory (Willette et al., 2015). Experimental observations are identifying that markers of 

metabolic dysregulation are also present in AD, the most remarkable being insulin resistance 

(De Felice, 2013; Boles et al., 2017). However, the molecular mechanisms underlying this 

crosstalk are still elusive, as well as how central and peripheral insulin signaling operate in 

AD (Biessels and Despa, 2018). 

There is strong epidemiological connection between diabetes, obesity, and dementia, the key 

intersection among the three diseases is insulin resistance, which has been classically 

described to occur in peripheral tissues in diabetes and obesity and has recently been shown 

to develop in Alzheimer's disease (AD) brains (Lais et al., 2018). 

2.3.1  Mechanisms of Insulin resistance-induced dementia 

There are several possible mechanisms to explain the role of insulin resistance in the 

development of dementia. First, cerebrovascular disease, a consequence of insulin resistance, 

can induce the development and progression of vascular dementia (VD) and AD by causing 

multifocal ischemic lesions, and has been shown to predict the development or progression of 

cognitive decline in several clinical studies (Love et al., 2016). Secondly, the alteration of 

brain insulin signaling may be due to insulin resistance associated with induction of cognitive 

impairments and neurodegeneration (Folch et al., 2019). Thirdly, insulin resistance-related 

file:///C:/Users/use/Desktop/post%20prese/IR%20AND%20DEMENTIA/Frontiers%20_%20Insulin%20Resistance%20in%20Alzheimer's%20Disease%20_%20Neuroscience.html%23B34
file:///C:/Users/use/Desktop/post%20prese/IR%20AND%20DEMENTIA/Frontiers%20_%20Insulin%20Resistance%20in%20Alzheimer's%20Disease%20_%20Neuroscience.html%23B17
file:///C:/Users/use/Desktop/post%20prese/IR%20AND%20DEMENTIA/Frontiers%20_%20Insulin%20Resistance%20in%20Alzheimer's%20Disease%20_%20Neuroscience.html%23B15
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syndromes, such as diabetes and dyslipidemia, are well-known risk factors for dementia. In a 

recent meta-analysis that included 19 community-based studies, type 2 diabetes patients had 

dementia 1.6 times more often than patients without type 2 diabetes (Kivimaki et al., 2019). 

In another meta-analysis of 17 studies, high plasma cholesterol in mid-life was associated 

with a 2.14-fold increased risk of AD dementia but not in late life (Anstey et al., 2017). 

Individuals with insulin resistance, T2DM, hyperlipidemia, obesity, or other metabolic 

disease may have increased risk for the development of AD and similar conditions, such as 

vascular dementia. This association may in part be due to the systemic mitochondrial 

dysfunction that is common to these pathologies. Accumulating evidence suggests that 

mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in 

its pathogenesis. In fact, aging itself presents a unique challenge due to inherent 

mitochondrial dysfunction and prevalence of chronic metabolic disease (Bryan, 2017). 

Subtle cognitive changes that can accompany early stages of insulin resistance due to aging, 

type 2 diabetes, and other factors may eventually develop into clinically significant cognitive 

impairment, including dementia 

Dementia develops as a result of a complex interplay of clinical and biological factors and is 

beset by multiple underlying pathological features. People with type 2 diabetes represent an 

important risk group for cognitive impairment and dementia caused by both Alzheimer’s 

disease, dementia and vascular brain injury. For example, a recent meta-analysis found that 

type 2 diabetes was associated with a 60% increase in risk for all-cause dementia (Gudala et 

al., 2013) and a population-based longitudinal study found a 16% increased risk for dementia 

even among those in which type 2 diabetes onset was recent (Haroon et al., 2015). 
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2.3.2  The pathological link between type II diabetes and dementia 

Diabetes mellitus a predominant global epidemic has a strong link with the incidence of 

neurodegenerative disorders. Hyperglycemic condition has strong correlation with cognitive 

decline, AD and neurodegeneration in general. The mechanisms through which diabetes and 

hyperglycemia mediates neurodegenerative conditions are largely unknown (Barbagallo & 

Dominguez, 2014). Although it has been more than a decade since the idea of diabetes 

mellitus as a causal disorder of many neuronal diseases originated, this link has been less 

explored (Yanan et al., 2020). This oversight is likely due to inadequate methodologies and 

lack of appropriate testable models. In AD, irreversible neurodegeneration causes severe 

damage to the brain tissue and a reduction in size of the brain (Bernardes et al., 2017). 

Evidences from epidemiological and biological studies support a strong link between T2DM 

and Alzheimer’s disease, patients with diabetes mellitus have a higher incidence of cognitive 

decline and they have increased risk of developing all types of dementia. Cognitive decline in 

persons with diabetes mainly affect the areas of psychomotor efficiency, attention, learning 

and memory, mental flexibility and speed, and executive function. The strong 

epidemiological association has suggested the existence of a physiopathological link (Gohar 

et al., 2015). The determinants of the accelerated cognitive decline in T2DM, however, are 

less clear. Cortical and subcortical structural atrophy has been reported in both cases of 

T2DM and AD. Insulin and insulin resistance has been reported as the possible links between 

diabetes and AD. Imbalance in brain insulin signaling pathway may contribute to the 

histopathological, biochemical and molecular abnormalities in AD. Hyperglycemia on its 

own is a risk factor for dementia and cognitive dysfunction (Barbagallo and Dominguez, 

2014; Gohar et al., 2015). 
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The progressive degenerative and irreversible neurological disorder induced by AD is largely 

characterized by the formation of neurofibrillary tangles, amyloid β (Aβ) plaques, loss of 

neurons and synapses and amyloidal angiopathy (Sisi  et al., 2017). Studies reveal that 

obesity in middle age increases the risk for AD and there is a strong correlation between AD 

and glucose metabolism disorder (Wangb, 2014). 

Neurodegenerative diseases are generally characterized by cellular accumulation of misfolded 

proteins, ROS production due to mitochondrial dysfunction, and disruption of the autophagy 

machinery in neuronal cells (Madhusudhanan et al., 2020). 

Recent progress in AD research has demonstrated that there are several other external factors 

widely causing the emergence of AD pathologies, such as obesity, diabetes, brain injury, 

neurotoxicity, and infections (Pugazhenthi  et al., 2017). 
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Figure 2.1: Illustration of the pathological pathways between AD and diabetes  

  (Mihalea et al., 2009). 
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Recent clinical studies have demonstrated a dramatic correlation between AD and metabolic 

diseases such as type 2 diabetes mellitus. Hence, AD is now recapturing the attention of 

neuroscientists as a possible complication of defective glucose metabolism (Bianchi & 

Manco, 2018). According to a recent report by International Diabetes Federation the number 

of patients with diabetes in the world has increased from 108 million in 1980 to 425 million 

in 2017, indicating that every 11th person in the world is diabetic (Bianchi & Manco, 2018). 

These numbers probably underestimate the actual number of patients with diabetes, since one 

out of two people remains undiagnosed in most developing countries. According to estimates 

by the World Health Organization, developing countries will contribute five times more than 

developed countries to the prevalence of diabetes and diabetes‐related deaths by 2030 (Wild 

et al., 2004). This could also be an indication of the alarming number of patients with AD in 

developing and underdeveloped countries, where lack of modern diagnostic techniques and 

new treatment strategies for AD are contributing to a major health crisis (Kalaria et al., 

2008). 

2.3.3  Amylin in neurodegenerative disease 

Amylin also known as Islet amyloid polypeptide (IAPP) is a hormone that is co-secreted by 

the pancreatic β cells along with insulin (Despa and DeCarli, 2013). It is secreted in minute 

quantities compared to insulin exerting similar physiological functions like insulin. The roles 

of Amylin in AD has recently become a point of interest (Mietlicki‐Baase, 2016). The 

proteolytic processing of amylin is similar to that of Aβ (Akter et al., 2016). Aggregates of 

amylin have been reportedly found in the pancreatic islets of T2DM patients 

(Mietlicki‐Baase, 2016). Accumulation of amylin contributes to insulin resistance and 

oxidative stress responses observed in pancreatic islets cells (Lutz & Meyer, 2015). Amylin 

possesses the ability to cross the blood brain barrier and its receptors are distributed in some 

parts of the CNS similar to what is observable in the case of insulin and its receptors 



23 
 

(Mietlicki‐Baase & Hayes, 2014). There is an accumulation of amylin in peripheral tissues of 

T2DM patients, leading to the hyperamylinic condition found in the brain of the diabetic 

(Jackson et al., 2013). Hyperamylinemia subsequently give rise to brain injury culminating in 

AD symptoms (Lim et al., 2013). The mechanism through which amylin mediates 

neurodegeneration is largely unknown, however studies from AD patients with type 2 

diabetes and diabetic rats expressing human islet amyloid polypeptide reveals that deposition 

of amylin‐Aβ in brain of AD patients leads to the activation pro inflammatory cytokines 

leading to neuronal degeneration (Verma et al., 2016). Amylin with its associated analogs 

subsequently interact leading to the activation of different downstream molecules along the 

insulin signaling pathway (Nassar et al., 2018).  

Parallel research exploiting the structural and biophysical similarities between amylin and 

beta‐amyloid peptide has unearthed another fascinating finding that patients with AD 

significantly overexpress amylin receptors (Jhamandas et al.,  2011). It is already known that 

Aβ and amylin can bind to the same receptor, which indicates a probable amylin 

receptor‐mediated Aβ action in patients with AD (Nassar et al., 2018). In vitro studies have 

shown that blocking amylin receptors could mitigate the electrophysiological effects of Aβ 

and confer neuroprotection (Jhamandas et al., 2011). These studies provide the rationale for 

considering amylin receptors as a reliable novel therapeutic target for the treatment of AD.  

2.3.4  Insulin signaling dysfunction as a factor in the formation of beta-amyloid and 

 tau hyperphosphorylation 

Insulin signaling is vital for several functions of the brain. Some of these include 

synaptogenesis, plasticity, neuroregeneration, learning, memory and repair (Tumminia et al., 

2018). Insulin also regulates APP metabolism in neurons (Tumminia et al., 2018). Hence, an 

imbalance in insulin signaling can reflect on the metabolism and processing of APP, which 

eventually leads to the accumulation of Aβ in the cell—a major cause for neurodegeneration 
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in AD. As evidence for the potential role of insulin signaling in neurodegeneration in AD, 

significantly reduced expression of insulin receptor has been observed in the brains of 

patients with AD (Frazier et al., 2019). Furthermore, hyperphosphorylation of the tau protein, 

one of the critical features of AD pathology is also increased due to impaired insulin 

signaling in the brain of patients with T2DM (Tumminia et al., 2018).  

2.3.5  Neuroinflammation and its deleterious effects to insulin signaling pathway 

It is well known that neuroinflammatory pathways can cause deleterious effects on neuronal 

cells. In the hyperglycemic condition, neuroinflammatory pathways can be induced in 

numerous ways. First, increased mitochondrial activity creates a stressful environment within 

the cell, thus enhancing ROS production which leads to the activation of inflammatory 

pathways. One of the other key features of T2DM is the overproduction of proinflammatory 

cytokines such as TNF‐α and IL‐6, in part due to hyperactivation of microglia and astrocytes, 

the immune cells of the brain (Nasoohi et al., 2018). Persisting inflammation and abnormal 

levels of circulating cytokines that may even breach the blood brain barrier can be observed 

in patients with T2DM (Nasoohi et al., 2018). TNF‐α promotes various stress‐sensitive 

kinases which induce serine phosphorylation of IRS‐1, an essential molecule in the insulin 

signaling cascade which is usually activated by phosphorylation at a tyrosine residue to 

propagate the insulin signal (Nasoohi et al., 2018). Thus, increased cytokine levels in the 

brain can lead to defective insulin signaling, which is one of the mechanisms through which 

T2DM affects brain functions (Ferreira et al., 2014). It is clear that T2DM‐induced chronic 

inflammation has a significant impact on the brain and is one of the important causal 

mechanisms of many neurological disorders such as AD and multiple sclerosis (Van & 

Lacoste, 2018).  
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2.3.6  Cognitive decline in type II diabetes mellitus and insulin resistance 

The CNS is one of the most important targets of insulin. Insulin receptors (IRs) are widely 

expressed in different parts of the brain, especially in the hippocampus. Insulin mediates 

metabolic homeostasis and regulates neurotrophic processes and synaptic plasticity of the 

brain (Calvo‐Ochoa and Arias, 2015; Nguyen et al., 2018).  

2.3.7  High-fat diet and Metabolic Disorders 

High fat diet (HFD) also called Western diet is essentially rich in saturated fat and refined 

sugar, has been shown to increase cognitive decline with aging and Alzheimer’s disease, and 

to affect cognitive functions that are hippocampal dependent, including reversal learning and 

memory processes (Tamashiro, 2015). 

