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ABSTRACT 

Fluid is a substance that deforms continuously when subjected to shear stress. 
Such fluid can either be Newtonian or non-Newtonian. The Newtonian fluid obeys 
the law of viscosity while non-Newtonian fluid does not obey the law of viscosity. 
The present study is concentrated on non-Newtonian fluids. The study of non-
Newtonian fluids attracted the attention of numerous researchers in the field of 
fluid dynamics due to its rheological applications in mechanical and chemical 
engineering processes. Fluids of this type are generally complex and are 
considered under science of deformation and flow. Non-Newtonian fluids are 
applicable in the movement of biological liquids, food processing, liquid cosmetics, 
dyes, lubricants and puncturing sludge are few examples of rheological fluids. This 
study aimed at examining magnetohydromagnetic 

(MHD) heat and mass transfer of non-Newtonian fluids flow through vertical plate (both 

porous and non-porous) in the presence of thermo-physical parameters using spectral 

methods. The equations governing the study are: 

= 0 (1) 

 

  (4) 

together with the boundary conditions 

u = Bx ,v = −ν(x) ,T = Tw ,C = Cw ,at y = 0 (5) 

u −→ 0 ,T −→ T∞ ,C −→ C∞ ,as y −→∞ (6) 
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u and v represents the relations u = ∂ψ∂y and v = −∂ψ∂x . In the definition of u and v, ψ(x,y) is 
the stream function which automatically satisfies the continuity equation 

 
 

(1). 

The objectives of the study are: 

(i) to examine the physics of the problem of heat and mass transfer non-Newtonian 
fluids flow in a semi-infinite vertical plate and vertical porous plate; 

(ii) to examine the influence of pertinent flow parameters such as magnetic 
parameter, radiation parameter, heat generation parameter and so on, on the flow of 
non-Newtonian fluids within the boundary layer regime; 

(iii) to determine the physical quantities of engineering interest such as skin friction, 
Nusselt number and Sherwood number on all flow parameters; and 

(iv) to test the accuracy and validity of the spectral relaxation method and spectral 
homotopy analysis method. 

Scholars in the field of fluid dynamics now consider spectral methods as 
essential tools in solving highly coupled non-linear differential equations. Spectral 
methods involve approximating the unknown functions using truncated series of 
orthogonal functions or polynomials. The spectral relaxation method (SRM) 
employed the concept of Gauss-Seidel method to decouple system of differential 
equations. The spectral homotopy analysis method (SHAM) is based on a blend of 
the Chebyshev pseudospectral method with the homotopy analysis method. To 
apply SHAM on differential equations, the domain [0,L] of the problem is first 
transformed to the domain [−1,1]. The partial differential equations which govern 
the model were simplified with the help of appropriate similarity variables and 
non-dimensional quantities. The transformed non-linear coupled ordinary 
differential equations along with the boundary conditions were solved numerically 
using spectral methods. The results obtained are as follows: 

(i) It was discovered that as the value of the viscoelastic parameter increases, the 
velocity profile close to the plate gradually decrease while far away from the plate, it 
slightly increase; 

(ii) The result revealed that variable viscosity and thermal conductivity greatly 
affects the fluids within the boundary layer as it enhances velocity and temperature 

respectively; 

(iii) It was found that the effects of Soret and Dufour on the temperature and 
concentration profiles are opposite; 
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(iv)It was found that the results obtained were useful in food processing, drilling 
operations and bioengineering. Also, Soret parameter on the fluid flow is 
significant in isotope separation; 

(v) It was found that increase in the thermal Grashof number drastically increase 
the hydrodynamic boundary layer thickness; and 

(vi) The numerical methods used in this study were found useful in solving highly 
non-linear differential equations in science and engineering. 

In this study, it can be concluded that the momentum and thermal boundary 
layer thickness drastically increase with increase in Casson parameter and 
viscoelastic non-Newtonian fluid. Also, it can be concluded that Soret and Dufour 
parameter simultaneously affect the hydrodynamic boundary layer thickness. It is 
recommended that the findings of this investigation be used in plasma studies, 
geothermal energy extractions, generators and control of boundary layer in the 
field of aerodynamics. The method used in the investigation is recommended for 
solving highly non-linear differential equations in engineering. 
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CHAPTER ONE: GENERAL INTRODUCTION 

1.1 Background information to the study 

The concept of fluid is experienced in everyday life. The air we breath in and out, 
the rivers and seas in our environment, the water that flows in our tap at home, 
and so on are all phenomena of fluid. All this phenomena are capable of moving. 
Their study is called fluid mechanics. When fluid flow is under the action of forces 
such as buoyancy and drag, it continuously deforms as long this force is applied. 
The major fluid forces of interest in this study is the buoyancy and drag force. The 
drag force slows down the fluid motion by acting in a direction that is opposite to 
the relative flow velocity while buoyancy force describes how a body floats. The 
deformation of fluids is by shearing forces. In as much the elastic limit of a solid is 
not exceeded, the strain is a function of the applied stress. This strain is 
independent of time when force is applied and in as much as the elastic limit is not 
exceeded, deformation will disappear when force does not exist again. On the other 
hand, the rate of strain of a fluid is proportional to the applied stress. The flow of a 
fluid keeps moving in as much there is an applied force which does not recover the 
original shape the moment the applied force is removed (Douglas et al., 2005). The 
science of flow of gas or liquid is classified as hydraulics and hydrodynamics. 
Hydraulics is when water is at rest or motion. Fluids are divided into liquids and 
gases. A liquid substance is hard to compress and are regarded as incompressible 
under external pressure. The two major characteristics of a fluid from its study are 
its compressibility and viscosity. All fluids possess viscosity. Any fluid that does not 
have viscosity are classified to be an ideal or perfect fluids. In a real sense, such 
fluids does not exist. However, any fluid with low viscosities are considered to be 
ideal fluid under certain conditions. 

Heat is transmitted from one object to another whenever a temperature 
difference exists in a medium or between media. When an object is hot, it 
possesses lots of energy but has less when its cold. Heat is transferred by the 
means of conduction, means of convection and means of radiation. Heat transfer 
that involves transportation of energy in-between parts of continuum by kinetic 
energy between particles groups at atomic level. Convection involves energy 
transfer by the movement of fluid and molecular diffusion. Thermal radiation 
involves the emission of energy into all bodies by the process of electromagnetic 
radiation (Anyakoha, 2010). If human beings is inside a room, the warm air buoys 
off the body to warm the room. Immediately the person decides to leave the room, 
some small buoyancy-driven flows of the air continues owing the walls can not be 
isothermal perfectly. 

Heat gets to the earth from the sun by radiation because sunlight is part of 
thermal radiation that is generated by the hot plasma of the sun. In addition, when 
human beings are very close to fire, the heat reaches the body by radiation. Hence, 
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radiation does not require any material medium but conduction and convection 
requires a material medium. Anyakoha (2010) explains that convection involves 
heat transfer by the actual movement of the molecules that are heated from the 
region that is hot to cooler region of fluid. Mohammed (2014) states that thermal 
radiation effect becomes important when the surface temperature and ambient 
temperature difference is very large. Roseland approximation define heat flux 
added to the energy equation when the fluid is optically thick. The radiation 
parameter is the reciprocal of Stephan number which measures the usefulness of 
thermal radiation to conduction heat transfer. Hence, larger value of radiation 
parameter indicates the amount of heat energy produced by radiative flux is large 
and it is injected into a system resulting to an enhancement in the fluid 
temperature. 

In polymer industries, fluids used have a viscosity which varies rapidly with 
temperature. As a result of the Navier-Stokes equation coupled with the energy 
equation, viscous dissipation and thermal radiation plays a significant role in fluids 
with strong temperature dependence (Bird et al., 1960). A practical example is the 
behaviour of cooking oil and how it moves in a frying pan when heated by cooking 
stove gas. In the same vein, radiation have numerous usefulness in sciences and 
engineering especially in space technology and polymer processing industry. In 
view of these applications, Olanrewaju (2012) reported similarity solution for 
natural convection by taking effects of viscous dissipation and thermal radiation 
into consideration. Researchers have shown interest in the analysis that involves a 
varied conductivity alongside viscosity contribution on fluid flow. The analysis of 
Salawu and Dada (2016) heat transfer analysis of varied viscosity alongside 
thermal conductivity on inclined magnetism was solved numerically. The 
phenomena of viscous dissipation is an irreversible process in which the required 
energy to deform the behavour of fluid flow is simplified into heat energy. It 
involves the transformation of mechanical energy into heat energy. According to 
Gireesha et al. (2012), increase in viscous dissipation gives rise to the rate of heat 
transfer. 

In the last few decades, efforts have been devoted to the analysis of combined 
heat plus mass transfer effects on fluid flow due to their applications in geophysics, 
astrophysics, engineering and physics. Heat plus mass transfer process of chemical 
reaction is either heterogeneous or homogeneous. Chemical reaction effect on fluid 
flow is based on nature. According to Manglesh and Gorla (2012), a chemical 
reaction will be of first order in as much reaction rate is proportional to 
concentration. Naturally, existence of pure water or water is impossible but 
foreign mass could be mixed naturally with air or water. The study of heat and 
mass transfer is useful for many chemical technologies in food processing, 
production of polymer and in the manufacturing of ceramics or glassware. 
According to Srinivasacharya et al. (2018), the double diffusive steady flow is due 
to combined action of convection and molecular dispersion. 
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1.2 Statement of the problem 

This research considered the analysis of MHD heat with mass transport. Pertinent 
flow parameters is presented using graphs and the engineering interest quantities 
are computed. The number of problems examined are: 

(i) Effects of thermo-physical properties heat with mass transport of MHD a viscoelastic 
liquid past a half-infinite movable plate. 
(ii) Contribution of varying viscosity and thermal conductivity of non-Newtonian liquids 
flow in a porous vertical plate with Soret-Dufour effects; and. 

(iii) Thermophoresis, Soret-Dufour effects on convective motion of non-Newtonian 
nanofluids past an inclined plate situated in a penetrable medium. 

All the problems above were solved numerically using spectral methods. This 
study test the accuracy and spectral relaxation and spectral homotopy analysis 
techniques were validated for solving model fluid flow problems in the field of 
fluid mechanics. 

1.3 Justification of the study 

This study shows that many areas have been neglected in previous works and the 
present study examined some of these areas. For instance, this study elucidate 
combined Soret-Dufour influence in heat with mass transfer processes. Soret and 
Dufour terms are studied as a second order phenomena because of its small order 
of magnitude as prescribed by Fick’s and Fouriers’ laws. Because of this, they have 
often been forgone in the problem of heat with mass transport. According to Eckert 
and Drake (1972), these effects are significant in a clear fluids. They are of great 
importance because of their vital role in science and engineering like Soret in the 
separation of isotopes. Furthermore, few works have been conducted on influence 
effects of parameters like thermophoresis, radiation, heat generation around the 
boundary layer region. Hence, this study aimed at examining the effects of all flow 
parameters. Also, many researchers in the past have assumed that viscosity and 
thermal conductivity is constant in their exploration. This is not realistic because 
the viscous and thermal conductivity of any fluid changes as it collides together 
during movement. It worth noting that higher temperature which will eventually 
lead to enhancement in the transport phenomenon by reducing the viscosity and 
thermal conductivity within the momentum and thermal boundary layer. Thus, the 
viscosity and thermal conductivity elucidated in this study as varied quantities. 
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1.4 Aim and objectives of the study 

The aim of this study is to explore magnetohydrodynamics heat with mass 
transport of non-Newtonian liquids flow past a vertical plate with thermo-physical 
parameters. The objectives of the study are: 

(i) to examine the physics of the problem of heat with mass transfer non-
Newtonian fluids model in a half-infinite vertical plate and vertical porous plate; 

(ii) to examine the effect of flow parameters such as magnetic parameter, radiation 
parameter, heat generation parameter, etc on the non-Newtonian fluids model within 
the boundary layer regime; 

(iii) to elucidate the effects of flow parameters on quantities of engineering interest; 
and 

(iv) to elucidate how accurate and valid of spectral relaxation and spectral 
homotopy analysis methods are. 

1.5 Definition of terms 

(i) Viscosity: Viscosity is a property that is very important in the existence of a 
fluid. It determines opposition to shearing stresses. It is used in determining 
the internal friction of the that resist fluid flow. Its existence in a fluid is as a 
result of cohesion and interaction between fluid particles. All fluids are 
viscous except where the viscosity effects are minimal. When the viscosity of 
a fluid is minimal, it is called an ideal fluid. Fluids are generally treated as a 
fluid that posses viscosity in order to examine loss of pressure as a result of a 
flow, drag acting on the flow where the body separates. The S.I. units of 
viscosity is Ns/m2. Kinematic viscosity defines the ratio of dynamic viscosity 
to fluid density. It is denoted by ν and mathematically written as ν = 
dynamicviscositydensity = 

 

. Its S.I. units is m 2/s. The Newton’s law as regards viscosity states that 

shear stress (τ) on the fluid element layer is proportional to rate of shear strain, 
that is . Any fluid which obey Newtons law of viscosity is a Newtonian 

fluid (Gebhart, 1962). 
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(ii) Newtonian and Non-Newtonian fluids: Newtonian fluids are fluid with 
shearing stress τ proportional to the velocity gradient . For this kind of 

fluid, the dynamic viscosity (i.e the constant of proportionality called 
coefficient of viscosity) does not make any difference compare to rate of 
deformation. Examples are water, kerosene, oil or air. All the examples obeys 
the law guiding the concept of viscosity because they are not in agreement 
with the linear relationship shear stress rate of deformation. Such fluids are 
blood, mud flows liquid pulp and polymer solutions. 

Non-Newtonian fluids does not conform with the law of viscosity. Such fluids 
are liquid pulp, mud flows, polymer solutions, blood etc. They are classified 
by rheological diagram. Their mechanical behaviour is in science of 
deformation and flow of substance due to complexity. It has numerous 
importance in industry and technology. Because they are complex, no 
constitutive equation which exibits such properties of non-Newtonian fluids. 
Power law and grade two or three models are simple fluid models because of 
their shortcomings whose fluid flow is not realistic. The Power-law model is 
applicable in modeling shear-dependent viscosity fluids but does not predict 
the effects of elasticity while grade two or three fluids gives details to the 
elasticity effects and has non shear dependent viscosity. Maxwell non-
Newtonian model is used in predicting stress relaxation. Examples of Casson 
non-Newtonian fluid model are soup, tomato sauce, Jelly, honey, 
concentrated Juice etc. 

The blood of human is also treated as Casson fluid because of the presence of 
fibrinogen, protein and globulin in an aqueous plasma base, red blood cell of 
human can form a structure known as aggregator rouleaux. Consider the 
aggregates or rouleaux acts in a plastic solid, manner and yield stress is 
present and identified yield stress that is constant in Casson fluid (Fung; 
1984). Viscoelastic fluids are also non-Newtonian. Their constitutive 
equations usually result in higher-order derivative terms in the momentum 
equations. These make it difficult to solve in comparison with Newtonian 
fluids (Tonekaboni et al., 2012). These kinds of fluids are hereby solved using 
some analytical and numerical methods such as homotopy analysis method 
and spectral methods. Walters in 1962 proposed the Walters-B fluid to 
elucidate fluids with viscosity with short memory elastic effects and capable 
of stimulating accurately many complex polymeric, biotechnological and 
tribiological fluids (Frank, 1990). 

