[BB University, Lapai st Development Journal of Science and Technology Research, Vol. 7. No, 1, 2018

EXACT SOLUTION OF FRACTIONAL ORDER INTEGRO-DIFFRENTIAL
EQUATIONS BY COLLOCATION METHOD

K. A. Bello*, O. A. Taiwo -, F. A. Adebisi*", A. Abubakar#**"

Department of Mathematics, University of Ilorin, Ilorin, Nigeria
*Department of Mathematical and Physical Sciences Osun State University,Osogbo
**Department of Mathematics and Computer Sciences, Ibrahim Badamasi Babangida
University,Lapai, Niger State Nigeria
Corresponding author: kareem.akanbi73@gmail.com

Abstract

In this paper, the application of standard collocation method on fractional integro-differential
equation was carried out by assuming a modified trial solution with chebyshev polynomial
basis.Equally spaced interior collocation points was adopted.In built maple 18 was used for
the computation of the four illustrative examples, for the simple demonstration of the
applicability,validity and reliability of the method .It is however concluded that the method is
considered as one of the novel solver of the class of fractional integro-differential equation.

Keywords: Fractional integro-differential equation, Collocation points, Chebyshev
polynomial

1.0. Introduction

In recent years, a growing considerable interest in the fractional integro-differential equation is
simulated, due to their numerous applications in the areas of physics, chemistry, engineering,
mechanics, astronomy, biology, economics and electro statistics. Differential equations involving
derivatives of non-integer order have shown to be adequate models for various physical phenomena in
the areas like rheology, damping laws, diffusion processes. This is more realistic and it 1s one reason
why fractional calculus has become more and more popular (See Mittal and Nigam, 2008). In recent
time, a good number of researchers have proposed and applied some efficient approximation and
analytical techniques for the solution of problems of fractional calculus. Such techniques have been
applied to fractional order differential equations, fractional order integral equations, and in some cases
fractional order integro-differential equations. There have been attempt to solve multi-order fractional

order differential equations but a complete analysis has so far not been given (Taiwo and Odetunde
(2013).

Fractional differential equations have been investigated by many authors. Rawashdeh (2005) used the
collocation spline method to approximate the solution of fractional equations. Taiwo and Odetunde
(2013) solved multi-order fractional differential equations by an iterative decomposition method.
Momani (2000) obtained local and global existence and uniqueness solutions of the integro-
differential equation. Adomian Decomposition Method (ADM) is widely used by many researchers
to solve the class of problems above in applied sciences (see Adomian (1994), Adomian (1989), Kaya
and El-Sayed (2003)). Adomian (1989), provides an analytical approximation to linear and non linear
problems in this category. In Adomian method the solution is considered as the sum of an infinite
series, rapidly converging to an accurate solution. In this paper,the taditional conocation method is
revisited with a little modification of the trial solution to solve fractional order integro-differential

equation of the form:
DIy(t) = a(Oy(e)+ £ (1) + [k(t,5) £ (1(s))ds, 10,1¥ €[0,1] (L)
Together with the initial condition )
2y (t)=b,, j=0,12,L (12)
i=0

94

IBB University, .

are considerec
derivative and
generally a n
modeling of 1
Moreover, the
problems (see

2.0. Relevant ]
In this section,
work.

Definition 1: ]
function y(x) a

Where g(x) an
K(x,1) 1s a fun
equation, and |

Definition 2:
differential eq
function.

A stan

Where g(x), h(.
IDE.

Equation (2.2)
limits of the reg
Equation (VIDI
not.

called

where ¢ and ¢
called :

where a 1s fix

Definition 3: (
equation or inte
order to detern
solution used.

Definition 4: £

number p> u

and only if




Vo. 1, 2018

NTIAL

Osogbo
abangida

o-differential
v polynomial
was used for
-ation of the
the method is
| equation.