Previous investigations have established a clear association between high fat diet intake and 

metabolic disorders such as cardiovascular diseases, obesity and diabetes and large data of 

studies now suggests that diets high in fat can also have negative impact on behaviour, the 

brain and cognition (Heather et al., 2013; Tamashiro, 2015). Evidence in humans and animal 

models suggests that obesity, insulin resistance, diabetes and cardiovascular diseases are 

associated with an increased risk of Alzheimer’s disease and other forms of cognitive 

impairment (Subbiah  et al., 2017). 

Animal disease models of dementia are essential tools for studying the pathophysiology of 

the disease, thereby assisting in the development of potent therapeutic molecules within a 

very short time (Engel et al., 2018).  

2.4  Streptozotocin  

Streptozotocin (STZ) is a glucosamine-nitrosourea compound derived from soil bacteria 

which was originally developed as an anticancer agent, it was found to induce diabetes in 
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experimental animals in 1963. Streptozotocin (STZ) is currently the most used diabetogenic 

agent in testing insulin and new antidiabetic drugs in animals (Nidal, 2015). 

2.4.1  Physical Properties of STZ 

In terms of solubility, it is very soluble in water, ketones and lower alcohols, but slightly 

soluble in polar organic solvents. Streptozotocin has a molecular formula of C8H15N3O7, 

molecular weight of 265 g/mol and the structure is composed of nitrosourea moiety with a 

methyl group attached at one end and a glucose molecule at the other end (Chinedum et al., 

2013). 

2.4.2  Chemical properties of STZ 

It is a cytotoxic methyl nitrosourea moiety (N-methyl-N-nitrosourea) attached to the glucose 

(2-deoxyglucose) molecule.  

It is a glucosamine derivative.  

It is a toxic beta cell glucose analogue 

It is a hydrophilic compound 

It is an alkylating agent 

STZ is a toxic glucose (Glu) and N-acetyl glucosamine (GlcNAc) analogue that is 

accumulated preferentially in pancreatic β-cells via GLUT 2 transporter uptake (Ventura-

Sobrevilla et al., 2011). 

It is relatively stable at pH 7.4 and 37°C at least for up to I hr. 

It has a biological half-life of 5–15 minutes 
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When reconstituted into a solution, it can be stored at room temperature or refrigerator but 

must be used within 12 hrs if stored at room temperature and protected from sunlight 

(Sharma, 2010). 

 

Figure 2.2: Chemical structure of streptozotocin 

2.4.3  Pharmacodynamics of STZ 

STZ has been used to create models of diabetes in experimental animals. It is selectively 

toxic toward pancreatic beta cells, as a result of its cellular uptake by the low-affinity glucose 

transporter 2 (GLUT2) protein located in pancreatic cell membranes. STZ is able to exhibit 

its cytotoxic property due to DNA alkylation which leads to cellular necrosis (Grieb, 2015). 

2.5  Trans-cinnamaldehyde 

Some of the essential oils of cinnamon includes trans-cinnamaldehyde, cinnamic acid, and 

cinnamate which has been reported to possess antioxidant, antimicrobial, anticancer, lipid-

lowering, and cardiovascular-disease-lowering properties (Camacho et al., 2015; Pasupuleti, 
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2014). The active compound of Cinnamon with hypoglycaemic activity is a contentious issue 

(Richard et al., 2016).  

The roles cinnamon in obesity and diabetic conditions have been reported (Wan-Nurdiyana, 

2014). Cinnamon is reputed from both nutritional and pharmacological points of view and its 

beneficial health promoting properties is mainly attributed to the polyphenolic composition 

and the volatile essential oils coming from different parts of the plant (bark, leaves, flowers, 

or buds). The cinnamon bark essential oils such as cinnamate, cinnamic acid, cinnamic 

aldehyde, cinnamyl aldehyde eugenol and trans-cinnamaldehyde are the major components of 

the leaves (Saeideh et al., 2018). 

Beneficial use of Trans-cinnamaldehyde 

Flavoring agent: Trans-cinnamaldehyde is commonly used as a flavouring agent in chewing 

gum, ice cream, candy, and beverages (Gutiérrez et al., 2009) it is also used in some perfume 

so as to give them fruity or aromatic scents (Chang et al.,2001). 

Agrichemical: TCA is widely used in agrochemical industries as fungicide because of its 

low toxicity, well known properties (Pedro et al., 2013). It has also been reported to be an 

effective insecticide with potent ability to kill mosquito larva and ability to repel animals 

such as cats and dogs (Cheng et al., 2004). 

Antimicrobial agent: Cinnamaldehyde is widely used as antimicrobial agent (Gomes et al., 

2011; Balaguer et al., 2013) with ability to inhibit oral microbial growth (Filoche et al., 

2005), trans-cinnamaldehyde is also used as an antimicrobial additive in poultry feeds 

(Balaguer et al., 2013) 
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Anticancer agent: The anticancer property of TCA invitro and in vivo has been documented, 

at high doses of TCA, proliferation, invasion, and tumor growth were inhibited in a murine 

A375 model (rats and mice) of human melanoma (Balaguer et al., 2013) 

2.5.1  Physical properties of trans-cinnamaldehyde 

Trans-cinnamaldehyde is a clear yellow liquid with strong odour of cinnamon, the molecular 

formula is C9H8O and chemical formula is C6H5CH: CHCHO (Siti et al., 2019). 

2.5.2  Chemical properties of trans-cinnamaldehyde 

The molecular formula of trans-cinnamaldehyde was determined in 1834 by French chemists 

Jean Baptiste André Dumas and Eugène Melchior Péligot (Balaguer et al., 2013) 

 The natural product of trans-cinnamaldehyde molecule consists of a phenyl group attached 

to an unsaturated aldehyde with low solubility in water (Balaguer et al., 2013). 

 

Figure 2.3: Chemical structure of trans-cinnamaldehyde (Xia et al., 2019) 
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2.6  Insulin resistance, Type II Diabetes and Dementia in Africa 

African governments seem not to recognize the catastrophic tendency of the diabetes 

epidemic, type 2 diabetes accounts for 70% - 90% of diabetes cases in Africa (Levitt, 2008; 

Mufunda et al. , 2006) it is more prevalent among the wealthy, incidence is higher in urban 

areas where people tend to be less physically active, eat diets rich in saturated fat and refined 

sugars and are more obese. Obesity is a key contributor to increased prevalence of diabetes 

mellitus in both urban and rural areas, but more so in the former (Hossain  and  Kawar, 2007; 

Sobngwi et al., 2004). According to the World Health Organization (WHO) estimates of 

obesity in Africa, it was observed that more than one-third of the women are obese compared 

to one-fourth of the men (Hossain  and  Kawar, 2007). 

Recent survey conducted on AD indicated dementia of the Alzheimer’s type is a major cause 

of health concern among adult population (Robert et al., 2012). Similar trend has been 

predicted in most African countries as a result of expected increase in life expectancy 

(Fratiglioni & Agüero-Torres, 2012). The prevalence of dementia in Ibadan, Nigeria was 

reported to be 2.29% and AD constituted 1.41% of the reported cases (Mbuyi, 2014). Similar 

study was conducted in Cotonou in Benin, a non-significantly higher prevalence (3.70%) was 

reported (Mbuyi, 2014). A relatively lower prevalence of 2.85% was also reported at a 

neurology clinic in Yaoundé in Cameroon (Callixte et al., 2013). A cross sectional survey 

conducted in northern Nigeria, reported 2.79% cases among Hausa-Fulani aged 65 and above 

with AD constituting 66.67% of cases (Abdulkareem et al., 2010). 

The number of people with dementia expected to rise above 7.6 million by 2050 as a result of 

increasing aging population in sub-Saharan Africa (ADI, 2018). There is urgent need to study 

the possible risk factors and potential intervention so as to curtail the growing burden of the 

disease (ADI, 2018). 
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Sub-Saharan African (SSA) countries are experiencing rapid transitions with increased life 

expectancy. As a result the burden of age-related conditions such as neurodegenerative 

diseases might be increasing (Alain et al., 2014). Population ageing is considered a global 

public health success, but also brings about new health challenges in the form of chronic 

diseases including cardiovascular diseases, cancers, as well as neurodegenerative disorders 

(Alain et al., 2014).  

2.6.1  Risk factors for dementia 

Dementia is an aging-related condition and a progressive neurodegenerative disorder 

clinically characterized by deterioration in memory, thinking, behavior, and the ability to 

perform everyday activities, it is one of the major causes of disability and dependency among 

older people worldwide. More so, dementia also constitute social and economic burden, not 

only on patients with dementia, but also on their caregivers, families, and society at large. 

Dementia results from a variety of diseases and injuries such as Alzheimer’s disease (AD) or 

stroke that are primarily or secondarily associated with the brain. Among the types of 

dementia, AD is the most common, comprising up to 60–80% of dementia cases, and 

vascular dementia (VD) is the second most common, accounting for 10–20% of dementia 

cases (Podcasy et al., 2016). 

Dementia is a growing health problem with an expected number of 115 million cases 

worldwide in 2050 (WHO, 2021). The prevalence of dementia increases steeply with age 

from a prevalence of 2.6% in subjects aged 65–69 years and a prevalence of 43.1% in 

subjects aged 90 years and older (WHO, 2012). Insight in the risk factors for cognitive 

decline is essential in the search for preventive strategies for cognitive impairment and 

dementia. Former studies identified a range of potential risk factors including the APOE 
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(apolipoprotein E) ε4 allele, cardiovascular risk factors, depressive symptoms, inflammation 

markers and lifestyle factors (Cheng et al., 2012; Smith et al., 2013; Baumgart et al., 2015). 

There are some reported associated risk factors of AD in sub-Saharan Africa, such risk 

factors include the following; 

2.6.1.1  Ageing  

Age is the strongest known risk factor for dementia. Though it is possible to develop the 

condition earlier in life, at least 1 in 20 people with dementia developed it at age under 65, 

the chances of developing dementia rise significantly with ageing. Above the age of 65, a 

person’s risk of developing Alzheimer’s disease or vascular dementia doubles roughly every 

5 years. It is estimated that dementia affects one in 14 people over 65 and one in six over 80. 

This may be due to factors associated with ageing, such as higher blood pressure, increased 

risk of cardiovascular diseases, changes to nerve cells, DNA and cell structure, loss of sex 

hormones after mid-life changes, the weakening of the body’s natural repair systems and 

changes in the immune system (Alain et al., 2014).  

2.6.1.2  Gender and genetics 

Women are more likely to develop Alzheimer’s disease than men. The reasons for this are 

still unclear. It has been suggested that Alzheimer’s disease in women is linked to a lack of 

the hormone oestrogen after the menopause. Studies have shown that women have a two- to 

eight-fold increased risk of dementia attributed partly to their longevity when compared to 

men, increasing age has been closely associated with the risk of dementia. Genes such as 

apolipoprotein E (APOE) gene has been reported to increase the risk of Alzheimer’s disease 

among people in the U.S., however research in sub-Saharan Africa is inconclusive. 

Indianapolis-Ibadan project reveals that the allele was not associated with Alzheimer’s 

disease in elderly Yoruba, where as another study reported that the allele was associated with 
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AD. A novel mutation in presenilin 1, was found to cause familial or early-onset Alzheimer’s 

disease in South Africa. 

 For most dementias other than Alzheimer’s disease, men and women have much the same 

risk. For vascular dementia, men are actually at slightly higher risk than women. This is 

because men are more prone to stroke and heart disease, which can cause vascular and mixed 

dementia (Alain et al., 2014). 

 2.6.1.3  Ethnicity  

 There is some evidence that people from certain ethnic communities are at higher risk of 

dementia than others. For example, South Asian people (from countries such as India and 

Pakistan) seem to develop dementia – particularly vascular dementia – more often than white 

Europeans. South Asians are well known to be at a higher risk of stroke, heart disease and 

diabetes, and this is thought to explain the higher dementia risk. Similarly, people of African 

or African-Caribbean origin seem to develop dementia more often. They are known to be 

more prone to diabetes and stroke. All of these effects are probably down to a mix of 

differences in diet, smoking, exercise and genes (Alain et al., 2014; WHO, 2018).  

Scientists have known for some time that the genes we inherit from our parents can affect 

whether or not we will develop certain diseases. The role of genes in the development of 

dementia is not yet fully understood, but researchers have made important advances in recent 

years. More than 20 genes have been found that do not directly cause dementia but affect a 

person’s risk of developing it. For example, inheriting certain versions (variants) of the gene 

apolipoprotein E (APOE) increases a person’s risk of developing Alzheimer’s disease. 

Having a close relative (parent or sibling) with Alzheimer’s disease increases your own 

chances of developing the disease very slightly compared to someone with no family history. 

However, it does not mean that dementia is inevitable for you. It is also possible to inherit 
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genes that directly cause dementia, although these are much rarer than the risk genes like 

APOE. In affected families there is a very clear pattern of inheritance of dementia from one 

generation to the next. This pattern is seen in families with familial Alzheimer’s disease (a 

very rare form of Alzheimer’s which appears usually well before the age of 60) and genetic 

frontotemporal dementia. If a person has the faulty gene then each of their children has a 50 

per cent chance of inheriting it and so developing the dementia (Alain et al., 2014). 