(iii) Steady and Unsteady flow: Steady flow is the flow that all characteristics of 
fluid flow state such as density, pressure, velocity and so on do not change 
with time. However, unsteady flow is the flow that all characteristics of fluid 
flow state remain constant with time. A practical example is the water tap we 
use daily. When water is coming out of the tap when the handle is turned, it is 
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an unsteady flow but when the opening is left constant, it is a steady flow 
(Robert and Murray, 2002). 

(iv) Laminar and Turbulent flow: According to Reynolds, in 1883, what 
distinguish between laminar and turbulent flows is the reynold number. The 
Reynolds number is employed to characterize a flow and used to examine 
whether a flow is laminar or turbulent. An example is whenever a tap is open 
a little with a low velocity, there is a smooth flowing of water with surface in 
a laminar state. Increase in the tap velocity create an opaque with a rough 
surface flowing of water in a turbulent state of flow. 

When the fluid particle in a stream is tampered with, at inertia there is a flow 
in a new direction and the forces produces due to surrounding fluid which 
helps it to conform the stream motion of the rest while it is accurate in 
turbulent flow. Effects of any deviation is eliminated by the viscous shear 
stress. The ratio of the inertial force to the force of viscous acting on the fluid 
particle 

(Douglas et al.,2005). 
(v) Incompressible and Compressible fluids: An incompressible fluid is liquid 

while compressible fluid is gas. Whenever a liquid is highly pressurized, 

compressibility is put into consideration in the case of liquid. A typical 

example is oil in a hydraulic machine. On the other hand, the compressibility 

in a gas could be disregarded when change in pressure is small (Frank, 

1990). 

(vi) Compressible and Incompressible flows: Compressible flows are those 
type of flow that has a non constant density (ρ) i.e ρ 6= constant. On the other 
hand, the type of flow that has density being constant is incompressible flow. 
Fluids that flows incompressibility are generally liquids (Robert and Murray, 
2002). 

(vii) Boundary layer: Prandtl divide the idea behind a viscous flow into region 

near the wall affected by friction and region outside the unaffected. The first 

layer is the one at the boundary and main region where the fluid flows is the 

second. However, boundary layer is the layer of a fluid where contribution of 

viscosity is important. 
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The boundary layer approximation explains that when Reynolds number is 
high, the surface is partitioned into outer region unaffected by viscosity, close 
region where viscosity is significant (Eckert and Drake, 1972). 

(viii) Dimensional analysis: Dimensional analysis describes the relationship that 
is between physical quantities using their dimensions and their units of 
measurement. It is basically used in fluid dynamics to convert a unit from one 
form to another. It is applicable in real life problems in physics (Robert and 
Murray, 2002). 

(ix) One, Two and Three-dimensional flow: A one-dimensional flow is the flow 
that all its factors (velocity, pressure etc) which describes the flow at any 
given instant varies only along the direction of flow. It varies with time the 
moment the flow is unsteady. An example is the flow through a pipe. A two-
dimensional flow is when flow factors varies in the direction of flow. An 
example is a flow past a weir whose cross-section and infinite width is 
constant and perpendicular to the plane can be taken as two-dimensional 
(Frank, 1990). 

(x) Radiation parameter: Thermal radiation plays an important role in the 
problem of heat plus mass transport most importantly in design of energy 
conversion system which works at a higher temperature. For instance, 
satellites, gas turbines, space vehicles etc. Therefore, effect of radiation is of 
great significance in a surrounding with high temperature. The thermal 
radiation within the system is as a result of hot walls emission and working 
fluids ( Seigel and Howell, 1971). The thermal radiation generally indicates 
the relative contribution of conduction transfer of heat and thermal radiation 
transfer. It is necessary to say that, temperature profiles are more effected by 
thermal radiation while compared with concentration profiles. Increasing 
thermal radiation within the boundary layer means radiation heat loss 
enhances the ambient temperature and hereby augument cooling rate of 
fluid and reverses the flow in the boundary layer (Makinde and Olanrewaju, 
2011). The presence of radiation term in the energy equation result to 
nonlinear equation and lead to difficulty in computation. Owing to these 
difficulties, radiation effect on convective flows has been studied with 
reasonable simplifications (Bird et al., 1960). 

(xi) Magnetic parameter: According to Idowu and Falodun in 2018, induced 
magnetic field current in a movable conductive fluid. This induced currents 
hereby polarize the fluid and make changes to the magnetic field. Practically, 
in MHD heat plus mass transfer problem there is a migration of conductor 
into an electric current magnetic field which is induced and hereby creates 
its own magnetic field. This conductor is associated with fluids with complex 
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motions. The induced current by virtue of electrically conducting fluids 
moved as a result of magnetic field which gives rise to a resistive force 
(Lorentz) and retards its motion. Kumar and Sivaraj (2013) studied the 
problem of heat plus mass transfer with MHD. Their study established the 
fact that the magnetic 
field decreases the fluid motion of an electrically conducting fluid within the 
boundary layer. The study of non-Newtonian fluids with magnetic field 
gained attention of many authors because of its significance in science and 
technology. Higher temperature plasma oil exploration, nuclear reactors, 
plasma studies, MHD generators and accelerators, liquid metals fluids and 
power generation systems are some important applications of MHD (Bird et 
al., 1960). 

(xii) Soret and Dufour: In the combined investigation of heat plus mass transfer 
effect, Dufour or diffusion-thermal is thermal energy flux resulting from 
concentration gradients while Soret or thermo-diffusion effect is the 
contribution to the mass fluxes as a result of temperature gradient. Both 
Soret and Dufour effects are influencial whenever there is chemical reaction 
species at a surface in the domain of the fluid with lower density more than 
the surrounding fluid (Makinde and Olanrewaju, 2011). The Dufour term is 
found in the energy equations while Soret term is found in the specie 
equations. According to Idowu and Falodun (2018), when the Soret term is 
increases, there is higher thermal diffusion which brings increase to the fluid 
velocity. Positive Soret term stabilizes the flow. Idowu and Falodun (2018) 
explained that increase in temperature has every tendency of decreasing 
both density and mass fraction of solute concentration when the Soret 
parameter is greater than zero (i.e Soret number≥ 0). This is refers to as 
thermal gradient with cooperative solutal meaning that all the solute diffuses 
to cold regions but for Soret to be less than zero (i.e Soret number≤ 0), there 
is increase in the temperature and density of the fluid. This is refers to as 
thermal gradient with competitive solutal meaning that, all the solute 
diffuses to the warmer region. Both Soret and Dufour are significant when 
there is high concentration gradient and temperature gradient which cannot 
be neglected. Soret-Dufour are interesting physical phenomena while 
considering heat and mass transfer simultaneously. Soret-Dufour in heat 
transfer process are generally neglected because they posses smaller order 
of magnitude than the effects prescribed by the laws of Fouriers and Ficks. 
Soret effect is very useful in separation of isotope and when gases is mixed 
together at a high molecular and medium weight(Eckert and Drake, 1972). 
Eckert and Drake (1972) reported the usefulness of these effects in 
convective transport phenomenon. 

(xiii) Viscous dissipation: The recent trend on the study of viscous dissipation is 
noticeable. This term is found in the energy equations. After 
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dimensionalization or after the application of similarity variables, its results 
to a dimensionless Eckert number is capable of causing increase in the 
velocity profiles by adding more energy to the flow within the layer. Eckert 
number explains the relationship between kinetic energy of the flow 
enthalpy. According to Idowu and Falodun (2018), greater Eckert number 
gives rise to fluid velocity because heat energy is produced which is stored in 
the liquid fluid as a result of frictional heating (Gebhart, 1962). 

Dissipation term is important when there is high the viscous in the fluid. For 
example, in polymer processing where temperature is high, dissipation term 
cannot be neglected. Viscous dissipation effect is very much important in 
geophysical flow and operations in the industries which are symbolized by 
Eckert number (Gebhart, 1962). 

(xiv) Thermophoresis: Thermophoresis is a phenomenon that occurs when two 
or more moving particles are mixed together subject to the temperature 
gradient force and types of particles that react differently in the system. 
Thermophoresis is either positive or negative. It is positive when the 
particles moves from higher temperature to lower temperature and negative 
when it is the other way. Thus, the larger species experienced the positive 
thermophoresis while the lighter species experience negative 
thermophoresis. The phenomenon of thermophoretic has numerous practical 
applications as the particles move separately due to temperature gradient 
force. These particles are separated by the force after mixing them together 
and prevented from mixing it already separated. The phenomenon is very 
useful in most industries to bring separation to larger or smaller particles of 
polymer from their solvent. 

(xv) Heat generation: Heat generation is a scientific method of generating heat in 
the system by either chemical or nuclear process. The example of this 
phenomenon include atmospheric motion heat is generated sunlight 
absorption. (Tasuka et al., 2016). The heat generation term is added to the 
energy equation. At times, temperature difference may exist in the surface 
and ambient fluid (Idowu and Falodun, 2018). 

(xvi) Porous media: The flow through porous media finds practical application in 
design of filters, transpiration cooling, boundary layer control and gaseous 
diffusion. Problems on porous media can also be found in the manufacturing 
of wires, fibres and glass in polymer industries. Increase in the porous media 
is increase within the boundary layer allows passage of more fluid particles 
and leads to reduction of fluid velocity whereas the fluid temperature will be 
enhanced in the boundary layer (Eckert and Drake, 1972). 
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(xvii) Chemical reaction: The problem of heat plus mass transfer in the presence 
of chemical reaction plays a predominant role indrying, cooling of nuclear 
reactors, chemical vapour deposition on surfaces, petroleum industries, 
power and cooling industries. A phenomenon of this type frequently occurs 
in nature. The problem on chemical reaction is modeled as heterogeneous 
and homogeneous processes depending on how it occurs at the interface or 
as a volume reaction of single phase volume reaction. It could be reversible 
or nonreversible. A homogeneous reaction takes place in a phase while 
heterogeneous reaction occurs in an area that is restricted within boundary 
of a phase. At times, reaction rate may be subject to the species concentration 
itself ( Alao et al., 2016). 

When rate of reaction is proportional to concentration, the chemical reaction is 
of first order (Cussler, 1988). An example is emission of nitrogen dioxide to the 
atmosphere. The release of nitrogen dioxide to the atmosphere reacts 
chemically with hydrocarbons that are unburned aided by sunlight and 
produce peroxyacetylnitrate (Cussler, 1988). 

(xviii) Skin friction coefficient: It occurs due to the drag of viscous in the 
boundary layer around object. The part of the layer is generally laminar and 
thin. However, the flow becomes turbulent towards the tail section of the 
object. Law of viscosity is explained by Isaac Newton that the shear stress (τ) 

that is between layers of a fluid is proportional to velocity gradient   in a 

perpendicular direction to the layer. Therefore, the viscous drag at the shell 

of body or wall is  and the skin friction coefficient becomes 

. 

(xix) Nusselt number: It is the division of convective to conductive heat transfer 
in the boundary layer. 

 

(xx) Sherwood number: It is applicable in mass transfer problem. It is the 
division of convective to diffusive mass transfer. 
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1.6 Outline of the thesis 

While chapter one of this study is the general introduction, chapter two deals with 
literature review to shapen the aim and objectives of the study. This study has 
reviewed related published works following the present study and its goals. 
Chapter three comprises of the formulation, derivation, dimensionalization and 
method of approach to the problems. The results obtained and detailed discussions 
had been described in chapter four. The last chapter five contain the summary of 
the entire work followed by cited literature. This chapter also contains the 
conclusion of the study and its recommendation.  
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

The mathematical analysis of fluid dynamics arising from science and engineering 
in the form of differential equations which do not have analytical solutions has led 
many scholars to propose different numerical methods. 

In this chapter, some of many contributions in the literature are reviewed. Their 
methods of approach and findings of different flow parameters are discussed exten- 

sively. 

2.2 Review of existing works 

The concept of MHD is to study the movement of a conducting fluid electrically 
because of an imposed magnetism. Magnetic fields are produced by electric 
current. MHD is of great importance in engineering mostly in power, metallurgy 
astrophysics and geophysics. Due to this importance, several authors presented 
the flow of magnetohydrodynamics. Manglesh and Gorla (2012) elucidate MHD 
thermal radiation, rotation and chemical reaction of unsteady viscoelastic slip 
flow.In their analysis, they obtained solutions of the problem analytically for 
momentum, energy and concentration equations. The Nusselt number and the 
frequency of oscillation was found to increase because of increase in Prandtl 
number. The work of Alam et al. (2014) was on heat plus mass transport boundary 
layer motion past an inclined penetrable plate by considering suction, Soret, and 
hall current effect. Their flow equations were simplified into first order total 
differential equations before applying Runge-Kutta fourth-fifth order with 
shooting technique. In their study, the thickness of the thermal boundary layer was 
found to increase as the Prandtl number rises which implies heat transfer at lower 
case. In 2014, Ibrahim discussed MHD, dissipative, radiative and chemical reaction 
effects through a penetrable channel and a non-Isothermal stretching sheet. In his 
investigation, similarity transformation were used to simplify the flow equations to 
total differential equations. Shooting method was used in solving the equations 
and he observed velocity and temperature fields decreases as a result of wall 
temperature parameter. Sreenivasulu et al. (2016) studied boundary layer slip 
flow over an exponential permeable stretching sheet by considering thermal 
radiation, MHD, Joule heating and viscous dissipation effects. Their flow equations 
were transformed to total differential equations with the help of similarity 
transformation and solved numerically. Pattnaik and Biswal (2015) presented 
solution of free convective flow through porous media with MHd and time 
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dependent. Their flow equations were simplified to ordinary differential equations 
using super imposing a solution with steady time dependent transient part which 
resulted to set of ordinary differential equations and this set of ordinary 
differential equations were solved by Laplace transformation method. Also in their 
analysis, they concluded that a higher Prandtl fluid as well as a higher Schmidt 
fluid ( heavier species) were counterproductive in accelerating fluid motion and 
further assisted by the presence of a porous medium. Recently, Ashish (2017) have 
studied transient free convective MHD flow past an exponentially accelerated 
vertical porous plate with variable temperature through a porous medium. He 
solved the problem of MHD flow analytically by the Laplace transform technique 
and his result revealed that skin friction increases with increase in magnetic 
parameter, suction parameter, radiation parameter and accelerating parameter. 

Eswaramoorthi et al.(2015) have studied effect of radiation on MHD convective 
flow and heat transfer of a viscoelastic fluid over a stretching surface. In their 
analysis, a similarity transformation was used to reduce their governing nonlinear 
partial differential equations into ordinary differential equations. The transformed 
equations were then solved using homotopy analysis method. They found out that 
the momentum boundary layer thickness decreases as the unsteadiness 
parameter, viscoelastic parameter and Hartmann number increases. Natural 
convection heat and mass transfer in MHD fluid flow past a moving vertical plate 
with variable surface temperature and concentration in a porous medium was 
considered by Javaherdeh et al.(2015). In their analysis, implicit finite-difference 
method was used in solving their model and their results show that the higher the 
porosity parameter, the more sharply is the reduction in both Nusselt and 
sherwood number. Renuka et al.(2015) investigated radiation effect on MHD slip 
flow past a stretching sheet with variable viscosity and heat source/sink. Runge-
kutta fourth-order technique along with shooting method were used in solving 
their model equations and they found out that the radiation parameter elevates the 
skin friction and reduces the heat transfer. Reddy et al.(2016) have studied 
unsteady MHD free convection flow characteristics of a viscoelastic fluid past a 
vertical porous plate. They solved their model using perturbation scheme and their 
result revealed that elasticity of the fluid and the Lorentz force reduces the 
velocity. Swapna et al.(2017) recently studied chemical reaction and thermal 
radiation effects on MHD convective oscillatory flow through a porous medium 
bounded by two vertical porous plates. Perturbation techniques were used to solve 
their model analytically and they found out that rate of heat transfer slightly 
increase for large values of heat source parameter. 