Chebyshev

al equation is
', engineering,
jons involving
phenomena in
t is one reason
008). In recent
oximation and
jues have been
| in some cases
rder fractional
and Odetunde

2003) used the
and Odetunde
sition method.
f the integro-
my researchers
n (1989), Kaya
and non linear
1 of an infinite
tion method is
gro-differential

g
IBB University, Lapai | Miﬁl Development Journal of Science and Technology Research, Vol. 7. No. 1, 2018

are considered and solved numerically with the proposed method. Here D? is the Caputo’s fractional
derivative and @ is a parameter describing the order of the fractional derivative, and ( y(x)) is

generally a nonlinear continuous function. Such kinds of equations arise in the mathematical
modeling of various physical phenomena, such as heat conduction in materials with memory.
Moreover, these equations are encountered in combined conduction, convection and radiation
problems (see for example Caputo, 1967; Olmstead and Handelsman, 1976; Mainardi, 1997).

2.0. Relevant Definitions o
In this section, we give some basic definitions and properties of relevant terms which are useful in this

work.
Definition 1: INTEGRAL EQUATION: An integral equation is an equation in which the unknown

function y(x) appears under an integral sign. A standard integral equation is of the form:
h(x)
Y= @)+ 2 [ K ey 2.1

Where g(x) and /(x) are the lower and upper limits of integration, A is a constant parameter, and
K(x.1) is a function of two variables x and ¢ and is called the kernel or the nucleus of the integral
equation, and f'(x) is a smooth continueous function.

Definition 2: INTEGRO-DIFFERENTIAL EQUATION (IDE): In a similar form, an integro-
differential equation is an equation which involves both integral and derivatives of an unknown

function.
A standard integro-differential equation is of the form:

Y= f()+ 4 [ K0y @2

Where g(x), h(x), f{x) and the kernel K(x,?) are defined in definition 1 above and » is the order of the
IDE.

Equation (2.2) is called Fredholm Integro-differential Equation (FIDE) if both the lower and upper
limits of the region of the integration are fixed numbers while it is called Volterra Integro-Differential
Equation (VIDE) if the lower limit of the region of integration is a fixed number and the upper limit is
not.

called An example of Fredholm Integro-differential Equation (FIDE) is given as

Y= £0)+ 2 [K (o 0y(0)d @3)

where @ and b are are fixed numbers.
called an example of volterra Integro-differential Equation (VIDE) is given as

YO = f)+ A [ KGOy (2.4)

where a is fixed number and A(x) is a function of x

Definition 3: COLLOCATION METHOD: This is a method of evaluating a given differential
equation or integro-differential or fractional order equation at some equally spaced interior points in
order to determine the values of the unknown constants resuled from the assumed approximate

solution used.

Definition 4: A real function f(¢£),£ >0, is said to be the space C,,u € R, if there exists a real
number p > g, such that f(£) =¢"h(¢). where f;(t) € C(0,0) ,and it is said to be in space C, if

and only if
()
fPreCinel.
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Definition 5: The Riemann - Liouville fractional integral operator of order « >0, of a function

fe Cﬂ,ﬂ > —1, is defined as
1

mﬂjﬂ)=FE6£U—sf*f@yh¢x>O

JUf()=f(t)

Some properties of the operator J* , are as follows:
For feC,u2-1, a, f>0and y>-1

JOP fl)= 1% 1,
JEIEF) =TT £ (1),

Jar = LAY e
I'(y+1+a)

per =L+l e

[(y+1-a)
Definition 6: The fractional derivative D® of f(¢)in the Caputo’s sense is defined as
1
Df(t)y=——|(t=2)" " f"D)d(2),
/() F(HHG)JX )" fO(2)d(r)

For n-1<a<n, neN, t>0, fecC!.