2.6.1.4 Medical conditions and diseases 

 Cardiovascular factors There is very strong evidence that conditions that damage the heart, 

arteries or blood circulation all significantly affect a person’s chances of developing 

dementia. These are known as cardiovascular risk factors. Among the Yoruba ethnic group, a 

study reveals that elderly participants with high blood pressure had an increased risk of 

dementia, compared to people with normal blood reading, high cholesterol and peripheral 

arterial disease was also associated with dementia. .Having cardiovascular disease or type 2 

diabetes increases a person’s risk of developing dementia by up to two times. These 

cardiovascular conditions are most strongly linked to vascular dementia. This is because 

vascular dementia is caused by problems with blood supply to the brain. Recent research 

suggests that many people with dementia have mixed dementia, or they have Alzheimer’s 

disease with some vascular damage in the brain (Hall  et al., 2006). 

2.6.3.5 Depression and other Conditions 

People who have had periods of depression – whether in mid-life or later life – also seem to 

have increased rates of dementia. Whether depression is a risk factor that in part causes 

dementia is not clear, and the answer probably differs with age. There is some evidence that 

depression in middle age does lead to a higher dementia risk in older age. In contrast, 
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depression in later life, ie when a person is in their 60s or older, may be an early symptom of 

dementia rather than a risk factor for it. 

Other medical conditions that can increase a person’s chances of developing dementia 

include Parkinson’s disease, multiple sclerosis and HIV. Down’s syndrome and other 

learning disabilities also increase a person’s risk of dementia. A number of other conditions 

have been linked to dementia in some studies, but evidence on them is still emerging. These 

conditions include chronic kidney disease, hearing loss, anxiety and sleep apnoea (where 

breathing stops for a few seconds or minutes during sleep). There is also growing evidence 

that loneliness and social isolation may increase someone’s risk of dementia (Alain et al., 

2014).   

2.6.3.6 Head injuries 

A severe blow to the head – especially being knocked out – increases the risk of later 

dementia such as Alzheimer’s disease. About a fifth of professional boxers go on to develop a 

different form of dementia. This used to be known as dementia pugilistica but is now known 

as chronic traumatic encephalopathy. This is thought to be caused by protein deposits formed 

in the brain as a result of head injury. Recent evidence suggests that professional American 

footballers, who often have repeat mild head injuries, may also be at risk of chronic traumatic 

encephalopathy (ADI, 2018). 

2.6.3.7 Early life and Education  

A study in Central African shows a correlation between losing a parent in early childhood 

and dementia, the impact of environmental factors such as birthweight and nutrition on 

dementia has not been reported. Association between education and dementia in sub-Saharan 

Africa is inconclusive, some studies observed association between low education and 

dementia, the association appears to be greater in women than men (ADI, 2018) 
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2.6.3.8 Lifestyle, environment and behavior 

The Yoruba Nigerians whose diets are predominantly grains, vegetables and fish low in 

calories and fats were found to have low cholesterol and low incidence of AD when 

compared to African Americans. The findings on the association between dementia and 

alcohol in African population are mixed. Exposure to neurotoxins such as heavy metals in the 

environment has been reported to be a common experience of people living in developing 

countries, which may pose a potential risk and trigger increased incidence of dementia. (ADI, 

2018). Some SSA studies have identified weak social network as a risk factor for AD, 

African communal way of living has been reported to have protective effect by keeping the 

brain active (ADI, 2018).  
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Figure 2.4: Risk factors for developing AD (Sandeep et al., 2016) 
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2.7  Pathology and pathophysiology of dementia 

The etiology of Alzheimer’s disease (AD) as a neurodegenerative disorder is incompletely 

defined. The drugs currently available on provides momentary assistance with symptoms. 

Despite the ongoing extensive research on AD and the generation of several studies, the 

precise mechanism, disease course and cure still remain largely unknown. (Zamani et al., 

2019). 

Marked atrophy, shrinkage of the gyri, broadened of sulci has been reported in the brain of 

AD patient, in most cases affecting every part of the cerebral cortex. However, the occipital 

lobe is often relatively spared. The cortical ribbon often become thinned with ventricular 

dilatation usually around the temporal horn as a result of the atrophy of the hippocampus and 

amygdala. There are series of ongoing studies on the pathology of AD using different animal 

models so as to obtain valuable information on the pathogenic mechanisms of AD. The 

pathology of AD can be divided into three; (a) positive lesions (b) negative lesions, and (c) 

inflammation and plasticity. Positive lesions are very common and readily detectable and 

they form the basis for diagnosis of AD. Negative lesions are difficult to evaluate, it involves 

neuronal and synaptic loss, their impact is directly related to cognitive deficit. The main 

pathological hallmarks of AD are the accumulation of senile plaques and neurofibrillary 

tangles, these features are also found in other neurodegenerative diseases and clinically 

normal individuals. Burnt out plaques and diffuse plaques are also found in the AD brains 

apart from senile plaques, burnt out plaques consist of an isolated dense amyloid plaque 

while diffuse plaques consist of poorly defined amyloid. The abnormal processing of the 

amyloid-β protein precursor along the amyloidogenic pathway has been reported to lead to 

the production of  fragments, among which Aβ 42 peptide is the most toxic (Zamani et al., 

2019). 
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Alzheimer’s disease (AD) concedes as progressive neurodegenerative disorder, the foremost 

cause of dementia in late adult life. Intracellular neurofibrillary tangles (NFTs) and 

extracellular amyloidal protein deposits as the senile plaques characterize it pathologically. 

Accumulations of Aβ are amyloid plaques in the brain parenchyma and in the cerebral blood 

vessels where it is known as congophilic angiopathy also known as cerebral amyloid 

angiopathy (CAA). NFTs formed the paired helical filaments with hyperphosphorylated tau 

proteins. These NFTs characterized by the neuronal and synaptic loss and some certain 

distinctive lesions. (Kumar and Singh, 2015). 

Neuronal loss and/or pathology may be seen particularly in the hippocampus, amygdala, 

entorhinal cortex and the cortical association areas of the frontal, temporal and parietal 

cortices, but also with subcortical nuclei such as the serotonergic dorsal raphe, noradrenergic 

locus coeruleus, and the cholinergic basal nucleus. The deposition of tangles follows a 

defined pattern, starting from the trans-entorhinal cortex; consequently, the entorhinal cortex, 

the CA1 region of the hippocampus and then the cortical association areas, where frontal, 

parietal and temporal lobes are particularly affected. The extent and placement of tangle 

formation correlates well with the severity of dementia, much more so than numbers of 

amyloid plaques (Kumar and Singh, 2015). 

One of the main pathological features of AD is the formation of senile plaques (SP), which is 

caused by amyloid beta (Aβ) deposition. Normally, Aβ are soluble small peptides, which are 

produced by the splitting of the precursor protein of amyloid (APP) by the action of α-

secretase, β-secretase and γ-secretase. The imbalance between β-amyloid (Aβ) production 

and clearance leads to various types of toxic oligomeric, namely protofibrils, fibrils and 

plaques depending upon the extent of oligomerization. The reason of the formation of Aβ is 

still unclear, but the sequence, concentration and conditions of stability of Aβ are important 
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factors (Liu et al., 2017). The pathophysiology of Alzheimer's disease is credited to a number 

of factors such as the cholinergic dysfunction, amyloid/tau toxicity and oxidative 

stress/mitochondrial dysfunctions (Mohamed and Shakeri, 2016)  

Vascular risk factors (hypertension, hyperlipidemia, diabetes) and behavioral factors (obesity, 

physical inactivity) are associated with dementia (O'Donnell et al., 2010). Vascular risk 

factors may lead to cerebrovascular dysfunction through pathways mediated by β-amyloid 

and the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major 

source of vascular oxidative stress. Cerebrovascular dysfunction and BBB alterations may 

compromise the cerebral microenvironment and increase the vulnerability of regions critical 

for cognition to ischemic-hypoxic brain damage leading to neuronal dysfunction and 

cognitive deficits (Iadecola et al., 2009).  

2.7.1  Inflammation and dementia  

Neuroinflammation is the presence of activated microglia and astrocytes leading to neuronal 

injury via the release of pro-inflammatory cytokines (Monte, 2017). Neuroinflammatory 

factors have been known to play significant role in the etiology of dementia such as AD 

(Mattson, 2004). Aβ peptide plays critical  role in the neuroinflammation hypothesis of AD, 

Aβ accumulation results in increased levels of inflammatory molecules which are products of 

chronically activated glia resulting in neuronal damage which further induces glia activation 

leading to detrimental cycle of neuroinflammation and neurodegeneration (Griffin et al, 

1998).Chronic inflammation  amplifies  the pathogenic processes through sustained NF-κB 

activation and increased pro-inflammatory cytokines, leading to insulin resistance or  

increased amyloid-β (Aβ) production and microglia activation and subsequently AD (Mihalea 

et al., 2009). 
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2.8  Alzheimer’s disease hypothesis 

Several hypotheses have been formulated to explain the etiology of AD, Although αβ 

accumulation along with tau hyper-phosphorylation is the most proposed pathogenetic 

mechanism (Fuyuki, 2018) of a recent, mitochondrial cascade hypothesis has attracted much 

interest (Swerdlow, 2018). Amyloid cascade hypothesis proposes that, accumulation of 

amyloid beta induces the histologic, biochemical and clinical changes observable in AD 

patients (Hillen, 2019). Other hypotheses that are under debate includes: vascular hypothesis 

(Torre, 2010) tau hypothesis (Maccioni et al., 2010) inflammatory hypothesis (Lamb, 2018) 

metal hypothesis (Tanzi, 2008) cell cycle hypothesis (Reddy, 2006) oxidative stress 

hypothesis (Christen, 2000) and cholesterol hypothesis (Gibson et al., 2014) 
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Figure 2.5: Alzheimer’s disease hypothesis (Hroudová et al., 2016) 
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AD and Type 2 Diabetes Mellitus (T2DM) are the two most common diseases among the 

aging population worldwide. Epidemiological studies reveal that people with T2DM stand a 

higher risk of developing AD. AD brains are reportedly less effective in glucose uptake 

thereby mimicking brain insulin resistance (Mudher, 2018). 

2.9  Anatomy of the hippocampus 

The hippocampus plays a major role in learning and memory, it is embedded deep into 

temporal lobe. It is a vulnerable structure that readily gets damaged by a variety of stimuli. 

Neurological and psychiatric disorders have been reported to readily affect it (Bahniwal et 

al., 2017). 

The hippocampus has three distinct zones: the dentate gyrus, the hippocampus proper, and 

the subiculum, the dentate gyrus and hippocampus proper form two C-shaped rings that 

interlock. The subiculum is thus a transition zone, linking the hippocampus proper with the 

dentate gyrus. (Bahniwal et al., 2017). 

The Cornu Ammonis (CA) is a seahorse-like or ram's horn-like structure that describes the 

different layers of the hippocampus. There are four hippocampal subfields CA1, CA2, CA3, 

and CA4. CA3 and CA2 border the hilus of the dentate gyrus on either side. CA3 is the 

largest in the hippocampus and receives fibers from the dentate granule cells on their 

proximal dendrites (Daugherty et al., 2016; Bahniwal et al., 2017). 
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Figure 2.6: Structure of the hippocampus (Bahniwal et al., 2017). 
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Embryology of the Hippocampus 

The hippocampus originates in the isocortex as part of the fifth limbic lobe of the brain in 

the cerebral hemisphere's medial surface. It is also considered part of the olfactory cortex 

(Wang et al., 2019). It is drawn to the temporal lobe by a strand of fibers called the fornix. 

Choroid fissure helps the choroid plexus invaginate into the lateral ventricle. The 

hippocampus itself is a mammalian innovation, while the isocortex as a whole is part of the 

phylogenetical ancient brain. The hippocampus is a deep structure hidden between the 

mesencephalon and the medial aspect of the temporal lobe. Three important changes are 

necessary for the complex shape and location of the hippocampus 

i. Rotation of the lateral parts of the developing telencephalon dorsocaudally, then 

ventrally and rostrally, forming the parietal, occipital, and temporal lobes. 

ii. The hippocampal sulcus then invaginates into the medial wall of the temporal lobe 

iii. Finally, the hippocampal sulcus rotates along a longitudinal axis of the hippocampus, 

forming a complex structure that is present in the medial aspect of the temporal lobe. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Ethical approval 

The approval for this research protocols was given by the University of Ilorin Ethical Review 

Committee (UERC) with approval number UERC/ASN/2018/1157 

3.2  Animal acquisition and handling 

Sixty-four (64) adult female Wistar rats were purchased from Ladoke Akintola University, 

Ogbomosho. These rats were acclimatized for fourteen days and accommodated in the animal 

House of the Faculty of Basic Medical Sciences, University of Ilorin, Nigeria. The rats had 

access to food and water ad libitum except at certain period of the experiment. Standard 

guidelines for animal handling as approved by University of Ilorin Ethical Review 

Committee (UERC) were followed. 