Ahmed et al.(2010) have studied unsteady MHD free convective flow past a 
vertical porous plate immersed in a porous medium with hall current, model 
analytically and found out that when Soret number decreases, there is an increase 
in the main flow and cross flow velocities. Gundagani et al.(2012) considered finite 
element solution of thermal radiation effect on unsteady MHD flow past a vertical 
plate with variable suction. Finite element method were used to solve their 
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nondimensional governing equations. They discovered that, increasing the 
radiation parameter causes an increase in the velocity and temperature within the 
boundary layer. Sarada and Shanker (2013) have studied the effect of chemical 
reaction on an unsteady MHD free convection flow past an infinite vertical porous 
plate with variable solution. In their analysis, finite difference method were used to 
solve the flow equations and they found out that an increase in the Prandtl number 
decreases the Nusselt number. Prakash et al. (2014) have studied effects of 
chemical reaction and radiation absorption on MHD flow of dusty viscoelastic fluid. 
They solved their modeled equations analytically using perturbation technique. 
Their result revealed that when heat source/sink parameter and Prandtl number 
increases, the temperature gradually decreases. Chandra et al.(2015) have studied 
thermal and solutal buoyancy effect on MHD boundary layer flow of a viscoelastic 
fluid past a porous plate with varying suction and heat source in the presence of 
thermal diffusion. In their analysis, they used multiple parameter perturbation on 
velocity and simple perturbation method on the temperature and concentration. 
They discovered that the presence of thermal diffusion increases fluid velocity 
while magnetic field reduces the fluid velocity. Sulochana et al.(2016) considered 
numerical investigation of chemically reacting MHD flow due to a rotating cone 
with thermophoresis and Brownian motion. In their analysis, Runge-kutta based 
shooting technique were used to solve their model and their results revealed that 
the thermophoresis and Brownian motion parameters control the heat and mass 
transfer rates. Vijayakumar and Keshava (2017) recently investigated MHD 
boundary layer flow of a visco-elastic fluid past a porous plate with varying suction 
and heat source or sink in the presence of thermal radiation and diffusion. They 
solved their flow equations numerically using finite difference method and found 
out that influence of heat source enhance the fluid temperature. 

Islam et al.(2014) studied effect of conduction variation on MHD natural 
convection flow along a vertical flat plate with thermal conductivity. They solved 
their transformed non-linear equations using implicit finite difference method 
with Kellerbox technique. They found out that the temperature within the 
boundary layer increases when increasing magnetic parameter. Jain (2014) 
studied combined influence of hall current and Soret effect on chemically reacting 
magneto-micropolar fluid flow from radiative rotating vertical surface with 
variable suction in slip-flow regime. Perturbation techniques were used in solving 
their equations and they found out that micro-rotation profiles and couple stress 
coefficient decrease with an increase in suction parameter, rotation parameter and 
viscosity ratio. Haritha et al.(2015) studied effects of thermo-diffusion, thermal 
radiation, radiation absorption on convective flow past stretching sheet in a 
rotating fluid. Galerkin finite element analysis with three nodded line segment 
were used in their analysis. Jana and Das (2015) studied influence of variable fluid 
properties, thermal radiation and chemical reaction on MHD slip flow over a flat 
plate. In their analysis, they used similarity transformation on their governing 
equations to have non-linear ordinary differential equations and solved with the 
help of symbolic software MATHEMATICAL. Hemalatha and Bhaskar (2015) 
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studied effects of thermal radiation and chemical reaction on MHD free convection 
flow past a moving vertical plate with heat source and convective surface 
boundary condition. They transformed their governing equation using similarity 
transformation and solved same using Runge-kutta method along with shooting 
technique. They found out that increase in the radiation parameter gives a little 
increase in the velocity. 

Heat and Mass transfer (or double diffusion) in non-Newtonian fluids attracted 
the attention of researchers in fluid dynamics over decades due to its applications 
in engineering such as heat exchanger devices, nuclear waste disposals, chemical 
catalytic reactors and processes etc. The buoyancy due to temperature and 
concentration gradients drive double diffusive flow. Simultaneous occurrence of 
heat and mass transfer in a moving fluid makes the relations between the energy 
flux and the driving potentials to be more complicated. Dufour or diffusion-thermal 
effect is the energy flux caused by a composition gradient while temperature 
gradient create mass fluxes and this is called Soret or thermal-diffusion effect. The 
combined effects of Soret and Dufour are often neglected by authors in literature 
because of their smaller order of magnitude than the effects prescribed by Fick’s 
laws. The effects of Soret and Dufour are of great importance like Soret in isotope 
separation. Ibrahim and Sunneth (2015) discussed chemical reaction and Soret 
effects on unsteady MHD flow of a viscoelastic fluid past an impulsively started 
infinite vertical plate with heat source/sink. Alao et al.(2016) presented effects of 
thermal radiation, Soret and 

Dufour on an unsteady heat and mass transfer flow of a chemically reacting fluid past a semi-
infinite vertical plate with viscous dissipation. In their study, governing equations representing 
the physical model are system of partial differential equations and were transformed into 
systems of coupled non-linear partial differential equation by introducing non-dimensional 
variables. The resulting equations were solved using the spectral relaxation method (SRM). 
Their results shows that an increase in Eckert number of the fluid actually increases the 
velocity and temperature profiles of the flow. Whereas an increase in thermal radiation 
parameter reduces the temperature distribution when the plate is being cooled. Adeniyan 
(2016) investigated Soret-Dufour and stress work effects on hydromagnetic free convection of 
a chemically reactive stagnation vertical surface with heat generation and variable thermal 
conductivity. Recently, Hayat et al. (2017) presented Soret and Dufour effects on MHD 
peristaltic transport of Jeffrey fluid in a curved channel with convective boundary conditions. 
In their analysis, it was found out that velocity is not symmetric about center line for curvature 
parameter and their results revealed that maximum velocity decreases with an increase in the 
strength of magnetic field. Among great authors who have presented the effects of Soret and 
Dufour discussed in this work are Gbadeyan et al. (2011); Subhakar et al. (2012); Mahbub et al. 
(2013); Jimoh et al. (2014) and Gangadhar and Suneetha (2015). Others are Vedavathi et al. 
(2015); Bilal et al. (2016); Prakash et al. (2016) and Sharma and Aich (2016). All the studies 
mentioned above used a numerical method in analyzing their results and all found out that the 
effects of both Soret and Dufour are in alternate to each other on the temperature and 
concentration profiles. 
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Thermal radiation plays a vital role in the design of advanced energy 
conversion system when at a very high temperature. The emission of hot walls and 
the working fluid indicate the presence of thermal radiation within the system, 
Seigel and Howell (1971). When the surrounding fluid is at high temperature, 
thermal radiation is of great importance and it has received researchers attention 
in recent time. Shateyi et al.(2010) studied the effects of thermal radiation, hall 
currents, Soret and 

Dufour on MHD flow by mixed convection over a vertical surface in porous media. 
In their analysis, transient, non-linear and coupled governing equations were 
solved by adopting a perturbative series expansion about a small parameter. 
Radiation effect on an unsteady MHD free convective flow past a vertical porous 
plate in the presence of Soret have been studied by Anand Rao et al. (2012). Their 
problem was governed by systems of coupled non-linear partial differential 
equations whose exact solutions are difficult to obtain, if possible. So, they 
employed Galerkin finite element method for the solution. Their result revealed 
that an increase in the Soret number leads to increase in the velocity and 
temperature. Gundagani et al. (2012) investigated solution of thermal radiation 
effect on unsteady MHD flow past a vertical porous plate with variable suction. 
Non-dimensional governing equations are formed with the help of suitable 
dimensionless governing parameter in their analysis. The resultant coupled non 
dimensional governing equations are solved by a finite element method. In their 
result, it was found out that increase in the magnetic field leads to decrease in the 
velocity field and rise in the thermal boundary thickness. Devi et al. (2014) studied 
radiation and mass transfer effects on MHD boundary layer flow due to an 
exponentially stretching sheet with heat source. In their analysis, the initial 
governing boundary layer equations were transformed to systems of ordinary 
differential equations, and solved numerically by a fourth order Runge-Kutta 
method along with shooting technique. Their results show that the momentum 
boundary layer thickness decreases, while both thermal and concentration 
boundary layer thicknesses increases with an increase in the magnetic field 
intensity. Sreenivasa (2016) presented effect of thermal radiation, dissipation and 
chemical reaction on mixed convective heat and mass transfer flow past a 
stretching sheet with hall effects in slip flow regime. Similarity solutions were 
obtained using suitable transformations in their analysis. The similarity ordinary 
differential equations was then solved by MATLAB routine bvp4c. Idowu et al. 
(2016) studied finite element analysis on MHD Jeffry fluid flow with radiative heat 
transfer past a vertical porous plate moving through a binary mixture. Finite 
element method was used in their analysis. Sarma and Govardhan (2016) studied 
thermo-diffusion and diffusion-thermo effects on free convection heat and mass 
transfer of vertical surface in a porous medium with viscous dissipation and 
thermal radiation. In their study, the two-dimensional boundary-layer partial 
differential equations that govern the flow problem were transformed by a 
similarity transformation into a system of ordinary differential equations which 
were solved numerically. Their results revealed that as the viscous dissipation 
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increases, the velocity profiles increases whereas concentration and temperature 
profiles decreases. 

The interaction between two or more chemicals to produce new compounds is 
called chemical reaction. A chemical reaction can be classified as heterogeneous 
and homogeneous reaction. Heterogeneous reaction deals with reactants of 
different states of matter while homogeneous reaction deals with reactant of the 
same states of matter. Hady et al. (2008) reported influence of chemical reaction 
on mixed convection of Non-Newtonian fluids along non-Isothermal horizontal 
surface in porous media. In their study, numerical calculations were carried out for 
various values of dimensionless parameters and analysis of the results obtained 
show that the flow field were influenced appreciably by the chemical reaction, the 
buoyancy ratio, the viscosity index and the power-law of the wall temperature 
parameter. Sugunamma et al.(2013) discussed inclined magnetic field and 
chemical reaction effects on flow over a semi-infinite vertical porous plate through 
porous medium. Kishore et al. (2014) studied the effect of chemical reaction on 
MHD free convection flow of dissipative fluid past an exponentially accelerated 
vertical plate. Their flow equations are governed by coupled non-linear partial 
differential equations. The dimensionless equations of the problem were solved 
numerically by the unconditionally stable finite difference method of Dufort-
Frankels type. Their result show that the rate of concentration transfer increases 
with increase values of magnetic parameter, Schmidt number, Prandtl number, and 
chemical reaction parameter while it decreases with an increase in thermal 
Grashof number, mass Grashof number and Eckert number. Ram et al. (2015) 
investigated stability of chemical reacting double diffusive free convective flow of 
Maxwell fluid through porous medium with internal heating under magnetic field. 
Their study explained that the effect of magnetic brings a very slow flow of fluid 
particles so that the Darcy model is taken into account in the momentum equation 
and the onset of stabilities at free-free boundaries is calculated analytically. Kala 
and Rawat (2015) reported effect of chemical reaction and oscillatory suction on 
MHD flow through porous media in the presence of pressure. Their study 
employed perturbation technique to find the solution for velocity field and 
concentration distribution. It is observed that with the increase in the value of 
Schmidt number, Chemical reaction parameter the concentration of the flow field 
shows decrease at all points and hence thickness of concentration boundary layer 

decreases. 

The type of liquid which disobey the Newtons law of viscosity are non-
Newtonian. Liquids that behave in such manner are not common. Tooth pastes, 
mud flows, slurries, blood are examples of non-Newtonian fluids. They are mostly 
complex and are examined under flow (rheology) and science of deformation. 
Many researchers in recent time in fluid mechanics are exploring non-Newtonian 
liquid owing to the rheological applications in chemical along with mechanical 
engineering. In the examination of Ramana et al. (2017), it was finalized that mass 
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transport motion rate in Casson liquid improved more than Maxwell liquid. The 
exploration of Walters-B liquid in boundary layer motion was elucidated by 
Tonekboni and Ramin (2012). They showed as elasticity is upsurge stress on the 
boundary enlarges in stagnation motion problem and decreases in Sakiadis as well 
as Blasius motion. The examination of Pushpalatha et al. (2017) indicate that, 
higher Casson liquid term leads to degeneration in the velocity plot while 
temperature along with concentration plots degenerates. The elucidation of 
Fagbade et al. (2018) found out that increase in the viscoelastic parameter lessens 
the velocity graphy. Animasaun et al. (2016) finalized that the contribution of 
Casson liquid parameter is explored by varying plastic dynamic viscosity which 
lessens both the temperature and velocity graph. The elucidation of Pramanik 
(2014) explained that higher Casson liquid term decrease the velocity graph but 
accelerate the temperature plot as blowing/suction term is negative or positive. 
Barik et al. (2017) elucidate laminar steady MHD motion of visco-elastic liquid 
through a penetrable pipe and embedded in a penetrable channel. The concluding 
remarks was that suction along with elasticity are counter productive when the 
skin friction becomes enlarged. Mukhpadhyay et al. (2013) elucidated Casson 
liquid motion past an unsteady stretchable surface. They detected that boundary 
layer thickness along with velocity are degenerating function of the Casson liquid 
term. 

Examples of non-Newtonian fluid are micropolar fluid, viscoelatic fluid, 
powerlaw fluid etc. Non-Newtonian fluid are considered to be more important and 
appropriate in many technological applications compared to the Newtonian fluid. 
Rana et al. (2013) presented on the onset of thermosolutal instability in a layer of 
an elastico-viscous nanofluid in porous medium. In their analysis, they applied 
perturbation solutions in solving their transformed equations. Their results 
revealed that kinematic viscolasticity has no effect on the onset of stationary 
convection. Kumar and Singh (2007) studied instability of two-rotating viscoelastic 
(Walters’B) superposed fluids with suspended particles in porous medium. They 
employed perturbation techniques in solving their model equations and their 
result shows that the system is unstable or stable depending on the kinematic 
viscoelaticity whether it is greater than or smaller than the medium permeability 
divided by medium porosity. In another development, Prasad et al.(2011) reported 
unsteady free convection heat and mass transfer in a Walters’-B viscoelastic flow 
past a semi-infinite vertical plate: a numerical study. In their study, the finite 
difference scheme of the CrankNicolson type was employed to solve their 
dimensionless unsteady, coupled, and non-linear partial differential conversations 
equation. They observed that, when the viscoelaticity parameter increase, the 
velocity gradually increase close to the plate surface. Ahmad (2011) studied visco-
elastic boundary layer flow past a stretching plate and heat transfer with variable 
thermal conductivity. The problem of boundary layer flow of viscoelaticity fluid 
(Walters’-B Liquid Model) was solved analytically and observed that as we move 
away the stretching plate with dynamic region, the temperature field increase 
gradually as viscoelatic parameter increases. Jimoh et al. (2015) presented 
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numerical study of unsteady free convective heat transfer in Walters-B viscoelastic 
flow over an inclined stretching sheet with heat source and magnetic field. An 
implicit finite difference method of Crank-Nicolson type is employed in solving the 
dimensionless governing equations. They observed that when the heat source 
parameter increases, the velocity and temperature increases within the boundary 
layer. 