Definition 7: CHEBYSHEV POLYNOMIALS: Chebyshev polynomials are a sequence of orthogonal
polynomials which are related to Demovire formula and are easily defined re-cursively like Fibonacci

or Lucas numbers. The Chebyshev Polynomials of degree n denoted by T, (x) of the first kind and

valid in the interval —1< x <1 is defined as
T, (x)=cos(ncos™ x) ;n >0
For n=0 and 1, we obtained
T (x)=1,and T(x)=x
And the recurrence relation is given as:
T, (x) = 22T, (x) =T, (x),n 21

Also, Chebyshev Polynomials in the interval of @ < x <b is defined as

T (x)= cos[n cos (%—b_-q‘_—bﬂ, as<x<b

—-a
And the recurrence relation is

2
TL&@=26j;£—gyuﬂ—ﬂ4@Ln20anSb
Few terms of the Shifted Chebyshev Polynomials valid in the interval [O,I] are given below
T,(x)=1
T(x)=2x-1

T,(x)=8x*—8x+1
T,(x)=32x"—48x* +18x-12.14

96
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oy

, of a function T,(x) =128x* —256x" +160x* —=32x +1
T,(x) = 512x° ~1280x" +1120x° — 400x” +50x -1
(2.5) fg(x)==2048x6-6144x54-6912x*-3584x’4-840x2-72x4-1
E(x)=8192x7—2867x6+39424x5~26990x4+9408x3—1568x1+98x-1
2.6) _a(x)=32765x8-131072x7+212992x°—40224x5+84480x“—21504x3
+2688x% —128x+1 (2.17)

3.0 Methodology of Chebyshev Polynomials as Basis Function on the General Fractional Order
Integro-Differential Equation

In this section, we describe our form of approximation for solving the general class of fractional
(2,3)' order integro-differential equation considered . Here, we assumed an approximate solution of the
form:

Y0y, =Y a;T;() 3.
j=0
@ ]0){ Where 7 is the degree of the approximant used, a j( j 2 0) are unknown constants to be determined
" and T;(j 2 0) ,are chebyshev polynomial defined earlier.
; i For the purpose of our discussion, we consider the fractional order integro-differential of the
| form:
2.11) 3
DEy(0) = at)y(e)+ () + [k(t,8)f (1(s))ds, (32)
with the initial conduction
y(0)=0 (3.3)
zof orthogonal | pluging (3.3) on (3.1) we obtain -
like Fibonacci n
: first kind and y(0)=y,(0)= Za A;(0)=0 (3.4)
=0
simplification of (3.4) gives
(2.12) " )
, y,(0)=Y(-1)Ya,; =0 (3.5)
j=0
(2'13)_ Thus from (3.5)
(2.14) a,= ) (-1Y"q, (3.6)
4 J=1
substitting (3.6) into (3.1) and after simplification we have
y)=y,©)=>arT(t 3.7
219 )=y,00) ;,A) (3.7
substituting (3.7) into (3.2) and after simplification we obtain
216 Dly (t)= a(I)ZajT_'; )+ f()+ _Ek(z,s) F] (Zajf;(s)]ds (3.8)
T j= J=

simplification of (3.8) and collecting like terms of a,(i = 0), gives

(DT () p(OT; (0) = [K(t,9)T; (s)ds}a,

elow

+{DT; (0) - pO)T; ()= [K (¢, 5)7; (s)ds}a, (3.9)

9.2
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T

DT} (0= p()T; (1) - [K(9)T; (s)ds}a, = 1)
Thus, (3.9) is then collocated at £ =1, to get

(DT} ()= pOT; (0) = ['K (9T, (5)ds}a,

+a DT ()= pOT; ()~ 'Kt )T, (s)dshay 61

o

+H{DT (6) - POT, () - ['K(t,9)T, (s)ds}a, = £(2,)

Where,
b-a)k
t, =a+ i) ,k=123,.n
n+l
The collocated (3.10) resulted into a system of equations which are then put in matrix form as E
Ax=b
Where,
All AIZ AIJ R 2 Aln
AZI A22 A23 n
A= ;
’ 1
Anl Anz An! A Ann :
2= (%, B )
b= (b,,bl,...,bn)r
and
Ay = DT} (6)= )T, ()= [K G, 9)T; (5),ds |