3.3  Induction of insulin-resistance 

To induce insulin- resistance, animals were fed with high-fat diet as previously described by 

Akinola et al., 2018 for eight weeks, and 30mg/kg STZ intraperitoneally (Zhang et al.,2008) 

at the end of 8 weeks. After the treatment, blood was withdrawn from the tail vein of the 

animals, and the blood glucose level was checked using a digital glucometer (Accu-Check, 

Roche, Belgium). Animals with fasting blood glucose concentrations not less than 

200mg/mol were included in the study. 

3.4  Animal grouping and administration of trans-cinnamaldehyde 

The rats were randomly assigned into eight groups with the following treatment administered:  

Group I  (Normal control) received oral dose of olive oil throughout the experiment.  
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Group II  (Insulin-resistant control) received HFD for eight weeks and 30 mg/kg of STZ 

  (i.p) 

Group III  (TCA only 60mg/kg) received 60 mg/kg of TCA (oral) for four weeks  

  (Haripriya and Vijayalakshmi, 2014).  

Group IV  (Insulin resistant-ND 60mg/kg) received HFD for eight weeks, 30 mg/kg of 

  STZ (i.p) for four weeks, 60 mg/Kg of TCA for four weeks and normal diet 

  after HFD administration was withdrawn. 

Group V  (Insulin- resistant-HFD 60mg/kg) received HFD for eight weeks, 30 mg/kg of 

  STZ (i.p) for four weeks, and 60 mg/kg of TCA (oral) for four weeks.  

Group VI  (TCA only 40mg/kg) received 40 mg/kg of TCA (oral) for four weeks.  

Group VII  (Insulin-resistant-ND 40mg/kg) received HFD for eight weeks, 30 mg/kg of 

  STZ (i.p) for four weeks, 40 mg/kg of TCA (oral) for four weeks and normal 

  diet after HFD administration was withdrawn. 

Group VIII  (Insulin-resistant-HFD 40mg/kg) received HFD for eight weeks, 30 mg/kg of 

  STZ (i.p) for four weeks, and 40 mg/kg of TCA (oral) for four weeks.  

3.5  Measurement of Fasting Blood Glucose Levels 

Blood was withdrawn from the tail vein of the animals, and the blood glucose level was 

checked using a digital glucometer (Accu-Check Roche, Belgium). Animals with fasting 

blood glucose concentrations of at least 200mg/mol were included in the study. 

Measurement of Body Weight 

Body weights of the rats were taken fortnightly using an electronic balance (SF-400, China). 
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3.6  Behavioural Tests for Cognitive Function 

3.6.1  Y-Maze Test 

Short-term spatial memory was assessed in rats using Y- maze apparatus. The Y-maze 

apparatus, made of wood, is shaped like a Y, with three identical arms labelled A, B and C 

with an angle of 120° between each pair of arms (Rasoolijazi  et al., 2013). Each of the arm is 

40 cm long, 30 cm high, and 15 cm wide. Each animal was set out at the end of one arm and 

was then allowed to move freely inside the maze. When the base of the animal’s tail was 

completely placed in the arm, each arm entrance was recorded visually (Nittaa, 2002). 

3.6.2  Morris Water Maze 

After the TCA treatment, the spatial learning and memory of rats were evaluated using 

Morris water maze. A circular pool of 150cm in diameter and 60cm high was filled with 

water (25± 2oC) to a height of 40 cm. The pool was divided into four equal quadrants; North, 

South, East, and West. A transparent escape platform (10 cm in diameter) was hidden 2 cm 

below the surface of the water at a fixed location in one of the quadrants to ensure being 

invisible to the rats but high enough for the rats to stand on it. Rats were trained once in a day 

for three days. Following the training, milk was added to the water to render it opaque, rats 

were gently put into the water and were given 60 s to freely search for the platform. Rats that 

found the platform in allotted time were allowed to stay on the platform for another 15s, 

while those who failed to detect the platform in 60 s were guided to the destination and also 

allowed to stay for 15 s. The time required for reaching the platform (escape latency), was 

recorded and measured by a video tracking system. 
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3.7  Collection of Brain Samples 

The following day after the behavioural studies, rats were sacrificed, hippocampus was then 

excised, weighted and then rinsed in 0.25 M sucrose 3 times for 5 mins each and placed in 

30% sucrose in which they were stored at 4°C. 

3.8  Biochemical Assays  

Concentrations of tumor necrotic factor-alpha (TNF-α), nuclear factor kappa b(NFk-B) and 

insulin in the hippocampus were determined using rat ELISA kits (Diaclone, London, UK or 

(eBioscience, USA), according to the manufacturer's protocol. 

3.8.1  Homogenate 

After behavioural tests (Morris Water Maze and Y Maze), animals were anaesthetized with 

ketamine and sacrificed. The skull was opened up and the hippocampus was harvested, 

weighed, and then kept in ice before being transferred into the freezer at 20°C in a Phosphate 

Buffer Saline (PBS) of volume 4 times the brain weight before homogenization. The 

homogenates were centrifuged, the pellet was discarded and the supernatants were 

immediately separated in to various portions for ELISA assays. 

3.8.2  Estimation of Brain Tumour Necrosis Factor-alpha (TNF-α)  

     Hippocampal TNF-α concentration was estimated using ELISA MAX
TM 

Deluxe kit 

(BioLegend, USA) according to the manufacturer’s instructions. All the samples, reagents 

and standard solutions were kept in room temperature before use. Briefly, TNF-α enzyme 

immunoassay was done by adding 100 μL of hippocampal sample, standards and controls to 

each wells of an overnight (18hr, 4°C) mouse TNF-α capture antibody incubated 96 well 

plate. After which, plate was sealed with adhesive foil and incubated for 2 hours at room 

temperature (25°C) on a shaker (approx. 500 rpm). Then, 100 μL of biotinylated goat 

polyclonal anti-mouse TNF-α detection antibody and avidin-horseradish peroxidase (avidin-
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HRP) solutions were added to each wells; plate was sealed and incubated for 1hr. 3min. at 

room temperature (25°C) on a shaker (approx. 500 rpm). Thereafter, 100 μL of the 

chromogenic substrate [3, 3′, 5, 5′- tetramethy lbenzidine (TMB) was added to each well and 

incubated in the dark for 15min at room temperature (25°C) before the addition of stop 

solution (100 μL) and the absorbance was read at 450nm within 15min using Spectramax M-

5 (Molecular Devices, Sunnyvale, CA) multifunctional microplate reader equipped with 

Softmax Pro v 5.4 (SMP 5.4). Thereafter, a log-log logistic 4-parameter curve-fitting was 

used to determine the hippocampal concentrations of TNF- α in pg/mL.  

3.8.3  Estimation of Hippocampal Nuclear Factor-kappa B (NF-kB)  

The Nf-kB concentrations were estimated in the hippocampus using ELISA MAX
TM 

Deluxe 

kit (BioLegend, USA) according to the manufacturer’s instructions. All reagents, standard 

solutions and samples were brought to room temperature before use. Nf-kB enzyme 

immunoassay was carried out by adding 100μL of standards, control and hippocampal 

samples to each wells of an overnight (18hr, 4°C) mouse Nf-kB capture antibody incubated 

96 well plate. After which, microplate was sealed with adhesive foil and incubated for 2hr 

room temperature (25°C) on a shaker (approx. 500 rpm). Then, biotinylated rat monoclonal 

anti-mouse Nf-kB detection antibody (100μL) and avidin-HRP (100μL) solutions were added 

to each wells, and plates were sealed and incubated for 1hr 3min at room temperature (25°C) 

on a shaker (approx. 500rpm). Thereafter, 100μL of the chromogenic substrate (TMB) was 

added to each well and incubated in the dark for 20min at room temperature (25°C). The 

absorbance was read at 450nm within 15min using Spectramax M-5 (Molecular Devices, 

Sunnyvale, CA) multifunctional microplate reader equipped with Softmax Pro v 5.4 (SMP 

5.4), after the addition of 100μL of stop solution on a shaker to achieve homogenous 

solutions. A log-log logistic 4-parameter curve-fitting was used to determine the 

concentration of Nf-kB in the hippocampus in pg/mL.  
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3.8.4  Estimation of Hippocampal Insulin Concentration  

     Hippocampal insulin concentration was estimated using ELISA MAX
TM 

Deluxe kit 

(BioLegend, USA) according to the manufacturer’s instructions. All the samples, reagents 

and standard solutions were kept in room temperature before use. Briefly, insulin 

immunoassay was done by adding 100 μL of hippocampal sample, standards and controls to 

each wells of an overnight (18hr, 4°C) mouse insulin capture antibody incubated 96 well 

plate. After which, plate was sealed with adhesive foil and incubated for 2 hours at room 

temperature (25°C) on a shaker (approx. 500 rpm). Then, 100 μL of biotinylated goat 

polyclonal anti-mouse insulin detection antibody and avidin-horseradish peroxidase (avidin-

HRP) solutions were added to each wells; plate was sealed and incubated for 1hr. 3min. at 

room temperature (25°C) on a shaker (approx. 500 rpm). Thereafter, 100 μL of the 

chromogenic substrate [3, 3′, 5, 5′- tetramethy lbenzidine (TMB) was added to each well and 

incubated in the dark for 15min at room temperature (25°C) before the addition of stop 

solution (100 μL) and the absorbance was read at 450nm within 15min using Spectramax M-

5 (Molecular Devices, Sunnyvale, CA) multifunctional microplate reader equipped with 

Softmax Pro v 5.4 (SMP 5.4). Thereafter, a log-log logistic 4-parameter curve-fitting was 

used to determine the hippocampal concentrations of insulin in pg/mL. 

Calculation of HOMA-IR 

HOMA-IR was calculated using the formula = (glucose in mmol/L x insulin in 

mIU/mL)/22.5.  

3.9 Histopathological Examinations   

3.9.1  Preparation of Brain Tissues for Histology and Immunohistochemistry 

Animals were anaesthetized with ether and perfused transcardially with sterile Phosphate 

Buffered Saline (PBS). Then, the rats were dissected, flushed with normal saline and perfused 
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with 10% buffered formaldehyde. Thereafter, their brains were harvested and fixed with 10% 

phosphate buffered formaldehyde. The brains were then subjected to the routine method for 

paraffin wax embedment to obtain paraffin wax embedded tissue blocks.  

3.9.2  Staining techniques 

3.9.2.1 Haematoxylin and Eosin 

This technique was meant to reveal the normal histoarchitecture of the hippocampus. It was 

also used for stereological analysis of the cells. (Pearse, 1980).  

3.9.2.2 Protocol for Haematoxylin and Eosin Staining of the Brain section 

Slides containing paraffin sections were placed in a slide holder and deparaffinization and 

rehydration of sections were done in the following reagents respectively: 3 times for 3 mins 

in Xylene, 3 times for 3 mins 1:1 Xylene with 100% ethanol, 1 time for 3 mins in 95% 

ethanol, 1 time for 3 mins in 80% ethanol and then 1 time for 5 mins in deionized H2O 

(excess water was blotted from the slide holder before taking them into haematoxylin). 

Subsequently, haematoxylin staining was done with the following procedure: 1 time for 3 

mins haematoxylin, 1 time for 5 mins in tap water (to allow stain to develop), slides were 

dipped 12 times in (fast) acid ethanol to destain), rinsed 2 times for 1 mins of tap water, then 

rinsed 1 time for 2 mins in deionized water (and left overnight). Excess water was blotted 

from slide holder before going into eosin. 

For eosin staining and dehydraytion, the following procedures were followed: slides were 

placed 1 time for 30 sec in eosin (up to 45 sec for older batch of eosin) then 3 times for 5 

mins in 95% ethanol, followed by 3 times for 5 mins in 100% ethanol (blotted excess ethanol 

before going into xylene) and then 3 times for 15 mins in xylene. Following this, slides were 

cover slipped using distrene plasticizer in xylene (DPX) as mountant (one drop of DPX was 
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placed on the slide using a glass rod, taking care to leave no bubbles). Coverslips were angled 

to let them fall gently on the slide. Slides were then dried overnight in the hood. 

3.9.2.3 Tissue staining with Nissl Stain 

Procedure for Nissl stain in brain samples (Hippocampus, prefrontal cortex and striatum) 

Sections were taken to water, followed by staining in 1% of Cresyl fast violet for 30mins. 

After which it was then rinsed in water; differentiation was done by using 70% alcohol until 

the stained section appeared pale. Differentiation was controlled by observation through the 

microscope. Dehydration in absolute alcohol and then cleared in xylene. This was followed 

by mounting in DPX (Wolfgang, 2003). The sections were viewed under a light microscope. 

3.9.2.4 Immunohistochemical study of the hippocampus 

Immunohistochemistry of Beta-amyloid, GFAP, and NeuN  

The immunohistochemistry method was used to quantify the level of beta-amyloid, GFAP 

and NeuN using the beta-amyloid, GFAP and NeuN kits (Santa Cruz, Germany) according to 

the manufacturer's instructions and modified method of Edelstein et.al.. (2014). 