The contribution of variable viscosity along with thermal conductivity on fluid 
motion has gained the attention of many scholars in recent time. The analysis of 
such finds applications in system of underground storage as well as extraction of 
geothermal energy. A varied viscosity in a liquid motion assist in assuming the type 
of motion and transport rate of heat. Also, the variation of thermal conduction on 
analysis of heat transport assist in getting accurate facts of the thermal transport. 
Choudhury and Hazarika in (2008) presented the contribution of variable viscosity 
along with thermal conductivity on MHD motion owing to a point sink. Their model 
equations of motion was tackled by utilizing the shooting approach. Hazarika and 
Konch (2016) elucidate variable thermal conductivity along with viscosity 
contributions on MHD free convection dusty liquid along a vertical penetrable 
plate with generation of heat. It was finalized in the exploration that increase in 
viscosity term degenerate the liquid velocity and dust phase. However, it brings 
enhancement at higher variable thermal conductivity term. The recent analysis of 
Hazarika and Phukon (2017) on a varied viscosity as well as thermal conductivity 
was tackled by utilizing the shooting techniques. Their contribution shows that 
higher viscosity resulted to degeneration in skin friction and enhancement in 
Nusselt number . Manjunatha and Gireesha (2016) explored the contribution of 
varying thermal conductivity and viscosity on MHD motion and heat transfer of a 
dusty liquid. They finalized that higher varied viscosity term lessens the dust phase 
along with liquid 

velocity. 

The effect of thermophoresis on mixed convection flow of MHD non-Newtonian 
nanofluid play an important role in space technology and in high temperature. The 

phenomenon of thermophoresis is used in industries to separate large or small 
polymer particles from their solvent. It plays a significant role in the mechanism of 

devices involving small micron sized particles and large temperature gradients in 
the fields. Mondal et al. (2018) considered thermophoresis on MHD mixed 

convection mass transfer in their study. Their transformed set of non-linear coupled 
ordinary differential equations were solved numerically. Their result revealed that 

increase in thermophoresis brings decrease to the concentration of the fluid. 
Jayachandra 

Babu et al. (2017) considered thermophoresis and Brownian motion in their study. 
Their transformed governing equation were solved using Runge-Kutta and 
Newton’s method. Their result revealed that thermal and solutal Grashof numbers 
regulate the temperature and concentration fields. It is noticed that 
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thermophoresis and Brownian motion parameters is opposite to each other on the 
local Sherwood number. Muthuraj et al. (2016) studied influence of chemical 
reaction with heat and mass transfer. Their analysis was done using perturbing 
technique. Their result shows that chemical reaction greatly influence the mass 
transfer. Kataria and Patel (2016) studied effects of radiation and chemical 
reaction on MHD Casson fluid flow. Their flow equations were solved using Laplace 
transform technique. Their results were presented in close form and the result 
revealed that increase in chemical reaction parameter brings decrease to the 
concentration field. Mass along with heat transport on mixed convective motion of 
chemically reating nano liquid was examined by Mahanthesh et al. (2016). They 
utilized Laplace transform systematic approach to obtain a closed formed 
approach. It is detected in the study that higher chemical reaction parameter leads 
to rapid degeneration in the dimensionless concentration graphs. 

An exploration of non-Newtonian liquids motion past a stretchable sheet was 
investigated by Ramana Reddy et al. (2018). Their motion equations were tackled 
by utilizing Runge-Kutta Fehlberg systematic approach. Their analysis indicates 
that casson liquid attains greater velocity in comparison to Maxwell liquid. 
Animasaun and Pop (2017) explored non-Newtonian Carreau liquid motion driven 
by catalytic reactions surface by utilizing shooting approach. They finalized that 
the temperature field in the motion of viscoelastic carreau liquid is higher than the 
Newtonian liquid. Gireesha et al. (2018) elucidated mass and heat transport of 
nano liquid Oldroyd-B past a stretchable sheet. Then simplified equations were 
tackled by utilizing RKF-45 approach. Their outcome reveals that nonlinear 
radiation becomes more effective than linear radiation. Mass and heat transport in 
MHD Casson liquid past an exponentially penetrable and stretchable surface have 
been considered by Raju et al. (2016). They used similarity transformation to 
reduce their flow equations into ordinary differential equations. These equations 
were solved by Matlab bvp4c package. It was concluded in the study that Casson 
fluid showed better performance of heat transfer when compared with Newtonian 
fluid. Srinivasacharya et al. (2018) studied double dispersion influence on 
micropolar fluid. Their transformed governing equations were solved using 
successive linearization method. The study concluded that dispersion coefficients 
have strong influence on heat and mass convective transfer. Raju et al. (2015) 
studied effects of radiation and Soret on MHD nanofluid flow. They used similarity 
transformation to reduce the governing equations and solve the resulting 
equations numerically. It was concluded in the study that the velocity, temperature 
and concentration boundary layer increases as a result of increase in nanoparticle 
volume fraction. Many researchers in the field of fluid dynamics now considered 
spectral methods as an essential tools in solving a highly coupled and nonlinear 
differential equations. Spectral relaxation method (SRM) is an iterative method 
which employed the Gauss-seidel approach. SRM is efficient, accurate, and it solves 
both ordinary and partial differential equations. Motsa and Makukula (2013) 
considered SRM for steadiness motion of von Karman of Reiner-Rivlin liquid with 
injection/suction, viscous dissipation and Joule heating. They suggested in their 
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study that SRM can be extended to related problems in fluid mechanics 
applications. Haroun et al.(2015) studied unsteady natural convective boundary 
layer flow of MHD nanofluid over a stretching surfaces with chemical reaction 
using the spectral relaxation method. They found out that the values of skin 
friction increases when increasing the values of the nanoparticle volume fraction 
and magnetic parameter. Kameswaran et al.(2013) presented a spectral relaxation 
method for thermal dispersion and radiation effects in a nanofluid flow. Their 
analysis shows that the convergence rate of SRM is significantly improved when it 
is used with the succesive over-relaxation method. Magugula et al.(2016) recently 
considered a bivariate spectral relaxation method for unsteady 
magnetohydrodynamic flow in porous media. Their study revealed that the new 
approach is an improvement over the spectral relaxation method. Motsa et 
al.(2014) considered spectral relaxation method and spectral Quasilinearization 
method against Keller box method and they found out that the methods are 
efficient in terms of computational accuracy and speed compared to Keller box. 
Motsa et al.(2014) considered a spectral relaxation approach for unsteady 
boundary-layer flow and heat transfer of a nanofluid over a permeable 
stretching/shrinking sheet. In their analysis, it was found out that spectral 
quasilinearization method converges faster than spectral relaxation method but 
spectral relaxation method is more accurate than spectral quasilinearation 
method. A comparison between spectral purturbation and spectral relaxation 
approach for unsteady heat and mass transfer by MHD mixed convection flow over 
an impulsively stretched vertical surface with chemical reaction effect is 
investigated by Agbaje and Motsa (2015). Awad et al. (2015) studied the effect of 
thermophoresis on unsteady Oldroyd-B nanofluid flow over stretching surface. 
They used spectral relaxation method in their analysis and found out that 
Brownian motion on the rate of heat transfer are negligible. 

Many of the aforementioned explorations targeted the analysis of non-
Newtonian liquids at uniform physical attributes. The explorations on variable 
viscosity along with thermal conductivity are Newtonian liquid analysis. It worth 
noting that no exploration on contributions of thermophoresis on Dufour-Soret. 
The analysis of Mondal et al. (2017); Srinivasa et al. (2014); Kalyani et al. (2015); 
Vedavathin et al. (2015) just to mention a few explored Dufour-Soret contributions 
on Newtonian model with uniform physical attributes. Double diffusive motion of a 
non-Newtonian liquids find usefulness in many process in engineering such as 
food processing, biosystems, petroleum reservoirs, and industrial processes. 
Dufour or diffusion-thermal contribution portrays the energy flux owing to 
composition gradient. Temperature also create mass fluxes named Soret or 
thermal-diffusion contribution. These terms are seen in the concentration as well 
as temperature motion equations. The Dufour contribution is added to the 
temperature motion equation while Soret contribution is added to the 
concentration motion equation. This study considered unsteady, steady, laminar, 
two-dimensional, mixed and free convective flow of an incompressible non-
Newtonian fluids through several medium. The plates has two coordinates (x,y). 
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While x−coordinate is taken along the plate in the upward direction, y−coordinate 
normal to the plate as shown in figure 3.1, 3.2 and 3.3 of the three problems 
considered in this study. The temperature and concentration at the wall (Tw) and 
(Cw) were kept constant. For a heated wall Tw > T∞, Cw > C∞ while Tw < T∞, Cw < C∞ 
is applicable to a cooled plate. The flow generated in the three problems is as a 
result of a stretched surface caused by simultaneous application of a magnetic field 
of uniform strength applied in y−direction. Soret and Dufour parameters are 
considered in this study because the level of species concentration is assumed to 
be high. The present study examined some of the areas which have been neglected 
in previous works. 

To our best of knowledge, no explorations have been on effects of thermo-
physical parameters on non-Newtonian fluids. This exploration is motivated owing 
to the past explorations and its application in industries such as the use of Soret in 
separation of isotope and in polymer industries. This research is aimed at 
examining the contributions of variable thermal conductivity and viscosity on non-
Newtonian liquids flow through vertical penetrable plate with Dufour-Soret 
contribution. The varieties of Casson liquid explored in this research are 
concentrated fruit juice and tomatoe source while chromatography and 
polymethly methacrylate are the WaltersB liquid. These liquids finds usefulness in 
industrial engineering as well as polymer industries. Owing to this usefulness, this 
research becomes very essential to engineers and scientist. A robust numerical 
approach based on the use of homotopy analysis along with Chebyshev spectral 
collocation techniques. This techniques is efficient with a faster computational 
analysis more than the homotopy analysis approach. Key flow parameters are 
depicted graphically while computations of quantities of interest in engineering 
are depicted using table. The present outcomes were compared with existing 
works and were in conformity to each other.  
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CHAPTER THREE: Methodology 

3.1 Introduction 

In this chapter, non-dimensional quantities and similarity variables are introduced 
on the equations that governed the three problems considered in this study. The 
procedure of applying these quantities are shown in this chapter. The qualitative 
analysis of the three problems are also discussed. The qualitative analysis is done 
to examine if the transformed equations for the three problems have a solution, 
and if the solution exists, we want to know if, it is unique. It worths mentioning 
that, this study is only interested in the steady state to carry out the qualitative 
analysis. 

The use of spectral method is in approximating the unknown functions with the 
help of truncating series of orthogonal functions or polynomials (Canuto et al., 
1988). To apply the spectral method,the domain of the flow equations are defined 
in the close interval [−1,1] by considering the transformation to 

connect [a,b] to [−1,1]. Hence, the spectral method is implemented on the 
transformed closed interval. The spectral relaxation method (SRM), as proposed 
by Motsa (2012) employed the concept and the idea behinde Gauss-Seidel to 
decouple system of differential equations. The use of SRM also involves the 
application of differentiation matrix D in approximating the derivatives of all 
unknown variables at a specified collocation points. The spectral homotopy 
analysis method (SHAM) is a numerical method that combines the Chebyshev 
collocation method with homotopy analysis method (HAM). The SHAM as 
introduced by Motsa et al. (2010) employs the concept of HAM with the Chebyshev 
spectral collocation method. Spectral method are now a very useful numerical 
method in solving both linear and nonlinear differential equations in science and 
engineering because of high accuracy in getting solution to problems that have 
smooth functions (Canuto et al., 1988; Trefethen, 2000). L is the scaling parameter 
whose choice of values determines how congruent the result is at infinity, that is, 
the entire boundary layer. 

3.2 Formulation of the research problem one 

Flow of free convection viscoelastic liquid model past a half-infinite vertically 
upward plate along with oscillatory suction that is dependent of time with a 
transient magnetism is explored (see Idowu and Falodun; 2018). The plate is taken 
to be endless in x0-direction, hence the x0-axis is considered along the vertically 
endless plate and y0-axis normal to it as depicted in figure 3.1. The plate moves in 
y0-direction and at a point there is no continuity in the flow towards x0-direction 
and thus neglected in the continuity equation.Hence, the flow equations such as 
energy, concentration and momentum is considered as a function of t and y alone. 
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The magnetism (B0) of constant strength as imposed is transversely in opposite 
direction to the motion. At the initial motion at t ≤ 0, both plate and fluid has 
constant temperature. Heat absorption or generation, Dufour along with Soret are 
explored in this analysis. Magnetic Reynolds number is considered to be little such 
that induced magnetism could be insignificant. Walters-B non-Newtonian type of 
liquid is explored in this research while its constitutive equation according to 
Choudhury and Das (2014) is given follows: 

ςik = −pgik + ςik0 (3.1) 

ς0ik = aη0eik − 2k0e0ik (3.2) 

Here η0 means limiting kinematic viscosity with little shear rates, K0 means elastic 
coefficient, ςik means stress tensor, p means isotropic pressure, gik means metric 
tensor with coordinate system xi, vi means velocity vector, ςik means Cauchy stress 
tensor, eik means deformation rate tensor. The contravarient way of eik is written 

as: 

  (3.3) 

Where eik is the rate of deformation tensor convected derivative is given as 

2eik = vi,k + vk,i (3.4) 
At little shear rate, (η0) which is the limiting viscosity is defined as: 

  (3.5) 

N(τ) means relaxation spectrum as explained in Walters (1962). The model 
explained above is correct for Walters-B approximation when relaxation time is 
considered while terms such as: 

2 (3.6) 

is neglected while k0 is considered to be significant 

Considering all the stated assumptions above and Boussinesqs evaluation, the flow 
model and its boundary constraints are written as: 

Continuity equation 

, (3.7) 

Momentum equation 
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Energy equation 

 

Concentration equation 

. (3.10) 

subject to: 

u = U0, T = Tw +ψ(Tw −T∞)en0t0, C = Cw +ψ(Cw −C∞)en0t0 at y0 = 0 (3.11) 

u −→ 0,T −→ T∞,C −→ C∞ as y0 −→∞ (3.12) 

The continuity equation (3.7) is evaluated by utilizing integration approach to 
obtain v = constant. This implies that the suction velocity at the plate is a unform 
function. It is considered to be constant and dependent of time following Alao et al. 
(2016) in this research work as: 

) (3.13) 

In this research, the heat flux is such that  because the flow equations 

are functions of t0 and y0 respectively. Hence, the radiative flux in the x0- direction 
 is neglected. Therefore,  means heat flux that dominate the flow. Now, 

assuming distinct temperature within the fluid layers flow regime is so little that T4 

is evaluated as a linear form in terms of temperature at ambient vicinity (T∞). 

Using Taylor series to expand T4 about T∞ while terms of higher order is forgone. 