Ay = DT (6) = p()T; (4) = K (1,9)T; (5)ds
Ay = DT} (6) = ()T (&)~ [K(t,,5)T5 (s)ds
A, = DT, (1) = p()T; (4) = ["K (0, )T; (s)ds

Ay, = DT (1) = p()T; (0) = [K (15,97} (s)ds

98
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"

Ay = D°T; (1)~ p)T; (6) = [TK (12, $)T3 ()

Ay = D'T; (1)~ PL)TS ()= [K(02,)T: (5)ds

Ay, = DT, (6) - p)T; ()= ['K (0, 9)T; (5)ds
Ay = DT} (6)= plts)T ()= [PK (6, 90T (5)ds
Ay = DT (1)~ pt)T; (1) = K (6, 9T (5)ds
Ay = DT, (1) = p)T ()= [ K (5. 9)E (5)ds

Ay, = DT, (1)~ p(t)T; ()~ [K(13,)T, ($)ds

A, = D°T; (1,) - P, ()~ ['K(t,,9)T; (s)ds
A, = DT ()~ p()T (0) = [K(0,29) (5)ds
A= DT, (1,) - plt,)T: (t,) = [K (6, 9)T: ()ds

Al‘“l‘ = Day‘f: (tll) - p([n)z: (IH) = £“K(I|;?S)]':: (S)ds (3'1 1)

After the evaluation of the integrals that appeared in the matrix, the resulting system is then solved by
Mapple 18 to obtain the unknown constants that appeared in the approximate solution.

4.0 Numerical Examples

4.1 Example 1:
Consider the following fractional order integro-differential equation, for £ € I=10,1],

3
D (1) = y(f) + T o —%+ J;y(s)ds (4.1.1)

8
31(0.5)
y(0)=0 (4.1.2)
The exact solution is y(t) =1’
(See Fadi Awawdeh, 2011)

99
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Description of Solution
Here we assume an approximate solution of the form:

y,()=>aT(t) (4.1.3)
j=0
where a; and T'(t) are defined above
Here, welet n =3
Thus, (4.1.3) leads to
y()=a,T ()+aT(t), +a,T,(t)+a,T (1) (4.1.4)

Substitution of T, (¢), T}(¢), T,(t), T;(¢) from (2.14) into (4.1.4) leads to

yy=a, +a,(2t=1)+a,(8t° =8t +1)+a,(32¢> 48> +18¢-1) (4.1.5)
Applying the initial condition given by (4.1.2)on (4.1.5), leads to

y0)y=a ~a, =g, =1 (4.1.6)
Hence, making a, the subject of formula in (4.1.6) leads to
g =igp—it, +a; (4.1.7)
Substituting (6.1.7) into in the (4.1.5) leads to
y;(t) = 2ta, +(8¢* =8¢)a, + (321> —48¢* +181)a, (4.1.8)

Thus, (4.1.8) 1s substituted into (4.1.1) to obtain
D% {2ta, +(8¢* —8t)a, +(32¢’ —48° +181)a,}
—{2ta, +(8¢* = 8t)a, + (32 — 48> +181)a,} (4.1.9)

1.5 3
- _E{zsa, +(8s% —8s)a, +(32s° —48s” +18s)a, }ds = o 2ot

A(0.5) 3

Hence, (4.1.9) is re-arranged to get

D% = I2sds}al +{D (81" ~81)— (8¢ ~81) — [(8s” ~8s)ds}a,

(D% (3263 — 48> +181) — (326 —48¢* +18¢) - _[(32:3 — 48¢> +181)ds}a, (4.1.10)
8 as_p !