Briefly, brain tissue section hippocampus was subjected to the process of deparaffinization 

and hydration using xylene and graded alcohols (100, 90 and 80%) for 5 min, respectively. 

The slides were then washed twice with distilled water and incubated with peroxidase block 

for 5-10 min at room temperature (25°C). Thereafter, tissue sections were rinsed with 

distilled water, placed in citrate buffer tank and heated in a water bath for 3-5 min for antigen 

retrieval. Slides were washed with phosphate buffer saline (PBS) containing 0.02% Tween 20 

thrice, before adding protein blocking solution for 5-10 min at room temperature (25°C). 

Tissue sections were incubated with primary antibody (1:300) for 20-30 min at room 

temperature (25°C). Slides were then washed with PBS 5-7 times and incubated with one-

step horseradish peroxidase (HRP) polymer for 20-30 min at room temperature (25°C). Also, 
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tissue sections were rinsed 5-7 times with PBS containing 0.02% Tween 20 and 2-3 times 

with distilled water. Few drops of ready to use 3, 3′- diaminobenzidine (DAB) reagent was 

added on each tissue sections and allowed to incubate for 6-10 min at room temperature 

(25°C) before washing with PBS 5-7 times and then with distilled water. Then, slides were 

incubated with hematoxylin for 30-60 s, rinsed with distilled water and allowed to drain 

before mounting with appropriate mountant.  

3.10  Photomicrography 

Stained tissue sections were viewed under a light binocular microscope (Olympus, USA) and 

images were captured with an Amscope camera (MD 500).   

3.11 Morphometric analysis 

Morphometric analysis of the tissue was done using Image J software (NIH, USA) and 

plugins to analyse cell count of neuron on the photomicrographs. 

3.12  Statistical Analysis 

All quantitative data were analysed using GraphPad (Version 6) and SPSS (Version 20) All 

the biochemical parameter outcomes were analysed with One-way analysis of variance 

(ANOVA) followed by Tukey's multiple comparisons test. Significance was set at p <0.05 

(95% confidence interval). The results were represented in bar charts with error bars to show 

the mean and standard error of mean respectively. 
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CHAPTER FOUR 

RESULTS 

4.1  Body weight changes 

Body weight changes in treated and control rats were monitored and the average weight of 

animals in each group were compared at the end of the treatment. 

Results from figure 4.1 show that there was an increase in body weight among HFD fed 

animals. The weight increase was not significantly high partly because of STZ associated 

weight loss and the age of the rats.  

Body weight 

 

Figure 4.1: Showing body weight changes with high fat and normal diet feeding. 

Values are expressed as mean ± SEM (n = 5 per group; * = statistical significance; p < 0.05; 

TCA=Trans-cinnamaldehyde; ND=Normal Diet; HFD=High Fat Diet)                                                                                                                        

HFD increases body weight among the treated groups 
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4.2  Fasting blood glucose level 

Administration of HFD/STZ significantly increased the blood glucose level of the treated 

groups when compared to the control. 

4.2.1  Blood glucose level after HFD and STZ administration in insulin-resistant rats 
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Figure 4.2: Fasting blood glucose level (After HFD and STZ) 

Values are expressed as mean ± SEM. n = 5 per group; the superscript alphabets above the 

bars represents significance difference with other groups. a represent difference with control; 
b represent difference with insulin resistant control; c represent difference with high TCA; d 

represent difference with IR-ND+TCA high; e represent difference with IR-HFD+TCA high; f 

represent difference with low TCA alone. TCA=Trans-cinnamaldehyde;IR=insulin-resistant; 

ND=Normal Diet; HFD=High Fat Diet) 
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4.2.2  Blood glucose level after TCA treatment 

TCA treatment significantly reduces blood glucose of the normal control and group (p < 

0.05) (119±4.9 mg/dl) when compared to the untreated rats (217±10 mg/dl)   
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Figure 4.3: Blood glucose after TCA intervention 

The superscript alphabets above the bars represents significance difference with other 

groups.a significantly different from control;b significantly different from IR control ;c 

significantly different from high TCA alone;d significantly different from IR-ND+TCA high 

;e significantly different from IR-HFD+TCA high ;f significantly different from low TCA 

alone 

Values are expressed as mean ± SEM (n = 5 per group; * = statistical significance; p < 0.05; 

TCA=Trans-cinnamaldehyde; ND=Normal Diet; HFD=High Fat Diet) 
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4.3  Behavioural Tests for Cognitive Functions 

4. 3.1  Morris Water Maze 

The IR groups show increased escape latency (38.17±1.302). When compared to normal 

control (22.33±1.022) however TCA treatment at both high and low doses significantly 

reduce the escape latency when compared to insulin-resistant control group; IR-ND+TCA 

low (35.50±0.8466); High TCA alone (12.17±0.7032), IR-ND+TCA High (27.67±1.358), IR-

HFD+TCA High (26.67±1.229), Low TCA alone (20.67±1.256) and IR-ND+TCA Low 

(22.83±1.600) 
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Figure 4.4: Rat escape latency using Morris water maze performance.  

The superscript alphabets above the bars represents significance difference with other groups. 

Values are mean ± SEM of data obtained. a significantly different from control; b 

significantly different from IR; c significantly different from High TCA alone ;d significantly 

different from IR-ND+TCA High; e significantly different from IR-HFD+TCA High;f 

significantly different from low TCA; g significantly different from IR-ND+TCA low P < 

0.05. 

Escape latency in Morris water maze performance for working memory.  
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4.3.2  Y-maze Test 

Percentage of alternation: the mean latency for group Insulin- resistant group (39.67±1.453), 

IR-ND+TCA High (71.67±2.028), IR-ND+TCA Low (48.67±2.028) and IR-HFD+TCA Low 

(22.00±1.732) were significantly different from control (57.67±2.028), that of High TCA 

alone (57.67±1.453), IR-HFD+TCA High (61.00±1.732) and TCA alone Low (56.00±2.082) 

were significantly different from insulin-resistant group. 
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Figure 4.5: The percentage of alternation using Y-maze test performance.  

The superscript alphabets above the bars represents significance difference with other groups. 

Values are mean ± SEM of data obtained a significantly different from control;b significantly 

different from IR; c significantly different from High TCA alone;d significantly different from 

IR-ND+TCA High; e= significantly different from IR-HFD+TCA High;f significantly 

different from  Low TCA alone; g significantly different from IR-ND+TCA Low P < 0.05. 
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4.4  Changes inflammatory markers 

4.4.1  Changes in the level of tumor necrotic factor-α 

TCA administration significantly suppresses neuroinflammation among the treated groups 

when compared to the insulin resistant control group. 
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Figure 4.6: Hippocampal level of TNF-α 

The superscript alphabets above the bars represents significance difference with other groups 

a significantly different from control;b significantly different from IR 

Values are expressed as mean ± SEM (n = 5 per group; * = statistical significance; p < 0.05; 

TCA=Trans-cinnamaldehyde; ND=Normal Diet; HFD=High Fat Diet; IR= Insulin resistant) 
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4.4.2  Changes in the level of nuclear factor kapa b 

TCA treatment at high and low doses significantly reduced the activities of nuclear factor 

kappa b in a dose dependent manner. 
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Figure 4.7: Hippocampal level of NF-Kb 

The superscript alphabets above the bars represents significance difference with other groups 

a significantly different from control group; b significantly different from IR group; 

c significantly different from High TCA alone;d significantly different from IR-ND+TCA 

High;e significantly different from IR-HFD+TCA High ;f significantly different from Low 

TCA alone 

Values are expressed as mean ± SEM (n = 5 per group; * = statistical significance; p < 0.05; 

TCA=Trans-cinnamaldehyde; ND=Normal Diet; HFD=High Fat Diet; IR=Insulin resistant) 
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4.5  Variation in serum insulin level 

TCA intervention significantly ameliorates hyperinsulinemic condition among treated groups 

when compared to the insulin resistant control. 
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Figure 4.8: Serum insulin levels 

The superscript alphabets above the bars represents significance difference with other groups 

a significantly different from control;b significantly different from IR group;c significantly 

different from High TCA alone;e significantly different from IR-HFD high TCA  

Values are expressed as mean ± SEM (n = 5 per group; p < 0.05; TCA=Trans-

cinnamaldehyde; ND=Normal Diet; HFD=High Fat Diet; IR=insulin resistant) 
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4.6  Brain weight 

4.6.1  Hippocampal weight 

Mild hippocampal atrophy was observed among the insulin-resistant control group; however, 

TCA treatment restores the insulin- resistance induced hippocampal atrophy. 
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 Figure 4.9: Hippocampal weight 

The superscript alphabets above the bars represents significance difference with other groups 

a significantly different from control;b significantly different from diabetic group;c 

significantly different from High TCA alone 

Values are expressed as mean ± SEM (n = 5 per group; p < 0.05; TCA=Trans-

cinnamaldehyde; ND=Normal Diet; HFD=High Fat Diet) 
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4.6.2  Relative organ weight (Brain/Hippocampus) 

The percentage ratio of hippocampus to the entire brain was significantly reduced among the 

insulin-resistant control and the group that received high fat diet with low dose TCA 
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Figure 4.10: Relative organ weight (Brain/Hippocampus) 

The superscript alphabets above the bars represents significance difference with other groups 

a significantly different from control group;b significantly different from IR group; 

c significantly different from High TCA alone 

Values are expressed as mean ± SEM (n = 5 per group; p < 0.05; TCA=Trans-

cinnamaldehyde; ND=Normal Diet; HFD=High Fat Diet; IR= Insulin resistant) 
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4.7  HOMA-IR 

HOMA-IR was significantly increased among the insulin-resistant control group, however 

TCA intervention at high and low doses significantly reduced the trend. 
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Figure 4.11: HOMA-IR 

The superscript alphabets above the bars represents significance difference with other groups 

a significantly different from control group;b significantly different from IR group;c 

significantly different from High TCA alone; e significantly different from Diabetic-

HFD+TCA High 

Values are expressed as mean ± SEM (n = 5 per group; p < 0.05; TCA=Trans-

cinnamaldehyde; ND=Normal Diet; HFD=High Fat Diet 
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4.8  Histological observation of the hippocampus 

4.8.1  Haematoxylin and Eosin stain observation 

Representative micrographs of H & E staining showing the general cytoarchitecture of the 

Hippocampus in wistar rats. Normal histological features of the hippocampus were 

observable in the control and TCA treated groups. The histology of these two groups presents 

normal neuronal layers (yellow arrows) with well-organized cells. In contrast, the HFD/STZ 

treated groups was characterized by various degenerative changes with pyknotic nuclei (red 

arrows), however the cyto-protective property of TCA was evident in the HFD/STZ+ TCA 

groups with organized cellular layers an indication of restoration of neuronal 

cytoarchitecture. 
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Figure 4.12a&b: (control group), the tissue presents normal neuronal layers (yellow 

   arrows) with well-organized cells. In contrast, the insulin resistant 

   group (Fig 4.12 B) was characterized by various degenerative  

   changes with pyknotic nuclei (red arrows), reduced layer of  

   neuronal cell and neuronal vacuolation; H&E Scale bar: 450µm ( 

   A &B top) and 45 µm (A &B below) 
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Figure 4.12 c&d:  Normal histological features of the hippocampus were observable 

   in the high TCA alone treated group (Fig. 4.12C) with normal  

   neuronal layers (yellow arrows) composed of well-organized cells. 

   Treatment with high dose TCA shows some organized neuronal 

   cell layer, an indication of the cytoprotective property of TCA.  

   H&E; Scale bar: 450µm (C & D top) and 45 µm (C &D below) 
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Figure 4.12e&f:  Treatment with high dose TCA with concurrent intake of HFD 

   (4.12E) shows reduction in pyknotic cells and organized neuronal 

   cell layer, an indication of the cytoprotective property of TCA,  

   Normal histological features of the hippocampus were observable 

   in the low dose TCA alone (Fig. 4.12F). The histology of this group 

   presents normal neuronal layers (yellow arrows) with well- 

   organized cells. H&E; Scale bar: 450µm (E &F top) and 45 µm (E 

   &F below) 
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Figure 4.12g&h:  Hippocampus of insulin-resistant rats treated with low dose of 

   TCA showing mild neuronal degeneration with reduced neuronal 

   cell layer. H& E; Scale bar: 450µm (G &H top) and 45 µm (G &H 

   below) 
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Cresyl Fast Violet 

Hippocampal sections stained with CFV, reveals a chromatogenic neuronal cell layers within 

CA3 region of the hippocampus in both the control and TCA treated groups. The pyramidal 

cell layer of the hippocampus exhibits a well stained intensity and are well arranged. 