Let us examine the expansion in Taylor series of T4 about T∞ 

 

The above series becomes: 

  (3.15) 
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Using Roseland approximation, the radiative heat flux is given by; 

  (3.16) 

Here ς0 means Stefan-Boltzman constant while ke means coefficient of mean 
absorption. By utilizing the approximation of Roseland, the present analysis is 
basically on optically thick liquid. Based on equations (3.15) and (3.16), (3.9) 
reduces to: 

  (3.17) 

To simplify the flow equations (3.8)-(3.10) and the boundary conditions (3.11) and 

(3.12) in a dimensionless form, non-dimensional quantities of the following forms are 
introduced: 

  (3.18) 

(3.19) 

, (3.20) 

(3.21) 

(3.22)  
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3.2.1 Non-dimensionalization of momentum equation of research 

problem one 

 

  (3.23) 

(3.24) 

(3.25) 

) (3.26) 

) (3.27) 

(3.28) 
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  (3.29) 

(3.30) 

substituting equations (3.23) − (3.30) into equation (3.8) we have; 

) (3.31) 

dividing all through by  to have; 

) (3.32) 

Simplifying further to obtain: 

 

where; 

 

are the Grashof, mass Grashof, magnetic parameter, and viscoelastic parameter. 
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3.2.2 Non-dimensionlization of the energy equation of research 

problem one 

  (3.34) 

(3.35) 

(3.36) 

) (3.37) 

) (3.38) 
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putting equations (3.34) − (3.40) into (3.9) yields: 

 

dividing all through by  and simplify to obtain: 

 

  (3.42) 

Simplifying further to obtain: 

 

where; 

 

are the Prandtl, thermal radiation term, Eckert, heat generation/absorption term, heat 
source/sink parameter and Dufour number. 
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3.2.3 Non-dimensionalization of the concentration equation of the 

research problem one 

  (3.44) 

(3.45) 

) (3.46) 

substituting equations (3.44),(3.45),(3.46),(3.40) and (3.36) into the concentration 
equation (3.10) to obtain: 

  (3.47) 

dividing all through by   yields: 

  (3.48) 

simplifying (3.48) further yields: 

  (3.49) 

where; 

 

are Chemical reaction term, Schmidt, and Soret number. 
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3.2.4 Transformation of the boundary conditions of research problem 

one 

u0 = u0 and u0 = 
uu0 u0 = uu0 

u = 1 (3.50) 

 

 

simplifying the above further yields: 

  (3.51) 
Also, 

 

simplifying the above further yields: 

  (3.52) 

Also, 

 

therefore, 

0 = uu0 

∴ u −→ 0 (3.53) 

Again, 
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T∞ = ϑ(Tw − T∞) + T∞ 

T∞ − T∞ = ϑ(Tw − T∞) 

simplifying the above further yields: 

∴ ϑ −→ 0 (3.54) 

Finally, 

 

C∞ − C∞ = ϕ(Cw − C∞) 
simplifying the above further yields: 

∴ ϕ −→ 0 (3.55) 

From the above, transformation of governing equations momentum, concentration, 
energy and the boundary constraints are transformed to become: 

 

here Gr, Gm, Pr, Rr, Ec, Sc, kr, Du ,Sr, α, ∆, and δ are thermal Grashof, mass Grashof, 
Prandtl number, radiation term, Eckert, Schmidt, chemical reaction term, Dufour, 
Soret, viscoelastic term, heat generation/absorption coefficient, and heat 
source/sink term respectively. 

The boundary conditions are: 

= 0 (3.59) 

u −→ 0, ϑ −→ 0, ϕ −→ 0, at y −→∞ (3.60) 
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Engineering quantities interest are skin friction (Cf), local Nusselt (Nu) and Sherwood 
number (Sh). Skin friction coefficient is define as: 

Hence,   

The Nusselt and Sherwood number are: 

 

where 
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3.3 Qualitative analysis of problem one 

In this section, the stability, existence and uniqueness of solution of the 
transformed dimensionless flow equations of unsteady free convective motion of a 
viscoelastic liquid past a half-infinite vertical plate at initial time t = 0. Nonlinear 
differential equations mostly are difficult to solve analytically. Thus, qualitative as 
well as numerical approach is important. This section aimed at examining if the 
dimensionless coupled flow equations is solvable, and if solvable, is the solution 
unique?. To perform the qualitative properties of the problem under investigation, 
this study is interested in the initial unsteady solution at t = 0 (that is, the steady 
state of the problem) for the transformed equations (3.56)-(3.58) subject to (3.59) 
and (3.60) is considered and 1 that it could be neglected. Thus at t = 0, we have 

 

subject to 

 u = 1, ϑ = 1, ϕ = 1 ,at y = 0 (3.64) 

u −→ 0, ϑ −→ 0, ϕ −→ 0 ,as y −→∞ (3.65) 

First reduce (3.61)-(3.63) subject to (3.64) and (3.65) to system of first order ordinary 
differential equations. 

  (3.66) 

(3.67) 

(3.68) 

(3.69) 
putting equations (3.66)-(3.69) into (3.61)-(3.63) yields 
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= 0 (3.70) 

= 0 (3.71) 

= 0 (3.72) 

simplifying equation (3.70) gives 

  (3.73) 

Also, simplifying equation (3.71) 

  (3.74) 

putting equations (3.74) into (3.72), we have 

 

Simplifying further we have 

  (3.75) 
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Putting equation (3.75) 

into (3.72) yields 

 

(3.76) 

Theorem 3.1: Let u,ϑ and ϕ be continuous function at all points in some 
neighborhood and Pr > 0,Rr > 0,Sr > 0,Du > 0,A1 > 0,δ > 0,∆ > 0,Sc > 0,kr > 0,Ec > 0,M 
> 0,Gr > 0 and Gm > 0, then there exist a unique solution for 

coupled nonlinear boundary value problem. 

 

subject to 

u = 1, ϑ = 1, ϕ = 1 ,at y = 0 u −→ 0, ϑ 
−→ 0, ϕ −→ 0 ,as y − →∞ 

on some interval k y − y0 k≤ a, k y0 − y k≤ b provided 3 k such that k = 

max(0,1,P2,...,P12) and 0 < k < ∞. 
PROOF: Writing the equations (3.66)-(3.69) in a compact form as: 
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satisfying the conditions 

 β1(0) 

  
β2  
 
  
β3  
 
  
β4

= 
 
  

 
β5  

  
β6  
 
 β7(0) 

  
1 

  
α  
  
  
γ  
  
  

 
  
  
β  
  
  

 

 
  
Q 

Consider  such that i,j = 1(1)7 to denote the nonlinear functions on the RHS of 

equation (3.77), as i = 1 and j = counts. when i = 1 and j = counts, we have 
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when i = 2 and j = counts, we have 

u2 = β3 

 

when i = 3 and j = counts, we have 

 

when i = 4, and j = counts, we have 

 

when i = 5 and j = counts we have 

 

Utilizing the properties of absolute value of real numbers as described by Robert and 
Murray (2002) defined by 
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And, 

 

when i = 6 and j = counts, we have 

 

When i = 7 and j = counts we have 
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And, 

 
Thus, we have shown that 

 

Obviously, 

 

there exists K such that K = max(0,1,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15) and 0 < K < 
∞. Therefore ui(β1,β2,β3,β4,β5,β6,β7) are Lipschitz continuous. 

Hence, there exists a unique solution for the system of coupled differential equation. 

3.3.1 Stability analysis 

Stability analysis for the solutions of differential equations that describe dynamical 
systems are of various categories. The common one is the stability of solutions 
near to a point of equilibrium. The Lyapunov theory is used to discuss stability at 
equilibrium. Consider the solution near the equilibrium point xe stay near xe 

forever, thus xe is Lyapunov stable. Hence, if xe is Lyapunov stable and solutions 
near xe still converge to xe, thus xe is asymtotically stable. 

Theorem 3.2: Poincare-Lyapunov theorem states that if eigenvalues of Jacobian 
matrix evaluated at the fixed point are not equal zero or are not pure imaginary 
numbers, then the trajectories of the system around the critical point behave the 
same way as the trajectories of the associated linear autonomous system which are 
equivalent to that of its nonlinear system. The theorem can be further classified 
based on the following. 

(i) Nature of roots λ1,...,λ6,λ7 of characteristics equation. 
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(ii) Nature of the critical point (β1,β2,β3,β4,β5,β6,β7) of the autonomous system of nonlinear 
differential equation and 

(iii) Stability of critical point (β1,β2,β3,β4,β5,β6,β7) 

We consider the system of first order differential equations with critical point of 

then, we also have the following critical points (0,0,0,0,0,0,0) and (0,1,0,0,0,0,0) Table 
3.1: Nature of root(s) of characteristic equation, critical point and stability of critical 
point 

Nature of roots λ1,...,λ7 of 

characteristic equation 
Nature of the critical point, of the 

autonomous system of nonlinear 

differential equations. 

Stability of 

critical point 

Real unequal and all eigenvalues 

are positive signs. λ1 = 1, λ2 = 2 
Node Asymptotically 

unstable 

Real, unequal and all eigenvalues 

are negative signs. λ1 = 

−1, λ2 = −2 

Node Asymptotically 

stable 

Real, unequal and all eigenvalues 

are opposite signs. λ1 = 1, λ2 = 

−2 

Saddle point Unstable 

Real, equal and all eigenvalues 

are opposite signs. λ1 = 1, λ2 = 

1 

Node Asymptotically 

unstable 

Real, equal and all eigenvalues 

are negative signs. λ1 = 1, λ2 = −1 

or λ1 = 0, λ2 = −2 (Zero is 

also a real number) 

Node Asymptotically 

stable 

Conjugate complex with positive 

real part signs. λ1 = 1+2i, λ2 = 1 − 

2i. Real part of the roots are 

positive 

Spiral point Asymptotically 

unstable 
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Conjugate complex with negative 

real part signs. λ1 = −1 + 2i, λ2− 1 

− 2i. Real part of the 

roots are positive 

Spiral point Asymptotically 

stable 

Conjugate complex with pure 

imaginary λ1 = 2i, λ2 = −2i 
Center Stable but not 

asymptotically 

stable 

Table cited from Shepley (1984) 
Let: 

 

 

Hence, the necessary and sufficient condition of Jacobian matrix is satisfied and the 

Jacobian matrix takes the form 

 

This becomes; 
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0 

 
0 

 
 
P1  
 

A  
 
 
P4  
 

0 
 
 

P10 

1 

0 

1 

0 

P5 

0 

P11 

0 

1 

1 

0 

0 

0 

0 

0 

0 

P2 

0 

P6 

0 

P12 

0 

0 

0 

1 

P7 

0 

P13 

0 

0 

P3 

0 

P8 

0 

P14 

 
0 

 
0   

 
 

0   
 
 

0   
 
 

P9   

  

 1   

 

 

P15 

where; 

 

Using the extracted parameter from Alao et al. (2016), the Jacobian matrix for the parameter 
Gr = 2.0,Pr = 0.71,Ec = 0.001,Sc = 0.6,Rr = kr = A = 0.5,Du = 

0.2,Sr = 0.5,t = 1.0,M = 1.0,∆ = 0.01,δ = 0.001 
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0 

 
0 

 
 A1 
 
 

A  
 
 

A4 
 
 

0 
 
 

A10 

1 

0 

1 

0 

A5 

0 

A11 

0 

1 

1 

0 

0 

0 

0 

0 

0 

A2 

0 

A6 

0 

A12 

0 

0 

0 

1 

A7 

0 

A13 

0 

0 

A3 

0 

A8 

0 

A14 

 
0 

 
0   

 
 

0   
 
 

0   
 
 

A9   

  

 

1   

  

 

A15 

where; 

 

Evaluating the Jacobian matrix at the critical point 

(β1 = 0,β2 = 0,β3 = 0,β4 = 0,β5 = 0,β6 = 0,β7 = 0) 

   

0 1 0 0 0 0 0 
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−2 0 −2  
 
 

 
 
 

−  
 
 

 

 
00014 0.1461 0.1543 −0.6175 

The eigenvalues of the matrix above can be calculated with |A − λI| = 0 

1 0 0 0 0 0 1 0 0 0 0 
−2 0 −2 0 

−λ 1 0 0 

0 0 0 0.0004871 −0.487186 − λ −0.0146 −2 
Evaluating the Jacobian matrix at the critical point 

(β1 = 0,β2 = 1,β3 = 0,β4 = 0,β5 = 0,β6 = 0,β7 = 0) 
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0 

 
 0 
 
 

0.25 

 
 

A  
 
 

 0 
 
 

 0 
 
 

1 

0 

1 

0 

0.0009743 

0 

0 

1 

1 

0 

0 

0 

0 

0 

−2 

0 

0.0004871 

0 

0 

0 

0 

1 

−0.487186 

0 

0 

0 

−2 

0 

−0.0146 

0 

0 

0 

0 

0 

−2 

1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 0 0 0.00014 0.1461 0.1543 −0.6175 The eigenvalues is gotten using |A − λI| = 
0. Using the MAPLE software to solve the eigenvalues to obtain 

−0.017887528λ−1.000000000λ7 +0.000019301+0.639335428λ3 +0.035091298λ2 + 

1.666435747λ5 + 1.865996779λ4 − 0.1046859994λ6 λ1 = 0.001081359289, λ2 = 

0.1226328147, λ3 = 1.682396371, λ4 = −0.6144017664+ 

0.4634895581I, λ5 = −0.3409965060 + 0.1725658636I, λ6 = −0.3409965060 − 0.1725658636I, 
λ7 = −0.6144017664 − 0.4634895981I 

Most of the eigenvalues are conjugate complex with negative real part signs and 
the remaining three are real, unequal positive sign. Based on the theorem 
(PoincareLyapunov theorem) earlier stated and the eigenvalues in table () the 
stability of critical point is Asymptotically Stable. 

3.4 Solution technique to problem one 

The dimensionless system of PDEs is solved by utilizing the SRM. This is a 
numerical techniques which follows the iterative steps of Gauss-siedel relaxation 
techniques to linearize and decoupled the coupled system of equations. The 
linearized equations are further discretized and solved by utilizing Chebyshev 
pseudo-spectral approach (Motsa, 2012). The linear functions are iterated at 
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current level given by r+1 while non-linear functions are considered to be known 
at existing level of iteration given by r. The basic procedure of SRM are highlighted 
as follows: 

(i) decouple and rearrange the nonlinear equations in Gauss-Seidel approach. 

(ii) discretize resulting the linear equations. 

(iii) the discretized linear equations are iteratively solved by utilizing Chebyshev pseudo-
spectral approach. 