37(0.5) 3

Thus, (4.1.10) is simplified term by term to get
i 3

1
22 , 16¢2 82 P

——— =217 |, + - _8r +8—81 +4r? a,
T(3/2) T(52) L[(3/2) 3
3 3 1
# L + i —326 + 482 =18t +161° - 9¢° |a, (4.1.11)
T(7/2) T(52) T(3/2)
811.5 " IJ
300500 3

Therefore (4.1.11) is collocated at point f =1, to get
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(4.13)

(4.1.4)

(4.1.5)

(4.1.6)

“.1.7)

(4.1.8)

(4.1.9)

(4.1.10)

(4.1.11)

b e i
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Y ¥

| 3 1

3 2 2 3
2 =2, =1} |a, + bor; —ﬁ*——&j+8tk—8£-"—+4t,f a,
r(3/2) r(52) T(2) 3

5 3 1

19217 28812 L 182

- ~326 +48] - 181 +161;, -9t |a,  (4.1.12)
[(7/2) T(5/2) T(3/2)

81.\.5 t3
k t2 k.

05 ¢ 3

Where,
t,=kl4 k=123

1
For k=1, = e thus substituting into (4.1.12) leads to

0.5658791670a, —1.300677779a, —17.4640308 4a, = 0.1203548612  (4.1.13)

1
For k=2,t= -2- , thus substituting into (4.1.12) leads to

0.34576912 1a, +0.53897450 5a, — 53.7720733 4a, = 0.2402563737  (4.1.14)

3
Fork=3,1, = e thus substituting into (4.1.12) leads to

—0.1080899524, +2.625000000a, —95.82807833a, = 0.2740800240 (4.1.15)

Thus, solving (4.1.13)-(4.1.15) simultaneously using Maple 18, we obtain
a, =0.50000

a, =0.1250000
a, =0.0000000
Therefore, a, = a, —a, +a; = 0.375000
Substituting the values ofa, (i = 0,1,2,3) into (4.1.8) and after simplification, the exact

solution is obtained.
Thatis, y,(x)=1>

4.2 Example 2
Consider the following fractional order integro-differential equation

075 r 0\ — 43! i
yo)=( 5 )J’(f)+£esy(s)ds+

225

[(3.25)

(4.2.1)

With the initial condition
»(0)=0 (4.2.2)

The exact solution is y(¢) = ¢’

(See Mittal R.C. and Ruchi Nigam, 2008)

Description of solution

Following the procedure in Example 1, we obtained

a, = 0.25,a, = 0.468750,a, = 0.187500, a, = 0.031250

Substituting the values of g, (i = 0,1,2,3) into (4.1.8) and after simplification, the exact solution is

obtained.
That 1s,

yilx)= i

101
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4.3 Example 3

Consider the following fractional order integro-differential equation

0.25

D"y (1)~ (¢ cost —sint) y(r) - J:tsin ¥(8)ds = (4.3.1)

»0)=0 (4.3.2)
The exact solution is y(r) = ¢

(See Fai Awawdeh, 2011)
Description of solution Following the procedure in Example 1

1
a, =0.5,q, =5,a2 =0,a,=0

Substituting the values of a‘.(i = 0,1,2,3)
obtained, that is, yi(t) =t

into (4.1.8) and after simplification, the exact solution is

4.4 Example 4

Consider the initial value problem that consists of the multi-fractional order integro-differential
equation

6 " ¢4
DXy(1) = 63 T r(g 5)) 1+ 7 y(0), te[0,1] (4.4.1)
y(0)=0 4.4.2)
The exact solution is
y@) =2

(See Taiwo and Odetunde, 2013)
Description of solution Following the procedure in Example 1

a, =0.25,a, = 0.468750,a, = 0.187500,a, = 0.031250

Substituting the values of «, (i = 0,1,2,3) into (4.1.8) and after simplification, the exact solution is
obtained. That is

y@)y=r
5.0 Conclusions

The traditional standard collocation method with little modification of trial solution was demonstrated
on some examples of fractional integro differential equation. The method gave an exact solution for
the degree of the Chebyshev polynomial for n>3. Conclusively therefore, the method is very
powerful and effective for solving fractional order integro differntial equation.
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