HFD/STZ administration caused a marked distortion as seen in the hippocampal sections of 

rats in this group showing a highly chromatolysis of pyramidal cells (red arrows) within the 

CA3 region. Treatment of insulin resistant rats with TCA shows an improved chromatogenic 

properties of the pyramidal cells when compared with the insulin resistant control group. 
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Figure 4.13a&b: Hippocampal stained section showing highly chromatogenic  

   (yellow arrows) cells in the control group (Fig. 4.13 A), the insulin 

   resistant group (Fig. 4.13B) showing highly chromatolytic cells  

   (red arrows). CFV; Scale bar: 45 µm 

 

Figure 4.13c&d: Administration of high dose TCA alone (Fig. 4.13C) showing  

   normal neuronal cell layer, treatment with high dose TCA (Fig. 

   4.13D) following HFD/STZ administration shows an improved  

   chromatogenic properties of the pyramidal cells and neuroglia  

   within the CA3 region of the hippocampus. CFV; Scale bar: 45 µm 
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Figure 4.13e&f: Treatment with high dose TCA with concurrent administration of 

   HFD (Fig. 4.13E) shows restoration of the chromatolytic  

   properties of the neuronal cells. (Fig. 4.13F) Administration of low 

   dose TCA alone shows normal neuronal cell layer.CFV; Scale bar: 

   45 µm 

 

 

Figure 4.13g&h: Treatment of insulin-resistant rats with low dose TCA shows  

   persistent chromatolytic cells in the CA3 region of the   

   hippocampus. CFV; Scale bar: 45 µm 
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Immunohistochemical observation of the hippocampus 

Figure 4.14: Amyloid expression 

Control and TCA alone treated groups shows normal amyloid distribution, however insulin-

resistant control groups shows multiple amyloid deposition, treatment with low and high 

doses of TCA reduces the amyloid burden. 

 

Figure 4.14a&b: CA3 region of the hippocampus of normal control rats with  

   moderate amyloid deposition (A), multiple deposition of amyloid 

   plaques was observed in the insulin-resistant control group (B)  

   (yellow arrows), Scale bar: 45 µm 

 

 

Figure 4.14c&d: Showing reduced amyloid deposition in high TCA alone (C) and 

   after high TCA intervention (D); Scale bar: 45 µm 
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Figure 4.14e&f: Showing relatively increased  amyloid deposition after high TCA 

   treatement with concurrent HFD intake (E) and after low TCA 

   alone intervention (D); Scale bar: 45 µm 

 

Figure 4.14g&h: Showing relatively increased  amyloid deposition after low dose of  

   TCA treatement with normal diet (G) and concurrent HFD intake 

   (H); Scale bar: 45 µm 
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Glia Fibrillary Acidic Protein (GFAP) 

Figure 4.15 Representative micrographs of immunohistochemical staining of the 

hippocampus of Wistar rats using GFAP 

The normal control and TCA alone treated groups (A,C,&F)shows normal astrocyte 

distribution, the groups that received TCA intervention both at high and low doses 

(D,E,G&H) have similar astrocyte distribution with insulin resistant control group, the 

hippocampus of animals in these groups is similarly characterized by reactive astrocytes (red 

arrows), however in contrast to insulin-resistant group, the astrocyte morphology has similar 

appearance to the normal control group. 

 

Figure 4.15a&b: The normal control (A) is characterized by normal astrocytic  

   expression with regular distribution, size and numerous processes 

   which forms an array of network (yellow arrows), on the other  

   hands astrocyte integrity in the hippocampus of rats in the insulin- 

   resistant control group (B) was characterized by series of  

   deleterious changes such as astrogliosis and increased astroglia size 

   (red arrows). Scale bar: 45 µm 
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Figure 4.15c&d: High TCA alone treated group (D) is characterized by normal  

   astrocytic expression with regular distribution (yellow arrows), 

   treatment with high dose TCA with normal diet feeding restores 

   normal astrocytic morphology; Scale bar: 45 µm 

 

Figure 4.15e&f: High TCA treated group (E) shows improved astrocytic  

   morphology (yellow arrows) low TCA alone treated group (F) is 

   characterized by normal astrocytic expression with regular  

   distribution (yellow arrows); Scale bar: 45 µm 
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Figure 4.15g&h: Low TCA alone treated group with normal diet (G) is   

   characterized by normal astrocytic expression with regular  

   distribution (yellow arrows), treatment with low dose TCA with 

   concurrent high fat diet feeding restores normal astrocytic  

   morphology; Scale bar: 45 µm 
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NeuN immunostaining 

Figure 4.16: The normal control and TCA treated groups were characterized by increased 

NeuN immunoreactivity (A,C,F) with normal cellular architectural layout, however in the 

insulin-resistant control group (B) there is decreased NeuN immunoreactivity and nuclear 

degeneration (yellow arrows) in neurons as a result of pathological changes, administration of 

TCA restores IR  induced nuclear degeneration (D,E,G&H). 

 

Figure 4.16a&b: The normal control and TCA treated groups were characterized 

   by increased NeuN immunoreactivity (A), yellow arrows, with  

   normal cellular architectural layout, however in the insulin- 

   resistant control group (B) there is decreased NeuN   

   immunoreactivity and nuclear degeneration (yellow arrows).  

   NeuN; Scale bar: 45 µm 
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Figure 4.16c&d: High TCA alone (C) and with normal NeuN immunoreactivity  

   (yellow arrows), yellow arrows, treatment with high dose TCA  

   alone with concurrent normal diet intake (D) shows reduced  

   neurodegenerative changes NeuN; Scale bar: 45 µm 

  

 

Figure 4.16e&f: High TCA alone with HFD (E) and with normal NeuN   

   immunoreactivity (yellow arrows), yellow arrows, treatment with 

   high dose TCA alone with concurrent normal diet intake (D) shows 

   reduced neurodegenerative changes NeuN; Scale bar: 45 µm 
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Figure 4.16g&h: Low TCA alone with HFD (G) showing relatively normal NeuN 

   immunoreactivity (yellow arrows), treatment with low dose TCA 

   with concurrent normal diet intake (H) showing restoration of  

   cellular histo -architectural layout. NeuN; Scale bar: 45 µm 
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Stereological observation 
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Figure 4.17: Neuronal count 

A significant decrease was observed in the cell count between the control and IR treated 

groups.  

The superscript alphabets above the bars represents significance difference with other groups 

a significant different from Control ;b significant different from IR;c significant different from 

High TCA Alone;d significant different from IR-ND+TCA High;e significant different from 

IR-HFD+TCA High;f significant different from Low TCA Alone 

 

 

 



83 
 

CHAPTER FIVE 

5. 1  Discussions 

The mechanisms by which insulin resistance and diabetes alter brain functioning are not 

clearly understood, the most appropriate methods to diagnose and treat cognitive dysfunction 

associated with insulin-resistance is yet to be defined (Shaimaa et al., 2013). AD which is the 

most common form of dementia causes irreversible and degenerative neurological changes 

and it is always characterized by the formation of amyloid β (Aβ) plaques, neurofibrillary 

tangles, neuronal and synaptic loss (Sisi et al., 2017). Epidemiological studies have 

demonstrated that obesity, insulin resistant and T2DM are risk factors for AD (Wang et al., 

2014). 

High-Fat Diet and low dose STZ has been suggested as a better way to initiate insulin 

resistance which is one of the characteristic features of type 2 diabetes. Researchers are now 

developing rat models that will mimic the natural history of insulin resistance by feeding the 

rats with high fat diet followed by low dose of STZ (Reed et al., 2000; Srinivasan et al., 

2005). The coadministration of HFD and STZ has been widely used to create models of type 

I and type II diabetes mellitus through the induction of β cell death via alkylation of DNA 

(Szkudelski, 2001). High-dose STZ severely impairs insulin secretion mimicking type 1 

diabetes, however, low-dose STZ has been used to induce a mild impairment of insulin 

secretion which mirrors features common in insulin-resistant state (Reed et al,. 2000; 

Srinivasan et al., 2005). 

HFD and STZ model provides a relative cheaper, easily accessible and practical for the 

testing of various compounds with potential therapeutic properties for the treatment of insulin 

resistance and type II diabetes. Low-dose injections of STZ possess the ability to induce a 

stepwise β cells destruction rather than the rapid destruction caused by a single injection of 
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high-dose STZ (Kannan et al., 2004). High fat diet feeding combined with low dose STZ was 

prescribed for the creation of animal models insulin resistance (Vatandoust et al., 2018). 

In this present work, adult female Wistar rats were fed with HFD for eight weeks followed by 

low dose intraperitoneal injection of STZ, female adult Wistar rats were used because insulin 

resistance and T2DM tend to occur later in life and among women, contrary to vast majority 

of insulin resistance models that used young Wistar rats (Skovsø, 2014). 

5.1 High fat diet and streptozotocin administration increases body weight in Wistar 

 rats 

The body weight (BW) of each rat was recorded fortnightly, findings from this study revealed 

marked increase in body weight (figure 4.1) among Wistar rats treated with HFD/STZ when 

compared to rats fed with normal diet. This corroborates previous studies which reported that 

HFD increases body weight but the combination of HFD/STZ leads to a slight decrease in 

body weight (Jinshan et al., 2015; Magalhães et al., 2019). 

Multiple environmental factors such as excess food intake and lifestyle play critical roles in 

the onset of insulin resistance. The use of HFD and STZ to model IR is now common in 

recent years, the HFD and low dose STZ induces insulin resistance resulting in mild β-cells 

dysfunction without compromising insulin secretion completely. This model closely mimics 

the natural course of insulin resistance ( Wang et al., 2009; Shatwan et al., 2013). 

The slight decrease in body weight observed in this study may be due to insulin-resistance 

induced muscular atrophy and also the age of the rats used, one of the uniqueness of this 

work is that adult wistar rats were used because insulin resistance tends to occur later in life 

unlike bulk of previous findings that used younger rats, treatment with high dose TCA with 

concurrent replacement of high fat diet with normal diet led to a slight increase in body 

weight among the group treated with high dose TCA and normal diet (figure 4.1) showing 
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that adjustment of lifestyle or diet may play a synergistic role in therapeutic intervention, 

there was no significant increase in body weight among the group that were administered low 

dose TCA and the group that continued with high fat diet with high dose TCA. 

Furthermore, there was observable decrease in body weight among untreated insulin resistant 

group, the weight gained among HFD/STZ treated groups was not significantly high until the 

end of the treatment. Previous studies also reported a reduction in the body weight of animals 

fed with HFD diet followed by different STZ doses (Jinshan et al., 2015; Xiao-xuan et al., 

2018) 

5.2  Trans- cinnamaldehyde intervention prevents hippocampal atrophy 

The degree of hippocampal atrophy has been used clinically in the diagnosis and clinical 

trials of dementia (Susanne  et al., 2010). Mild cognitive impairment in patients has 

reportedly led to 10-15% hippocampal volume loss, in patients with early AD the volume 

loss is around 15-30%  ,the loss in moderate AD can be as high as 50% (Dhikav et al., 2011). 

There was an observed decrease in the hippocampal weight in the HFD/STZ treated group 

when compared to the control and TCA treated groups, the reduction in hippocampal weight 

observed in this study may be due to the insulin resistance induced neuronal damage, the 

hippocampus has been reported to be one of the first structures in the brain that is affected by 

AD and metabolic syndrome (Sedighi et al., 2019).  

Hippocampal-brain ratio was also examined in this work, insulin resistance significantly 

reduced hippocampal-brain weight, however TCA intervention increases hippocampal-brain 

weight an indication of its cognitive enhancement ability. Insulin resistance is associated with 

hyperglycemia, the observed hyperglycemia may have detrimental effects on the overall 

weight of the hippocampus, hyperglycemia and neurodegeneration have been reported to be 
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associated with atrophy of structures relevant to aging and neurodegenerative processes such 

as the hippocampus (Cherbuin et al., 2012; Monte, 2017). The decrease in hippocampal 

weight observed in this study may be responsible for poor memory performance observed in 

MWM and Y-Maze tests.  

5.3 Trans-cinnamaldehyde enhanced cognitive functions in insulin-resistant rats 

The results from this  study (Fig. 4.5) show a significant decrease in the percentage 

alternation in insulin resistant group in Y-Maze test, however treatment with high dose TCA 

(60mg/kg) significantly increased the percentage alternation when compared to the control 

and TCA treated groups, administration of  low dose TCA with subsequent withdrawal of 

HFD significantly reverses the memory impairment which further consolidates the fact that 

lifestyle adjustment may play a significant role in therapeutic intervention in dementia, this 

findings agree with previous reports that deficit in the hippocampal based memory 

performance occurs in diabetic individuals (Rajamani, 2014) previous findings had reported 

that western diet, rich in saturated fat and refined sugar accelerates  cognitive decline with 

aging and Alzheimer’s disease, affect cognitive functions that are  hippocampal dependent  

including  reversal learning  and memory processes (Tamashiro, 2015). 

Evaluating behavioural parameters in neurodegeneration in therapeutic targets represents an 

important means of measuring the effectiveness of treatment (Zheng-hui et al., 2013). 