First rearrange the transformed flow equations to apply SRM. This gives 

 

subject to 

= 0 (3.81) 

u −→ 0, ϑ −→ 0, ϕ −→ 0, at y −→∞ (3.82) 

Utilizing the SRM on the non-linear coupled PDEs (3.78)-(3.80) leads to: 

 

subject to 

  (3.86) 

) = 0   (3.87) 
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where  

setting 

, 

substituting the above coefficient parameters into (3.83)-(3.85) to give 

  (3.89) 

  (3.90) 

(3.91) 

subject to 

= 0 (3.92) 

ur+1(∞,t) = 0, ϑr+1(∞,t) = 0, ϕr+1(∞,t) = 0, at y −→∞ (3.93) 

The unknown functions in the resulting equations are defined using Gauss-Lobatto 
points defined as: 

1 (3.94) 

where N =number of collocation points. To solve the linearized equations above, 
we first transform the domain of the physical problem from [0,∞) to [−1,1]. The 
following transformation is used to map the interval together: 

1 (3.95) 

Here L means scaling term utilized in implementing the boundary constraints at 
infinity. The initial approximation for solving equations (3.89)-(3.91) are gotten at 
y = 0 which is considered to satisfy the boundary constraints (3.92) and (3.93). 
Therefore U0(y,t),θ0(y,t) and φ0(y,t) are defined as: 

  (3.96) 
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Equations (3.89)-(3.91) are iteratively tackled for all unknown terms commencing 
from the initial quess (3.96). The iterative schemes (3.89), (3.90) and (3.91) are 
iteratively solved for ϕr+1(y,t),Ur+1 and ϑy,t as r = 0,1,2. To provide solution to 
equations (3.89)-(3.91). We first discretized using Chebyshev spectral collocation 
technique in y-direction while implicit finite difference approach in t-direction. 
The finite difference technique is further employed with centering about an 
average of tn+1 and tn. The mid-point is expressed as: 

  (3.97) 

Thus, utilizing the centering in  to functions ϕ(y,t),ϑ(y,t) and U(y,t) alongside their 
derivative leads to: 

  (3.98) 

(3.99) 

(3.100) 

The idea of spectral collocation technique is the use of matrix differentiation D to evaluate 
the unknown variables derivatives defined as: 

  (3.101) 

  (3.102) 

  (3.103) 

First apply Chebyshev spectral collocation method on (3.89)-(3.91) before applying 
the finite differences. 

 

  (3.105) 
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  (3.106) 

subject to 

  (3.107) 

) = 0   (3.108) 

Simplifying equations (3.104)-(3.106) further lead to: 

  (3.109) 

  (3.110) 

(3.111) 

subject to   (3.107) and (3.108) where     

      
ur+1(x0,t)   a0,r(x0,t) 

      
   ur+1(x1,t   

ur+1 
   . ..   , a0,r    

      
      

 ur+1(xNx−1,t    

     ur+1(xNx,t) 

a0,r(x1,t) ... 

... 

 

 
 
 
 
 
 
 
 
 
 

a0,r(xNx,t) 

(3.112) 

      
ϑr+1(x0,t)   b0,r(x1,t) 

      
   ϑr+1(x1,t    

   . ..   , b0,r    

ϑr+1 =  

      
      

   ϑr+1(xNx−1,t    
 
     ϑr+1(xNx,t) 

b0,r(x2,t) ... 

... 

 

 
 
 
 
 
 
 
 
 
 

b0,r(xNx,t) 

(3.113) 
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ϕr+1(x0,t)   c0,r(x0,t) 

      
   ϕr+1(x1,t    

   . ..   , c0,r    

ϕr+1 =  

      
      

   ϕr+1(xNx−1,t    
 
     ϕr+1(xNx,t) 

c0,r(x1,t) 

... 

... 

 

 
 
 
 
 
 
 
 
 
 

c0,r(xNx,t) 

(3.114) 
The diagonal matrix is applicable for a1,r, a2,r, b1,r, b2,r, b3,r, b4,r, c0,r and c1,r. 

Implementing the forward finite scheme as defined in (3.98)-(3.100) on equations (3.109)-
(3.11) we have 

 

  (3.117) 

Simplifying equations (3.115)-(3.117) leads to: 

 

Upon further simplification, we obtain 
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  (3.121) 

) (3.122) 

  (3.123) 

Upon further simplification gives 

 =  (3.124) 

 =  (3.125) 

 =  (3.126) 

Subject to the boundary constraints (3.127)-(3.129) 

 

Thus, the matrices above gives: 
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3.5 Formulation of the research problem two 

A steady, two-dimensional, laminar free convective motion of an incompressible 
Casson along with Walters-B non-Newtonian liquid and conducting liquids 
through a vertical penetrable plate. The plate coordinate is (x,y) while x-coordinate 
is studied along the plate in a vertical direction while y-coordinate is studied 
normal to the plate as depicted in figure (3.2). The vicinity far from the plate is 
considered to be hot. The assumptions made in this study are: 

(i) The wall concentration (Cw) along with wall temperature (Tw) are assumed 

constant. 

(ii) A situation of Tw < T∞ along with Cw < C∞ which means a cooled plate is 

considered. 

(iii) The penetrable medium is considered to be homogeneous. 

(iv) A magnetism of uniform strength (B0) is imposed perpendicular towards the 
liquid motion direction. 

(v) A large level of species concentration is considered so that significant of Dufour 
and Soret can not be ignored. 

(vi) The liquid attributes along with the penetrable medium are constant. (vii) The 
approximation of Bouddineqs is valid while the approximation of boundary layer is 
utilized. Based on all the assumptions stated above, the flow model equations 

are: 

= 0 (3.130) 

 

subject to: 

u = Bx ,v = −ν(x) ,T = Tw ,C = Cw ,at y = 0 (3.134) 

u −→ 0 ,T −→ T∞ ,C −→ C∞ as y −→∞ (3.135) 
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The model of Walters-B and Casson liquid are considered simultaneously in this 
research. Thus, it results into two non-Newtonian liquids terms. Following the 

work of Fredrickson (1964) along with viscosity defined as , the 

constitutive mode of Casson liquid is explained as: 

  (3.136) 

Here Py means yield stress of the liquid defined as 

  (3.137) 

µb means dynamic plastic viscosity, π = eijeij implies rate of deformation component 
multiplying itself, eij means rate of deformation while πc means critical numeric 
value subject to Casson liquid model. The Casson liquid motion where π > πc, µ0 is 
simply expressed as: 

  (3.138) 

Using equation (3.137) in equation (3.138), thus kinematic viscosity becomes 
subject to plastic dynamic viscosity (µb), ρ means density while β means Casson term 
which 

gives 

  (3.139) 

Mehmood et al. (2008) explained that Walters-B liquid Cauchy stress tensor ( S ) gives 
an equations of motion of the form 

  (3.140) 

(3.141) 

p means pressure while I means identity tensor. Thus, strain tensor rate e is given by: 

2e = 5(v) + 5(v)T (3.142) 

v means velocity vector, O means gradient operator while  means convected 

differentiation of quantity of tensor relating to motion material. Thus, the strain 
tensor rate convected differentiation is given as: 

  (3.143) 
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η0 = limiting kinematic viscosity at small shear rate and k0 = the short memory coefficient for 
the Walters-B fluid which is defined as 

  (3.144) 

(3.145) 

While Walters (1962) explained λ(ξ) as relaxation spectrum. The equations of motion 
explained above is the rheological model for Walters-B liquid when short 

memory is considered and any terms having 2 are forgone. 

Based on the relation in equations (3.14)-(3.145) and following Tonekaboni et al. (2012), 
the component of stresses are written as: 

  (3.146) 

 

Where τxx,τxy,τyx and τyy are components of stress matrix. Differentiating the stress tensor 
above leads to 

 
To simplify the heat flux in the energy flow equation (3.132) on the flow, 
Rosseland diffusion simplication is preferred as elucidated in Alao et al. (2016) 
and Fagbade et al. (2016) such that: 

  (3.151) 

From the above equation (3.151), the Stefan-Boltzman constant is ςs while ke 
means coefficient of mean absorption. A distinct temperature existing within the 
flow are so small such that T4 can be simplified as a linear function by evaluating T4 

about T∞ by utilizing Taylor series by neglecting higher order terms to obtain: 

  (3.152) 
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substituting (3.152) into (3.151) and substituting the outcome to the third term of the 
energy equation leads to: 

  (3.153) 

According to Alam et al. (2009), the thermophoretic velocity VT in equation (3.133) 
can be written as 

  (3.154) 

where k = thermophoretic coefficient defined as 

  (3.155) 

C1,C2,C3,Cm,Cs,Ct are constants, λg and λp = thermal conductivities of the liquid and 
the diffused particles respectively, Kn means Knudsen number. Base on the above 
evaluations on the double non-Newtonian Casson alongside Walters’-B viscoelastic 
fluids in this research and substituting equations (3.139), (3.150), (3.153) and 
(3.154) into the flow equations (3.130)-(3.133) lead to: 

= 0 (3.156) 

 

 

subject to: 

u = Bx ,v = −ν(x) ,T = Tw ,C = Cw ,at y = 0 (3.160) 

u −→ 0 ,T −→ T∞ ,C −→ C∞ ,as y −→∞ (3.161) 

u and v represents u = ∂ψ∂y and v = −∂ψ∂x . In the defined function of u and v, ψ(x,y) is 
the stream function which automatically satisfies the continuity equation (3.156). 
Similarity variables are defined as 
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) (3.162) 

The dimensionless temperature, concentration alongside thermal conductivity 
subject to temperature model in [Animasaun et al. (2016); Salem and Fathy 
(2012)] and viscosity temperature-dependent model in [Animasaun et al. (2016); 
Layek, Mukhopadhyay and Samad (2005)] are given by: 

 

, 

)] (3.163) 

Note that 0a0 is a constant which is assumed to be 1 in the present study 

3.5.1 Validation of the stream function used in research problem two 

The stream function is defined as 

 

Substituting equations (3.166) and (3.167) into the continuity equation (3.156) 
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This implies that 

Bf0 − Bf0 = 0 

This shows that the stream function satisfied the continuity equation. 

3.5.2 Non-dimensionalization of momentum equation of the research 

problem two 

Since, 

  (3.168) 

(3.169) 
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Therefore 

  (3.170) 

)) (3.171) 

 

 
(3.172) 

 
(3.173) 



61 

 
(3.174) 

(3.175) 

(3.176) gβt(T − T∞) = gβtθ(Tw − T∞) (3.177) gβc(C − C∞) = gβcφ(Cw − C∞) (3.178) 

  (3.179) 
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  (3.180) 

Substituting equations (3.168) − (3.180) into the momentum equation (3.157) to obtain 

 

divide all through by B2x 

 
Simplifying further to get 

 

Therefore, the transformed momentum equation leads to 

) = 0

 (3.181) 

where; 

, 
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3.5.3 Transformation of the energy equation of the research problem 

two 

 

  (3.184) 
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Since   

Therefore, 

  (3.185) 

Recall that,   and  

Therefore; 

 

  (3.187) 

 

Substituting equations (3.182) − (3.189) into the energy equation (3.158) to give: 
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Simplifying to obtain 

 

divide all through by B(Tw − T∞) 

 

Simplifying further, 

 

Therefore, the transformed energy equation becomes 

= 0 (3.190) 

3.5.4 Transformation of the concentration equation of the research 

problem two 

 

= 0 (3.191) 
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  (3.192) 

(3.193) 

(3.194) 

Since  and C = φ(Cw − C∞) + C∞ 

Therefore, 

 

Setting the free stream concentration C∞ = 0 
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] (3.195) 

(3.196) 

Substituting equations (3.191)-(3.196) into the concentration equation (3.159) to obtain 

 

dividing all through by B(Cw − C∞) to obtain 

 

Therefore, the transformed concentration equation leads to 

φ00 − ScCrφ + Scfφ0 + Scτ(φθ00 + θ0φ0) + ScSrθ00 = 0 (3.197) 

3.5.5 Transformation of the boundary conditions of the research 

problem two 

Since u = Bxf0 and u = Bx 

=⇒ Bxf0 = Bx 
divide all through by Bx to obtain 
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f0(η) = 1 (3.198) 

Also,  and v = −ν(x) 

  (3.199) 

Now T = θ(Tw − T∞) + T∞ and T = Tw ∴ θ(Tw − T∞) + T∞ 

= Tw 

θ(Tw − T∞) = Tw − T∞ 

divide all through by Tw − T∞ 

θ(η) = 1 (3.200) 

also, C = φ(Cw − C∞) + C∞ and C = Cw ∴ φ(Cw − C∞) + C∞ = 

Cw 

φ(Cw − C∞) = Cw − C∞ 

divide all through by Cw − C∞ 

φ(η) = 1 (3.201) 

Also, u = Bxf0 and u −→ 0 

∴ Bxf0 = 0 

f0(η) −→ 0 (3.202) 

T = θ(Tw − T∞) + T∞ and T −→ T∞ θ(Tw − T∞) + 
T∞ = T∞ 

θ(Tw − T∞) = T∞ − T∞ θ(Tw − 
T∞) = 0 
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θ(η) −→ 0 (3.203) 

C = φ(Cw − C∞) + C∞andC −→ C∞ φ(Cw 

− C∞) + C∞ = C∞ φ(Cw − C∞) = C∞ 

− C∞ φ(Cw − C∞) = 0 

φ(η) −→ 0 (3.204) 

Therefore, the transformed momentum, energy and concentration equations with the 
boundary conditions of the research problem two are 

 

) = 0 (3.205) 

= 0 (3.206) 

= 0 (3.207) 

together with the boundary conditions  

f0 = 1, f = fw, θ = 1, φ = 1 at η = 0 (3.208) 

f0 −→ 0, θ −→ 0, φ −→ 0 as η −→ 0 (3.209) 

Note that  

 
  are 

the controlling flow parameters. A2 = Walters-B viscoelastic fluid parameter, Ps = permeability 
parameter, γ = temperature dependent viscosity parameter, Gr = thermal Grashof number, Gm 
= mass Grashof number, Rd = radiation parameter, Pr = Prandtl number, β = Casson 
parameter, Ec = Eckert number, δx = heat generation parameter, Df = Dufour number, Sc = 
Schmidt number, Cr = chemical reaction parameter, τ = thermophoretic parameter and So = 
Soret number. 

The physical quantities of engineering interest are the local skin friction 
coefficient, Nusselt number and Sherwood number. The first physical quantities of 
interest is the wall skin friction coefficient Cf, it is defined as 
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τw = shear stress or skin friction within hydrodynamics boundary layer. The other quantity 
of interest are the Nusselt and Sherwood number which are defined as: 

 

3.6 Qualitative analysis of problem two 

Reducing the system of equations (3.205) − (3.207) into first order ordinary differential 
equations to obtain 

  (3.210) 

  (3.211) 

(3.212) 

(3.213) 

Substituting equations (3.210) − (3.213) into equations (3.205) − (3.207) to obtain 

 

 

Simplifying equation (3.214) to obtain 
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Therefore; 

(3.217) 

Simplifying equation (3.215) to obtain 

 

Substituting equations (3.218) into (3.216) to obtain 

 
Upon further simplification to obtain 

 

Setting   

 
Substituting Z1 into (3.219) and using the result in (3.218) to obtain 

Z 1 = 
ScCrω 7  (1+ ω  5 )+ Ra 

Pr  

 (1+ ω 5 )+ Ra 
Pr   − Du ( Scτω 7 + ScSr ) 

− 
Scω 1 ω 8  (1+ ω  5 )+ Ra 

Pr  

 (1+ ω 5 )+ Ra 
Pr  − Du ( Scτω 7 + ScSr )  
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  (3.220) 

Theorem 3.3: Let f,θ and φ be continuous function at all points in some neighborhood and 
considering  

0,Ra > 0,Pr > 0,Du > 0,Ec > 0,Sc > 0,Cr > 0 and Sr > 0, then there exist a 

unique solution for the equations 

 

subject to 

 
on the interval ||y−y0||≤ a, ||y0−y||≤ b provided ∃k such that k = max(0,1,P1,...,Pn) 

and 0 < k < ∞. 

Proof Writing the systems of first order ordinary differential equations (3.210)(3.213) in 
compact form as 
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  (3.221) 

satisfying the conditions 
 ω1(0)   fw 

  

ω2(0)      

 
  

 ω3 α1  

  
ω4 α2  

 
  

 ω5  
 ω6    

α3  
 ω7

 

 ω8(0)   α4 

We shall consider  such that i,j = 1(1)8 to denote the non-linear functions on the 

right hand side of equation (3.221) if and only if i = 1,...,8 and j = counts. 

When i = 1 and j = counts, we obtain 

 

 

When i = 2 and j = counts, we obtain 
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When i = 3 and j = counts, we obtain 

 

When i = 4 and j = counts, we obtain 
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When i = 5 and j = counts, we obtain 

 

When i = 6 and j = counts, we obtain 
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When i = 7 and j = counts, we obtain 

 

When i = 8 and j = counts, we obtain 

 



77 

 

Hence, 

 

such that 

1,j = 1(1)8 

. Obviously,  is bounded for 1 = 1,2,...,8∃K such that K = max[0,1,Q1,Q2,...,Q18] and 0 < 

K < ∞. It means that, fi(ω1,ω2ω3,ω4,ω5,ω6,ω7,ω8) are Lipschitz continuous, Hence, the solution 
for the system of coupled non-linear ordinary differential equations is unique. We proceed to 
proof the stated theorem 3.2 on the transformed 
equations (3.205)-(3.207) for the problem two by considering the system of first 
order differential equations with critical point of , then the following critical points 

(0,0,0,0,0,0,0,0) and (0,1,0,0,0,0,0,0) are considered. 

Consider: 
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Thus, the necessary and sufficient condition of Jacobian matrix is satisfied and it takes 
the form 

 ∂f1   ∂f1   

∂ω2 ∂ω6 
∂f2 ∂f2 

∂ω2 ∂ω6 
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∂f3 ∂f3 
∂ω2 ∂ω6 
∂f4 ∂f4 

∂ω2 ∂ω6 
∂f5 ∂f5 

∂ω2 ∂ω6 
∂f6 ∂f6 

∂ω2 ∂ω6 
∂f7 ∂f7 

∂ω2 ∂ω6 
∂f8 ∂f8 

∂ω2∂ω6 

This becomes;        

 
0 

 
0 

 
 

0 
 
 Q 

1 
A  

 0 
 
 
Q8 
 
 

0 
 
 

Q13 

given that: 

1 

0 

0 

Q2 

0 

0 

0 

0 

0 

1 

0 

Q3 

0 

Q9 

0 

Q14 

0 

0 

1 

Q4 

0 

0 

0 

0 

0 

0 

0 

Q5 

0 

Q10 

0 

Q15 

0 

0 

0 

Q6 

1 

Q11 

0 

Q16 

0 

0 

0 

Q7 

0 

Q12 

0 

Q17 

 
0 

 0   
 
 

 0   
 
 

 0   
 
 

 0   
 
 

 0   
 
 
 

1   

  

 

Q18 

Q1   
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0.6099, Q18 = 0 Hence, the Jacobian matrix C becomes 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

We calculate the eigenvalues of the above matrix using |B − λI| = 0, hence. 
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1 0 0 0 0 0 0 

1 0 0 0 0 0 

1 0 0 0 0 

0 0 0 −λ 0 0 0 0 

0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 

Using the MAPLE software, the eigenvalues gives: 

|B − λI| = λ6(λ2 − 0.6099) 
Hence, the eigenvalues becomes 

λ1 = 0, λ2 = 0, λ3 = 0, λ4, λ5 = 0,λ6 = 0, λ7 = 0.7809609465, λ8 = −0.7809609465 

Base on theorem 3.2, table 3.1 and all the cases considered in this study, we shall conclude 
that the system of coupled ordinary differential equation is Asymptotically 

stable. 

3.7 Solution technique to problem two 

The fourth order coupled nonlinear total differential equations (3.205)-(3.207) 
subject to (3.208) and (3.209), the SHAM is utilized. SHAM as discussed by Motsa 
(2012) is based on the concept of Chebyshev pseudospectral method (CPM) and 
HAM as discussed by Liao (1992). To utilize SHAM, the immediate domain of the 
problem [0,∞) will be transformed by following the domain truncation approach 
and the numerical computational domain [0,L]. L is the length and it is considered 
to be more than the thickness of the boundary layer. Thus, the domain [0,L] is first 



83 

transformed to [−1,1], where the Chebyshev spectral techniques can be apply by 
using the algebraic function 

+1] (3.222) 

In utilizing SHAM, the following transformation is used on the boundary conditions 
for it to be homogeneous 

f(η) = f(ξ) + f0(η) ,f0(η) = Sw + 1 − e−η 

θ(η) = θ(ξ) + θ0(η) ,θ0(η) = e−η 

φ(η) = θ(ξ) + θ0(η) ,θ0(η) = e−η (3.223) 

where f0(η),θ0(η) and φ0(η) are the initial guess considered in reference to the boundary 
conditions (3.208) − (3.209) respectively. Using equation (3.223) on the transformed flow 
equations (3.205)-(3.207) along the boundary conditions (3.208) and (3.209) leads to 

 

+f000[2A2f0 + a7 + a11] + a1θ0 − (f0)2 + Gmφ = ψ1 (3.224) 

)

 (3.225) 

φ00 + scfφ0 + Scc2f + Sca1φ0 − ScCrφ + Scτθ0φ0 + Scτc2θ0 + Scτb2φ0 

+Scτφ + Scτb3φ + Scτc1θ00 + ScSoθ00 = ψ3(η) (3.226) 

subject to 

f(−1) = f(1) = f0(−1) = f0(1) = 0 ,θ(−1) = θ(1) = 0 ,φ(−1) = φ(1) = 0 

(3.227) 

where 
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The CPM is applied on the resulting equations (3.224)-(3.226) while the unknown functions 
f(ξ), θ(ξ) and φ(ξ). 

N N 

f(ξ) uXfkTk(ξj) ,θ(ξ) uXθkTk(ξj), 

k=0 k=0 

N 

φ(ξ) uXφkTk(ξj) ,j = 0,1,2,...,N (3.228) 

k=0 

where ξ0,ξ1,χ2,...,ξN are Gauss-Lobatto collocation points (Canuto, Hussaini, 
Quarteroni and Zang 1998) defined by ξj = cosπjN ,j = 0,1,2,...,N, Tk is the kth 

Chebyshev polynomial and N +1 is the number of collocation points. The functions 
f(η),θ(η) and φ(η) derivatives at the collocation points are: 
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) (3.229) 

where r = differentiation and D  (see Canuto et al., 1988 and Trefethen, 

2000) and D means Chebyshev spectral differential matrix. Using equations 
(3.228) and (3.229) together with Gauss-Lobatto collocation points into (3.224)-
(3.226) to obtain 

  
A11 A12 A13 fl ψ1(η) 

  

A21   A22 A23 θl  ψ2(η  
 

  
A31 A32 A33 φl ψ3(η) 

Equation (3.230) can be written as: 

(3.230) 

Aϕl = G (3.231) 

subject to 
N N 

fl(ξN) = 0 ,XDNkfl(ξk) = 0 ,XD0kfl(ξk) = 0 

k=0 k=0 

(3.232) 

θl(ξN) = 0 ,θl(ξ0) = 0 ,φl(ξN) = 0 ,φl(ξ0) = 0 (3.233) 

where 

ϕl = [fl(ξ0),fl(ξ1),fl(ξ2),...,fl(ξN),θl(ξ0),θl(ξ1),θl(ξ2),...,θl(ξN)]T , 

[φl(ξ0),φl(ξ1),φl(ξ2),...,φl(ξN)]T 

G = [ψ1(η0),ψ1(η1),ψ1(η2),...,ψ1(ηN),ψ2(η0),ψ2(η1),ψ2(η2),...,ψ2(ηN), 

ψ3(η0),ψ3(η1),ψ3(η2),...,ψ3(ηN)]T 

A= 
  

A11 A12 A13 

  
 A21 A22 A23    (3.234) 

  
A31 A32 A33 

And 
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, 

, 

A33 = D2 + Sca1D − ScCr + Scτb2D + ScτD2 + Scτb3 

In other to get the approximate solution of SHAM, the linear operators are as follows: 

 

 

 

  (3.237) 

3.7.1 Zero order of deformation 

q 3 [0,1] = embedded parameter, h¯
f,h¯

θ and h¯
φ are non-zero auxiliary parameters 

and the unknown functions are f(η;q),θ(η;q) and φ(η;q). The following is the zeroth 
order of deformation 

(1 − q)Lf[f(η;q) − f0(η)] = qh¯
fψf(η)N[f(η;q),θ(η;q),φ(η;q)] 

(3.238) 

(1 − q)Lθ[θ(η;q) − θ0(η)] = qh¯
θψθ(η)N[f(η;q),θ(η;q),φ(η;q)] (3.239) 
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(1 − q)Lφ[φ(η;q) − φ0(η)] = qh¯
φψφ(η)N[f(η;q),θ(η;q),φ(η;q)] 

subject to: 

(3.240) 

f(η = 0;q) = Sw, f0(η = 0;q) = 1, θ(η = 0;q) = φ(η = 0;q) = 1 (3.241) 

f0(η −→∞;q) = 1, θ(η −→∞;q) = φ(η −→∞;q) = 1 (3.242) 

The nonlinear operators are defined as follows: 

 

(3.243) 

(3.244) 

Nφ[f(η;q),θ(η;q),φ(η;q)] = Scfφ0 + Scτθ0φ0 (3.245) 

setting q = 0, the zeroth order of deformation equations (3.238)-(3.240) leads to 

Lf[f(η;0) − f0(η)] = 0, Lθ[θ(η;0) − θ0(η)] = 0 

Lφ[φ(η;0) − φ0(η)] = 0 (3.246) 

Due to the reason that f(η;0) = f0(η), θ(η;0) = θ0(η) and φ(η;0) = φ0(η) subject to 
(3.241) and (3.242). 

Setting q = 1, the zeroth order of deformation (3.238)-(3.240) leads to 

0 = h¯
fψf(η)N[f(η;1),θ(η;1),φ(η;1)] 

(3.247) 

0 = h¯
θψθ(η)N[f(η;1),θ(η;1),φ(η;1)] (3.248) 

0 = h¯
φψφ(η)N[f(η;1),θ(η;1),φ(η;1)] 

iff h¯
fψf(η) 6= 0,h¯

θψθ(η) 6= 0 and h¯
φψφ(η) 6= 0. 

Thus, 

(3.249) 

f(η;1) = f(η), θ(η;1) = θ(η), φ(η;1) = φ(η) (3.250) 

subject to 
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f(η = 0;1) = Sw,f0(η = 0;1) = 1, θ(η = 0;1) = 1, φ(η = 0;1) = 1 

f0(η −→ 0;1) = 0, θ(η −→ 0;1) = 0, φ(η −→ 0;1) = 0 (3.251) 

3.7.2 High order of deformation 

Simplifying f(η;q),θ(η;q) and φ(η;q) using Taylor series with respect to the embedding 
parameter q leads to 

 

  (3.252) 

where 

 

The series in equation (3.252) converges at q = 1. To get the mth order deformation, 
differentiate equations (3.238)-(3.240) m times with respect to q, divide by m! and 
set q = 0 to obtain 

 (3.253) 

 (3.254) 

Lφ[φm(η) − χmφm−1(η)] = h¯
φψφ(η)Rmφ (η) 

subject to: 

(3.255) 

= 0) = 0 (3.256) 

0 (3.257) 

where 
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)

 (3.258) 

)

 (3.259) 

) (3.260) 

Thus, 

) (3.261) 
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) (3.262) 

m−1 

Q3,m−1 = X Scfn(Dφm−1−n) + Scτ(Dθn)(Dφm−1−n) (3.263) 

n=0 

3.8 Formulation of the research problem three 

A steady, incompressible, laminar motion of Casson nanoparticles in a slanting 
plate is explored in this research. At an angle Φ (0o ≤ Φ ≤ 90o), the plate is inclined 
horizontally. The concentration along with temperature of the nanoparticle 
volume fraction at the wall are φw and θw respectively. The ambient concentration 
along with ambient temperature of the nanoparticle volume fraction is given by φ∞ 

and θ∞ respectively. The following assumptions are made: 

(i) The penetrable medium is assumed to be saturated and homogeneous with 
liquid in thermodynamic equilibrium; 

(ii) At an angle Φ, the vertical plate is inclined; 

(iii) The liquid viscosity along with thermal conductivity is assumed to vary on the 
hydrodynamics and thermal boundary layer; 

(iv) Numeric magnetic Reynolds is taken to be small such that induced magnetism 
is avoided as compared with applied magnetic field; and 

(v) All the attributes of liquid are kept constant except density added to the 
momentum equation. 

(vi) All the attributes of fluid are kept uniform except density in the buoyancy 
term in the momentum flow equation. 

(vii) Boundary layer approximation is considered valid. This study assumed that 
the rheological equation of a Casson fluid gives: 
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where Py means liquid yield stress given as: 

 

µb means dynamic viscosity, π = eijeij means rate of deformation component 
multiplying itself, eij means rate of deformation while πc means Casson model 
critical value. In a situation whereby π > πc we have that: 

 

Based on the above, the kinematic viscosity is subject to the plastic dynamic viscosity 
(µb) while ρ means density and Casson term leads to: 

 
Based on the listed assumptions above and the rheological equation of Casson 
fluid, the flow equations becomes: 

subject to: 

w = ax, n = −ν(x), θ = θw, φ = φw at η = 0 (3.268) w −→ 0, θ −→ 0, φ −→ 0 

as η −→ 0 (3.269) 

In the concentration flow equation (3.267), VT is the thermophoretic velocity and following 
Alam et al. (2008) leads to 

  (3.270) 

where k-thermophoretic coefficient is defined as 
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  (3.271) 

where C1,C2,C3,Cm,cs,Ct are constant, λg and λp are the thermal conductivities of 
diffused particles and fluid respectively with kn = Knudsen number. 

Consider that the flow regime is sufficiently small due to temperature difference 
and that θ4 is expressed as a linear function of T∞. Now,expanding θ4 in Taylor’s 
series about θ∞ and forgone higher order terms as obtained in (Idowu and 
Falodun, 2018) 

as: 

  (3.272) 

Utilizing the Roseland approximation, we have the radiative heat flux is given as 

  (3.273) 

Here ςe means Stefan-Boltmann constant while ke means coefficient of mean absorp- 

tion. ψ(η) is the stream function defined as  and , With this stream 

function, the continuity equation (3.264) is valid. The transformation employed in this 
research are: 

  (3.274) 

3.8.1 Validation of the stream function of the research problem 

three 

Since the stream function is define as 
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  (3.278) 

Substituting equations (3.277) and (3.278) into continuity equation 

 

This implies that 

γf0 − γf0 = 0 

Hence, the stream function satisfies the continuity equation. 