Diabetes associated cognitive decline also known as encephalopathy is becoming a source of 

concern (Mijnhout et al., 2006).  Diabetes-associated cognitive decline is a complication of 

the diabetic brain, it manifests as a progressive decline in cognitive function, the exact 

mechanisms of encephalopathy is not yet known, however impaired insulin signaling 

pathway which plays roles in the metabolism of Amyloid Protein (Aβ) and tau also plays an 

important role in Diabetes associated cognitive decline (Kroner, 2009). 
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Gradual decline of memory functions and cognitive abilities is a hallmark event in patients 

that are affected with AD until the disease renders them incompetent in the discharge of 

routine functions (Bryan et al., 2014). Late-stage insulin resistance is associated with 

decreased dendritic complexity, hippocampal atrophy, impairment of synaptic plasticity and 

decline of hippocampal neurogenesis ( Magariños, 2000; Suzanne, 2013). The above 

pathological features are associated with mild learning and memory impairment in early life 

and increased dementia risk or Alzheimer’s disease in the elderly (Geert et al., 2006). 

From Morris water maze observation in this study, there was a significant increase in escape 

latency among HFD/STZ treated animals when compared to the other groups, escape latency 

was significantly reduced among the groups treated with high dose TCA and the group that 

received low dose TCA followed by HFD withdrawal, however in group treated with low 

dose TCA with continuous intake of HFD the observed escape latency was significantly high 

(figure 4.4) these results are in agreement with other studies that have also verified cognitive 

impairment in streptozotocin-induced diabetes mellitus (Kuhad et al., 2009). 

In the Morris water maze test, the insulin resistant groups showed a significant increase in 

escape latency (figure 4.4) when compared with normal control group showing a poorer 

learning performance due to HFD/STZ administration, decline in hippocampal based memory 

has been recorded in patients with insulin resistance (Yau et al., 2010). Impaired learning 

behavior in Morris water maze task after HFD feeding had been reported (Heather et al., 

2013). Performance in the Morris Water Maze is correlated with the function of the 

hippocampus, it has also been associated with hippocampal NMDA receptor function from 

previous studies using NMDA receptor antagonists. MWM test has also been used to 

demonstrate that various HFD can accelerate cognitive decline found in insulin resistant state 

(Heather et al., 2013). These results are in agreement with other studies that have also 
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verified cognitive impairment in streptozotocin-induced diabetes mellitus (Kuhad and  Sethi , 

2008; Schmatz et al., 2009). 

The impairment in hippocampal based tests observed in this work may be partly due to the 

hippocampal atrophy and hyperglycemia associated cognitive decline earlier reported in this 

study. 

These findings indicate that treatment with TCA was able to prevent learning and memory 

impairment induced by insulin resistance. 

5.4  Trans- cinnamaldehyde reduces blood glucose level in HFD/STZ induced insulin 

 resistance in wistar rats 

From this study, insulin resistance significantly increases the fasting blood glucose among the 

HFD/STZ treated groups before the onset of TCA treatment (Figure 4.2),  hyperglycemia has 

been implicated in the etiology of Alzheimer’s disease as reported from previous findings 

(Rojas et al., 2018), previous studies had reported increased  fasting blood glucose  in type 

diabetes models (Jinshan et al., 2015) More so, hyperglycemia has been implicated in mild to 

moderate cognitive dysfunction, decline in learning and memory, or even AD (Petrova et al., 

2010).  

However, treatment with TCA at high and low doses significantly reduced the blood glucose 

(figure 4.3), Shatwan et al. ( 2013) reported that dietary intake of cinnamon rich food 

regulates lipid profile, adipose tissue hormones and blood glucose in type 2 diabetic rats, 

similar work observed the ability of cinnamon to normalize lipid abnormalities, weight 

changes and glucose metabolism (Anand et al., 2010; Subash et al., 2007). 

Accumulating evidence established close association between insulin resistance, type 2 

diabetes mellitus and age-dependent Alzheimer’s disease, Alzheimer’s disease has even been 
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classified as type 3 diabetes. Some pathophysiological features such as dysfunctional insulin 

signaling, hyperglycemia and oxidative stress link insulin resistance to Alzheimer’s disease 

(Song et al., 2012). 

Hyperglycemia is a risk factor for cognitive dysfunction, AD and dementia in general, the 

mechanism of hyperglycemia mediated dementia is unknown (Barbagallo & Dominguez, 

2014; Gohar et al., 2015). The close relationship between insulin resistance, type II diabetes 

mellitus and AD has been linked to the sustained hyperglycemia on the nervous system.  

The active compound in cinnamon that elicits hypoglycemic activity is a contentious issue 

(Richard et al., 2016), however, this study has clearly shown that the active ingredient in 

cinnamon with hypoglycemic activity is TCA, the hypoglycemic activities of TCA was not 

apparent in normal rats that received TCA both at low and high doses which corroborates 

previous findings (Kannappan et al., 2006). This study clearly indicates that TCA is one of 

the active ingredients in cinnamon with hypoglycemic activity. 

Chronic exposure to hyperglycemia has been reported to deteriorate cognitive function 

(Overman et al., 2017).  Hyperglycemia-induced impairment of cognitive function is 

considered a brain complication of diabetes (Dolan et al., 2018). This may serve as a link 

between T2DM and AD which further explained poor memory related performance observed 

in this work. 

Hyperglycemia progressively increases amyloid beta aggregation, impairs neuronal integrity, 

neuroinflammation resulting in neurodegeneration (Shannon et al., 2015; Gaspar et al., 2016; 

Kim et al., 2016;). 

Hyperglycemia induces increased amyloid beta production by inhibiting APP degradation 

(Yang & Zhang, 2013). Most of the neuronal loss in AD occurs as a result hyperglycemia 
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mediated apoptosis, glucose plays critical roles in neuronal function and metabolism 

(Mousavi et al., 2010). 

5.5  Trans- cinnamaldehyde treatment significantly reduced HOMA-IR in insulin-

 resistant rats 

Induction of insulin resistance significantly increased blood glucose and insulin levels as well 

as HOMA-IR in insulin resistant control group compared to the normal control and TCA 

treated groups. Groups treated with TCA showed a significant decrease in blood glucose, 

insulin and HOMA-IR when compared to insulin resistant control group. Similar findings by 

Jatla  et al.,  ( 2012) reported that TNF-α concentration increased together with increase in 

concentrations of insulin, and HOMA-IR. 

The key pathogenetic mechanism of glucose metabolism disorders insulin resistance (IR), can 

be assessed using the Homeostasis Model Assessment of insulin resistance (HOMA-IR) 

(Dagmar et al.,  2019). Insulin resistance is known to cause disruption in energy metabolism, 

oxidative stress, impairment in mitochondrial function and DNA damage which ultimately 

leads to increased atrophy of the hippocampus resulting in cognitive impairment (Suzanne et 

al., 2013). Homeostasis of blood glucose is maintained by the activities of different hormones 

such as insulin and glucagon as well as cytokines under normal conditions (Lee et al., 2018). 

Diabetes and dementia have overlapping risk factors such as mitochondrial dysfunction, 

inflammation and oxidative stress (Lee et al., 2018). 

5.6  Trans- cinnamaldehyde suppresses neuroinflammation in insulin resistant 

 treated Wistar rats 

Cytokines plays an essential role in the coordination of immune responses in the body. 

Cytokine dysregulation is a key event in neuroinflammation, demyelination and 

neurodegeneration in the central nervous system. Activation of microglia can occur as a result 

of pathological states within the nervous system which may mediate glia cell injury through 
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the production of proinflammatory cytokines. Inflammation under physiological condition 

may be of beneficial effects such as clearance of pathogen and phagocytotic destruction of 

apoptotic cells, however, uncontrolled inflammation may result in the production of 

neurotoxic factors that can aid neurodegeneration. (Ramesh et al., 2013). Inflammation is a 

common characteristic feature of many chronic diseases such as Alzheimer’s disease and 

diabetes mellitus (Mihalea et al., 2009). 

This study shows that administration of HFD/STZ induces neuroinflammation in the 

hippocampus of Wistar rats evidenced by significant increase in the expression of   TNF-α 

and NFkB (figures 4.5.1 and 4.5.2) which agrees with some studies that reported 

inflammation as a key pathogenic factor in the development of AD (Kenawy et al., 2017). 

TNF-α has been implicated in the pathogenesis Alzheimer’s disease (Mihalea et al., 2009). 

The alteration in the production of TNF-α has been reported in the etiology of variety of 

metabolic disorders including insulin resistance (Jatla et al., 2012). 

From this studies, it was observed that HFD/STZ treatment increases the activity of tumour 

necrosis factor-alpha (TNF-α) and nuclear factor kappa b (NFk-B)  (figures 4.5.1 and 4.5.2)  

however, TCA treatment reduces the expression of TNF-α and NFk-B  showing that TCA has 

the ability to suppress neuroinflammation similar to previous findings  (Chinjarernpan et al., 

2014). 

Increase TNF-α has been reported in AD (Mihalea et al., 2009). Tumor necrosis factor (TNF) 

predominantly confers protection against some tumors and infections, they as well assist in 

some reparative processes in the central nervous system. TNF-α is a subset of TNF proteins 

and a major player in the onset of TNF induced inflammation. Over expression of TNF-α in 

AD brains, and its elevated level in the cerebrospinal fluid and blood of AD patients has been 

reported. (Vivek et al., 2012). The hippocampus is the part of the brain with the sole 
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responsibility of consolidating short and long-term memory, shown over the years to be prone 

to inflammation and injury in metabolic disease (William et al., 2008). Dysregulation of 

TNF-α inhibits insulin transduction and glucose metabolism playing crucial role in the 

pathophysiology of insulin resistance (Jatla et al., 2012). 

In the progression of AD, nuclear factor‐kappa β (NF‐κβ) plays an active role in the, 

impairment in the NF‐κβ signaling pathway initiates some pathological changes such as 

oxidative stress, neuroinflammation, microglia activation and apoptotic cell death, which may 

initiate neurodegenerative changes in normal neurons (Jha et al., 2019). NF‐κβ signaling 

pathway is involved in normal brain functioning, the pathway plays a critical role in 

maintaining synaptic plasticity and balance between learning and memory. Impairment in the 

pathways associated with NF‐κβ signaling causes alteration in neuronal function (Jha et al., 

2019).  

The increased activity of pro inflammatory cytokine observed in this study is partly due to the 

chronic activation of NF‐κβ which has the ability to sustain microglia activation and cell 

death subsequently leading to neurodegenerative changes of AD-type. 

The anti-inflammatory activities of TCA observed in this study may be as a result of its 

ability to inhibit inflammatory mediators and NF‐κβ (Chinjarernpan et al., 2014), from this 

study the expression of NF‐κβ was significantly blocked by the administration of TCA 

(figure 4.7)   

Franziska et al., (2014) attributed the anti-inflammatory properties of cinnamon to its ability 

to block nuclear factor-κB activation in immune cells. Nuclear factor-κB (NF-κB) plays 

important roles, however aberrant NF-κB activation contributes to development of various 

inflammatory, therefore inhibiting NF-κB signaling pathway may hold a has potential 
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therapeutic intervention in inflammatory diseases (Hong, 2016). Constitutive and inducible 

activated NF-κB, has been reported to be related with various human diseases like AIDS, 

atherosclerosis, AD and asthma.  Constitutively formed NF-κB is usually expressed in 

different regions of glutamatergic neurons of the hippocampus. Accumulation of Aβ can lead 

to the activation of NF-κB which can lead to the production of nitric oxide and subsequent 

neurotoxicity (Zamani et al., 2019). Hyperglycemia, insulin resistance and hyperinsulinemia 

were reported in this work, this observed pathological changes may be as a result of the 

disturbances in the NF-κB, NF-κB plays a major role in the etiology of diabetes mellitus and 

AD, it is assumed that it is at the core of the relationship between both disorders (Mihalea et 

al., 2009). 

From this study, it was observed that TCA not only reduced the expression of pro-

inflammatory cytokine TNF-α but also downregulated the nuclear transcription factor kappa-

B (NF-κB) which further uphold its anti-inflammatory property. The above observations 

provide substantial evidence supporting the anti-inflammatory nature of TCA wherein it 

significantly normalized the TNF α activity which was significantly high after HFD/STZ 

administration in wistar rats. 

5.7  Trans- cinnamaldehyde possesses anti hyperinsulinemic properties 

In this study, HFD/STZ treated rats, characterized by hyperglycemia and hyperinsulinemia, 

produced marked impairment in cognitive function  as revealed by the behavioural studies 

which was coupled with marked increases in amyloid deposition in the hippocampus.  

Hyperinsulinemia, hyperglycemia and insulin resistance are all hallmark features in type 2 

diabetes (Taylor, 2012). Altered glucose regulation has been reported to clinically impair 

learning and memory (Messier, 1996). The potential mechanisms altered glucose-mediated 
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impairment of learning and memory may be directly related to hyperinsulinemia and 

hyperglycemia (Brands et al., 2004; Lobnig et al., 2006).  

Neurodegenerative disorders have been reported to be more prevalent in insulin resistant state 

and diabetics compared to incidence in general population, impairment in neuropsychological 

functioning in diabetic patients has been reported clinically (Coker, 2003). Hyperinsulinemia 

was observed in the HFD/STZ treated group, greater cognitive decline has been reported 

among diabetics (Gregg et al., 2000) compared to normoglycemic individuals. The 

hyperglycemia and hyperinsulinemia observed in this study further strengthens the memory 

impairment observed in the Y-maze and MWM tests earlier reported in this study 

Hyperglycemia has been linked to cognitive decline, Alzheimer’s disease, dementia and 

neurodegeneration in general (Barbagallo & Dominguez, 2014). TCA treated groups show 

improvement in insulin and glucose level, similar reports had shown that cinnamon (of which 

TCA is an active component) plays an essential role in obesity and diabetic conditions 

(Verspohl et al., 2005; Wan-Nurdiyana, 2014). 

Insulin degrading enzyme is highly expressed in the brain and fosters amyloid beta (Aβ) 

clearance and intracellular degradation. It is also responsible for the clearance of insulin. 

Hyperinsulinemia may result in competitive inhibition of insulin degrading enzyme thus, 

preventing Aβ degradation, resulting in Aβ accumulation in the brain leading to AD-like 

pathology (Verdile, 2015). 

Treatment with TCA shows improvement in insulin level by reducing hippocampal insulin 

(figure 7). Similar reports had shown that cinnamon (of which TCA is an active component) 

possesses anti hyperinsulinemic properties. (Bolin  et al., 2010). 
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5.8  Trans-cinnamaldehyde treatment prevents hippocampal tissue distortion 

 potentially caused by HFD/STZ 

Histopathological study is a common approach used to identify specific mechanism that 

mediate biochemical and behavioural changes. 

Microscopical examination of hippocampus was observed by staining with 

Hematoxylin&Eosin and Cresyl fast violet. 

It was shown from the result that the hippocampus of the normal control and the group 

treated with TCA (figure 4.12 a,c and f) had normal basic histological features of the 

hippocampus comparable to the normal control. The histological presentations of these 

groups were dominated by distinctly arranged pyramidal cell layers. The well-arranged 

hippocampal cellular layer and neuronal morphology in these groups suggest an appropriate 

interconnectivity within the hippocampus. Insulin resistant control group however, shows 

disorganization of neuronal cell layers, with degenerating and pyknotic cells. Such alteration 

in cellular morphology may be responsible to the behavioural deficits observed in Y-Maze 

and MWM tests, this observation is similar to what was earlier reported by Shaimaa et al., ( 

2013). 

 The insulin resistant control group (figure 4.12 b) showed various histopathological changes 

ranging from neuronal degeneration with pyknotic nuclei, reduced layer of neuronal cell and 

morphology when compared with normal control group (figure 4.12 a) and the groups treated 

with TCA alone, treatment with TCA at a dose of 40 mg/kg (figure 4.12 g and h) did not 

prevent the neuronal degeneration. However, TCA treatment at a dose of 60 mg/kg (figure 

4.12 d and e) shows a decrease in neuronal degeneration and normal histo-architecture 

comparable to the normal control group, normal layer of neuronal cell when compared with 

insulin resistant control group (figure 4.12 b).  
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This result shows that TCA was able to protect the histo-architectural morphology of the 

brain following neurotoxicity. The normal histological features were preserved in the normal 

control group and TCA treated groups contrast in the HFD/STZ treated groups, there were 

marked change in the CA3 region of hippocampus in the form of disorganization and cell 

loss.  

5.9  Trans-cinnamaldehyde treatment reduces the expression of beta amyloid and 

 plaques  

There was an observed increased deposition of amyloid plaque and proteins in the 

hippocampus of HFD/STZ treated rats (plates 4 and 5), Alzheimer's disease is primarily 

characterized by the formation of amyloid β (Aβ) plaques, amyloidal angiopathy, 

neurofibrillary tangles, loss of neurons and synapses (Sisi  et al., 2017). However, treatment 

with TCA reduced amyloid plaque burden, this may be due to the anti-inflammatory and 

hypoglycemic activities of TCA earlier reported in this study, had shown that cinnamon have 

activities against neurological disorders, such as Parkinson’s and Alzheimer’s diseases 

(Pasupuleti et al., 2014; Camacho et al., 2015). The increased Aβ accumulation in the 

HFD/STZ may partly be due to increased levels of TNF-α earlier reported (Griffin et al., 

1998). 

AD-like pathological changes such as abnormal Aβ deposition and tau hyperphosphorylation 

were observed in patients with insulin resistance and type II diabetes (Judith  et al., 2010) and 

diabetic animal models (Li  and  Zhang, 2007). 

Brain insulin resistance and amyloidogenesis are central for hyperglycemia-induced 

impairment of cognitive function. Neuroinflammation, oxidative stress, and mitochondrial 

dysfunction are known to aggravate brain insulin resistance and amyloid beta accumulation in 

brain lesion. High levels of amyloid beta in brain can lead to neuronal structure deterioration 
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which can lead to poor cognitive performance observed in the neurobehavioral tests 

conducted in this study. 

Treatment with TCA significantly ameliorated cognitive deficits, with significant decreases 

in amyloid burden and TNF-α levels via inhibition of NF‐κB in brain as well as attenuation of 

hyperglycemia and hyperinsulinemia.  

Cognitive dysfunction and impaired synaptic plasticity in both types of diabetes have been 

linked to hyperglycemia, insulin resistance and altered insulin signaling. 

HFD/STZ administration (figure 4.14 b) resulted in increased beta-amyloid plaques (red 

arrows) whereas treatment with various doses of TCA resulted in reduction in the distribution 

of beta-amyloid plaques (figure 4.14 d,e,g and h). 

5.10  Trans- cinnamaldehyde intervention reduces astrogliosis  

In this study, GFAP was significantly increased in the untreated insulin-resistant group 

(figure 4.15 b) compared to the control and TCA alone groups (figure 4.15 a,c and f), which 

disagrees with findings by Shaimaa et al., (2013) that reported decrease in GFAP activity in 

insulin resistance model. The reaction of astrocytes had been reported to be the earliest 

response of the brain tissue to an altered glucose metabolism (Shaimaa et al., 2013). 

However, for the groups treated with HFD/STZ followed by TCA has a very similar 

appearance with that of control and TCA group. GFAP immunohistochemistry revealed that 

many of the neurons between astrocytes have normal morphology. These findings elucidate 

the neuroprotective properties of TCA in preventing astrogliosis in the hippocampus of rats 

induced by TCA administration. 
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Astrocytes constitute the most abundant class of neuroglia, they are widely distributed in 

mammalian nervous system where they serve wide range of adaptive functions (Clarke et al., 

2013). Astrocytes interact with neurons to provide structural, tropical and metabolic support, 

they are now emerging as key components in many aspects of brain development, function 

and disease (Clarke et al., 2013).  

Astrocytes have increasingly been implicated in most demyelinating diseases. Astrocytes are 

critical for the survival of neurons in the central nervous system (CNS) by playing a role in 

the energy metabolism, maintenance of the blood-brain barrier, vascular reactivity, regulation 

of extracellular glutamate levels and finally protection from reactive oxygen species. These 

cells react to the neuronal damage, resulting from physical or chemical insults, by over 

expression of the glial fibrillary acidic protein (GFAP), an intermediate cytoskeletal filament 

protein specific for astrocytes. 

Presence of reactive astrocytes surrounding amyloid plaques, appeared hypertrophied with 

increased thickness of their cytoskeletal processes was demonstrated in the insulin-resistant 

control group (figure 4.15 b) compared to normal control, TCA treatment at high and low 

doses shows reduction in the thickness of these processes compared to the insulin-resistant 

control group. Reactive gliosis, including astrocyte and microglial activation detected by 

increased glial fibrillary acidic protein (GFAP) and microglial levels, are other important 

features of AD neuropathology (Leticia et al., 2014), moreover, prominent astrogliosis was 

revealed in GFAP-immunohistochemically stained, these astrocytes play a vital role in 

degradation of amyloid plaques through the astrocytic processes which internalize and 

degrade Aβ deposits (Koistinaho et al., 2004). However, they secrete inflammatory mediators 

that lead to neuronal injury (Johnstone and Gearing, 1999) 
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This result is in agreement with different studies that showed that HFD/STZ intoxication 

often leads to the activation of astrocytes and that treatment. 

5. 11  Trans cinnamaldehyde treatment restores neuronal loss and increases cell count 

 in HFD/STZ treated rats 

NeuN is a neuron-specific nuclear protein expressed in the nucleus and cytoplasm of most 

neuronal cell types in vertebrate nervous systems.  (Tippett et al., 2007). 

In this work, there was an observable decrease in NeuN immunoreactivities, studies have 

suggested that quantitative changes in NeuN immunoreactivity can be a determinant of 

neuronal loss in several pathologies including neurodegenerative diseases (Tippett et al., 

2007). 

Neuronal degeneration and cognitive impairment are the most typical features of Alzheimer’s 

disease (Song et al., 2014) which can have direct impact on the ability of patient to recall or 

recognize new information processed in the hippocampus (Song et al., 2014) 

In the untreated diabetic group, there is the loss of NeuN immunoreactivity (an indication of 

neuronal loss), the administration of TCA at high and low doses restores the 

immunoreactivity, numerous studies have confirmed neurogenesis in hippocampal neurons 

(Dong et al., 2003; Mu et al., 2011). 

TCA treatment alleviated neuronal damage in the hippocampus of rats administered 

HFD/STZ this result indicates that TCA at 60 mg/kg/d can promote neuronal recovery and at 

the same time improve neurogenesis in the hippocampus. Changes in neurogenesis had been 

reported to alter some hippocampal dependent functions such learning and memory (Jason et 

al., 2011). Neurogenesis and neuroplasticity in the hippocampus are sensitive to many 

pathogenic and treatment factors that are associated with metabolic diseases including 
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diabetes. Previous studies provide strong evidence that diabetes adversely affects the 

structural integrity of the hippocampus, which may contribute to diabetes induced cognitive 

impairment (Sommersa  and Irwin, 2013). 

The insulin resistant group shows a significant decrease in cell count (figure 4.17), this is 

significant because it may be responsible for the memory deficits earlier reported in this study 

and may provide one of the mechanisms underlying the cognitive decline associated with 

T2DM and AD, however, treatment with TCA significantly restored the cell count.  
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1  Conclusions 

This study revealed some of the morphometric, morphological and histological changes that 

occurred in the brain of insulin resistant rats following TCA treatment. 

HFD/STZ produces AD-like pathological changes in the hippocampal regions of Wistar rats. 

Morphometrically, there was an observed decrease in the hippocampal weight among the 

HFD/STZ treated group 

HFD/STZ administration resulted in hyperglycemia, hyperinsulinemia, insulin resistance and 

chronic inflammation with accompanied neurobehavioral deficit in hippocampal dependent 

memory tests. 

The hippocampus of Wistar rats exposed to HFD/STZ produces alteration in the normal 

histoarchitectural layout of the hippocampus characterized majorly by pyknotic cellsls and  

Immunohistochemical findings reveal increased astrogliosis, accumulation of amyloid 

plaques and neurodegeneration among HFD/STZ treated group. 

TCA administration confers therapeutic advantage to the hippocampus of wistar rats in a dose 

dependent manner. 

TCA administration at higher and lower doses significantly restores memory performance, 

improves glucose and insulin level, and suppresses neuroinflammation among HFD/STZ 

treated rats. 
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TCA treatment restores normal histoarchitectural structures of the hippocampus among wistar 

rats challenged with HFD/STZ. 

6.2  Contributions to knowledge  

This study has further reiterated the fact that HFD/STZ treatment can lead to insulin 

resistance and other neurodegenerative changes. 

Structural atrophy can be one of the mechanisms through which neurodegenerative changes 

occur. 

Significant memory impairment is associated with HFD/STZ administration 

Trans- cinnamaldehyde is the active ingredient in cinnamon with potent anti-hyperglycemic 

activities. 

Trans- cinnamaldehyde possesses memory enhancing properties. 

Trans- cinnamaldehyde suppresses neuroinflammation by blocking nuclear factor kappa b 

pathway. 

Significant histomorphological alterations of the hippocampus may to a greater extent be 

responsible for the neurobehavioral and cognitive impairment associated with AD-like 

pathological changes. 

6.3  Recommendation 

With gradual shift in traditional diets to western diet, care must be taken in the intake of 

western diet 

Increase in life expectancy is associated with age related diseases, attention is needed for the 

aged to avoid exponential outbreak of age-related neurodegenerative diseases. 
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Neuro-pharmacological industries should explore further the therapeutic potentials of Trans- 

cinnamaldehyde against neurodegenerative diseases. 

6.4  Limitation of the study 

Electron microscopy could not be carried out in this study to better demonstrate some 

observed changes at subcellular level. 

6.5  Further study 

The next phase of this study will employ the use of electron microscopy to investigate 

subcellular changes 

In vitro studies would be used to evaluate the therapeutic potentials of TCA so as to further 

buttress findings from this study 

Clinical trials would be necessary so as to validate the reported findings from this work 
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