3.8.2 Transformation of the momentum equation of the research 

problem three 

Since ∂w∂x = γf0 
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  (3.279) 

(3.280) 

(3.281) 

non-dimensionalize the first term at the RHS of equation (3.281) leads to 

 

  (3.282) 

non-dimensionlize the second term at the RHS of equation (3.281) 
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Thus 

  (3.283) 

where Oa = b(θw − θ∞). Substituting equations (3.282) and (3.283) into equation (3.281) to 
obtain 

 

] (3.284) 

) (3.285) 
) (3.286) 

(3.287) 

(3.288) 
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Substituting equations (3.279)-(3.288) into the momentum equation (3.265) to obtain 

 

 

divide all through by γ2x 

 

 

Therefore, the transformed momentum equation becomes 

 

= 0 (3.289) 
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3.8.3 Transformation of the energy equation of the research problem 

three 

= 0 (3.290) 

(3.291) 

(3.292) 

non-dimensionalize the first term of the RHS of equation (3.292) 
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Now, 

  (3.294) 

Substituting equations (3.293) and (3.294) into equation (3.292) 

 

Since , from equation (3.272) 

 

Thus, 
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Therefore, 

 

  (3.298) 

  (3.299) 

(3.300) 

Substituting equations (3.290)-(3.300) into the energy equation (3.266) to obtain 
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divide all through by −γ(θw − θ∞) 

 

 

 

Simplifying further, 

 

 

Upon rearrangement, the transformed energy equation becomes 

 

+DfC00 + NbC0T 0 + Nt(T 0)2 = 0 (3.301) 

where 
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3.8.4 Transformation of the concentration equation of the research 

problem three 

= 0 (3.302) 

  (3.303) 

(3.304) 

−kl(φ − φ∞) = −klC(φw − φ∞) (3.305) 

Since,  

 

Setting φ∞ = 0 
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] (3.306) 

Since 

  (3.307) 

  (3.308) 

Substituting equations (3.302)-(3.308) into the concentration equation (3.267) to obtain 

 

 

divide all through by γ(φw − φ∞) 
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Therefore, the transformed concentration equation becomes 

] = 0 (3.309) 

3.8.5 Transformation of the boundary conditions of the research 

problem three 

Since w = γxf0 and w = γx 

=⇒ γxf0 = γx 
divide all through by γx to obtain 

f0(η) = 1 (3.310) 

Also,  and n = −ν(x) 

  (3.311) 

Now, θ = T(θw − θ∞) + θ∞ and θ = θw 

∴ T(θw − θ∞) + θ∞ = θw 

T(θw − θ∞) = θw − θ∞ 

divide all through by θw − θ∞ 

T(η) = 1 (3.312) 

also, φ = C(φw − φ∞) + φ∞ and φ = φw 

∴ C(φw − φ∞) + φ∞ = φw 
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C(φw − φ∞) = φw − φ∞ 

divide all through by φw − φ∞ 

C(η) = 1 (3.313) 

Also, w = γxf0 and w −→ 0 

∴ γxf0 = 0 

f0(η) −→ 0 (3.314) 

θ = T(θw − θ∞) + θ∞andθ −→ θ∞ 

T(θw − θ∞) + θ∞ = θ∞ 
T(θw − θ∞) = θ∞ − θ∞ 

T(θw − θ∞) = 0 

T(η) −→ 0 (3.315) 

φ = C(φw − φ∞) + φ∞andφ −→ φ∞ 

C(φw − φ∞) + φ∞ = φ∞ 

C(φw − φ∞) = φ∞ − φ∞ 

C(φw − φ∞) = 0 

C(η) −→ 0 (3.316) 

Therefore, the transformed momentum, energy and concentration equations with the 
boundary conditions are 

 

= 0 (3.317) 
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= 0 (3.318) 

] = 0 (3.319) 

together with the boundary conditions 

f0 = 1, f = Sw, T = 1, C = 1 at η = 0 (3.320) 

f0 −→ 0, T −→ 0, C −→ 0 as η −→ 0 (3.321) 

Note that: O  

 
 are the varied viscosity term, thermal Grashof, 

mass Grashof, magnetic term, porosity parameter, varied thermal conductivity term, radiation 
term, Prandtl, heat generation term, Eckert, Dufour, Brownian motion term, thermophoresis 
term, Schmidt, chemical reaction term, Soret, Lewis number and thermophoretic term. 

The quantities of engineering concern are the wall skin friction (Cf), Nusselt number 
(Nu) and the Sherwood. The wall skin friction coefficient Cf is defined as: 

 

τw is the shear stress within the boundary layer and it is simplify using the similarity 
transformation to obtain 

 

The Nusselt number is defined as 

 

qw is the heat flux within the boundary layer. Using the similarity variables to obtain 

 

Nu = −pRexT 0(0) 

The Sherwood number is defined as 

 

Jw is the mass flux within the boundary layer. Using the similarity variables to obtain 
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Sh = −pRexC0(0) 

3.9 Qualitative analysis of problem three 

Reducing the system of equations (3.317)-(3.319) into first order ordinary differential 
equations 

, 

  (3.322) 

(3.323) 

(3.324) 

Substituting equations (3.322)-(3.324) into equations (3.317)-(3.319) to obtain 

 

= 0

 (3.326) 

Simplifying equation (3.325) to obtain 
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Simplifying equation (3.327) to obtain 

 

  (3.329) 

Setting: 

 
With the above, equation (3.329) becomes 

  (3.330) 

From equation (3.327): 

 

Substituting equation (3.330) to obtain: 

 

Simplifying to obtain 
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(3.331) 

Setting:  Substituting the 

above into equation (3.331) to obtain 

  (3.332) 

Substituting equation (3.332) into equation (3.330) to obtain: 

  (3.333) 

Theorem 3.4: Let f, T and C to be continuous function at all points in some neighborhood and 
considering β > 0, Oa > 0, 4a > 0, 4b > 0, α > 0, M > 

0, Po > 0, δy > 0, Rp > 0, Pr > 0, H > 0, En > 0, Df > 0, Nb > 0, Nt > 

0, Sc > 0, Cp > 0, So > 0, Ln > 0 and τ > 0, then there exist a unique solution 

for the equations: 

 

= 0 (3.334) 

 

Subject to: 

= 0 (3.337) 

(3.338) 

On the interval k y − y0 k≤ a, k y0 − y k≤ b provided ∃K such that K = max(0,1,U1,...,Un) and 0 < K 
< ∞ 

Proof: The system of first order ordinary differential equations (3.322)-(3.324) in compact 
form is given as: 
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m2 

 
satisfying the conditions 

  
 Sw 

m1

 

 m2 γ1   
  

 m3  
  

 m4 γ2   
  

m5  
 

  

 m6 γ2  

  
m7  

γ3 

Consider  such that i,j = 1(1)8 to denote the non-linear functions on the right 

hand side of equation (11) if and only if i = 1,...,7 and j = counts. When i = 1 and j = 
counts, we obtain 
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When i = 2 and j = counts, we have 

 

When i = 3 and j = counts, we have 

 

 

 

When i = 4 and j = counts, we have 

 

When i = 5 and j = counts, we have 
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When i = 6 and j = counts, we have 

 

When i = 7 and j = counts, we have 
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From the above, we have shown that 

 

It is obvious that 

 
hence K exist such that K = max(0,1,U1,...,U18) and 0 < K < ∞. Thus, 

fi(m1,m2,m3,m4,m5,m6,m7) are Lipschitz continuous. Hence, the solution of the 
couple differential equations is unique. It is important to proof the theorem in 3.2 
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on the transformed equations for research problem three by considering the 
system of first order differential equations with critical point of m0i. Hence, the 
critical points (0,0,0,0,0,0,0) and (0,1,0,0,0,0,0) are considered. Consider: 

 

=  

 

Hence, the necessary and sufficient condition of Jacobian matrix is satisfied and the 

Jacobian matrix takes the form 

 
This becomes; 
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0 

 
0 

 
 

U1 
 
 

C  
 
 

U7 
 
 

0 
 
 

U13 

1 

0 

U2 

0 

0 

0 

0 

0 

1 

U3 

0 

U8 

0 

U14 

0 

0 

U4 

0 

U9 

0 

U15 

0 

0 

U5 

1 

U10 

0 

U16 

0 

0 

U6 

0 

U11 

0 

U17 

 
0 

 
0   

 
 

0   
 
 

0   
 
 

U12 

  

 

1   

  

 

U18 

where 
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Using the default values of parameters defined as β = 3.0,Oa = 1.0,4a = 4b = 2.0,Φ = 
30o,M = 1.0,Po = 2.0,δy = 1.0,Rp = 0.5,Pr = 0.71,H = 0.5,En = 0.01,Df = So = 2.0,Nb = Nt = 
1.0,Sc = 0.61,Cp = 1.0,Ln = 2.0 and τ = 2.0. 

Evaluating the Jacobian matrix at the critical point (m1 = 0,m2 = 0,m3 = 0,m4 = 0,m5 = 0,m6 

= 0,m7 = 0). 

U1 = 0, U2 = 1.2501, U3 = 0, U4 = 0.3248, U5 = 0, U6 = −0.6496, U7 = 0, 

U8 = 0, U9 = 0, U10 = 0, U11 = 0.44, U12 = 0, U13 = 0, U14 = 0, 

U15 = −0.7518, U16 = 0, U17 = −0.0588, U18 = 0 
Hence, the Jacobian matrix C becomes 



118 

 
0 

 
 

 
 

 
 
 

C  
 
 

 
 
 

 
 
 

0 

1 

0 

1.2501 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0.3248 

0 

0 

0 

−0.7518 

0 

0 

0 

1 

0 

0 

0 

0 

0 

−0.6496 

0 

0.44 

0 

−0.0588 

 
0 

 

 
 

 
 

 
 

 
 
 

 
0 

The eigenvalues of the above matrix can be calculated using |C − λI| = 0. 

1 0 0 0

 0 0 
−λ 0.44 0 

0 0 0 0 0 −λ 

Using the MAPLE software, the eigenvalues gives: 

|C − λI|− (λ4 + 0.0588λ2 + 0.343992)(λ62 − 1.2501)λ 

λ1 = 0, λ2 = 1.118078709, λ3 = −1.118078709, λ4 = 0.5277822998−0.5549361729I λ5 = 

−0.5277822998 + 0.5549361729I, λ6 = 0.5277822998 + 0.5549361729I 

λ7 = −0.5277822998 − 0.5549361729I 
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Evaluating the Jacobian matrix at the critical point (m1 = 0,m2 = 1,m3 = 0,m4 = 

0,m5 = 0,m6 = 0,m7 = 0). Hence, the Jacobian matrix C becomes 

 
0 

 
 

 
 

 
 
 

C  
 
 

 
 
 

 
 
 

0 

1 

0 

2.7505 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0.5748 

0 

0 

0 

−0.7818 

0 

0 

0 

1 

0 

0 

0 

0 

0 

−0.6496 

0 

0.44 

0 

−0.0588 

 
0 

 

 
 

 
 

 
 

 
 
 

 
0 

The eigenvalues is gotten using the formula |C − λI| = 0. 

1 0 0 0

 0 0 
−λ 0.44 0 

0 0 0 0 0 −λ 

Using the MAPLE software, the eigenvalues gives: 

|C − λI| = −(λ4 + 0.0588λ2 + 0.343992)(λ2 − 2.7505)λ 

Hence, the eigenvalues gives 

λ1 = 0, λ2 = 1.658463144, λ3 = −1.658463144, λ4 = 0.5277822998−0.5549361729I 
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λ5 = −0.5277822998 + 0.5549361729I, λ6 = 0.5277822998 + 0.5549361729I 

λ7 = −0.5277822998 − 0.5549361729I 

The eigenvalues are conjugate complex with negative real part signs. Now, 
considering the theorem 3.2 and table 3.1, we shall conclude that the system of 
coupled ordinary differential equation is Asymptotically stable. 

3.10 Solution technique to problem three 

SHAM is utilized on the simplified equations (3.317)-(3.319) subject to (3.320) and 
(3.321). SHAM is the numerical techniques of HAM. HAM is significant in 
decomposing nonlinear systems of differential equation to linear differential 
equations. The decomposed linear ordinary differential equations is solved using 
Chebyshev spectral collocation method. The physical region of the problem is first 
transformed from [0,∞) to the [−1,1] with the help of domain truncation. Hence, 
the solution is obtained within the interval [0,η∞] and not [0,∞) again. This will 
lead us to the use of algebraic mapping 

1] (3.340) 

The boundary conditions is made homogeneous by applying the transformations 

f(η) = f(ξ) + f0(η), T(η) = T(ξ) + T0(η), C(η) = C(ξ) + C0(η) (3.341) 

substituting equation (3.341) into (3.334)-(3.336) to obtain 
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Simplifying the above equations to obtain 
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(3.347) 

Simplifying the above equations and setting 

, 

, 

Substituting the above coefficient parameters into equations (3.345)-(3.347) to obtain 

 

+ff00 + α5f + α6f00 − (f0)2 + α7f0 + 4a cos(α)T + 4b cos(α)C − M2f0 
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From now, the derivatives of f,θ and φ are in respect of ξ given 

  (3.351) 

The above equation (3.351) is true because all functions of η are known functions 
represented by coefficient parameters. However, the following initial guess is 
chosen to satisfies the boundary conditions (3.320) and (3.321) at η = 0 

f0(η) = Sw + e−η + 1, T0(η) = C(η) = e−η (3.352) 

The nonhomogeneous linear part of equations (3.348) − (3.350) is solved to obtain 
initial solution of SHAM 

) (3.353) 

(1 + Rp)Tl00 + β1Tl + β1Tl00 + β2fl + β3Tl0 + β4Tl0 + PrHTl + β5fl00 

) (3.354) 

) (3.355) 

subject to: 
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The Chebyshev pseudospectral method is applied on (30353)-(3.355) and the 
unknown functions fl(ξ),Tl(ξ) and Tl will be approximated as a truncated series of 
Chebyshev polynomials given as: 

N 

fl(ξ) u flN(ξj) + Xf¯kT1k(ξj) ,j = 0,...,N 

k=0 

(3.357) 

N 

Tl(ξ) u TlN(ξj) + XT¯
kT2k(ξj) ,j = 0,...,N 

k=0 

(3.358) 

N 

Cl(ξ) u ClN(ξj) + XC¯
kT3k(ξj) ,j = 0,...,N (3.359) 

k=0 

where T1k,T2k and T3k are the kth chebyshev polynomial and ξ0,ξ1,...,ξN are GaussLobatto 
collocation point given as: 

  (3.360) 

where N = number of collocation points and the derivatives of functions fl(ξ),Tl(ξ) and 
Tl(ξ) at the collocation point is given by 

 
(3.361) 

where r = order of differentiation and D = Chebyshev spectral differentiation matrix. 
Substituting Equations (3.357)-(3.339) into equations (3.353)-(3.355) yields 

MFL = G (3.362) 

subject to 

N 

fl(ξN) = −Sw ,XD0,mfl(ξm) = 1 ,Tl(ξN) = Cl(ξN) = 1 ,Tl(ξ0) = Tl(ξ0) = 0 

k=0 
(3.363) 

where 
 

M11 

 M 
M21 

 
 

M12 

M22 

M32 

 
M13 

 
M23  

 

M33 

(3.364) 
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M31 

and 

 

FL = [fl(ξ0),...,fl(ξN),Tl(ξ0),...,Tl(ξN),Cl(ξ0),...,Cl(ξN)]T 

G = [G1(η0),G1(η1),...,G1(ηN),G2(η0),G2(η1),...,G2(ηN),G3(η0),G3(η1),...,G3(ηN)] αi = 
diag([αi(η0),αi(η1),...,αi(ηN−1)]) βi = diag([βi(η0),βi(η1),...,bi(ηN−1)]) γi = 
diag([γi(η0),γi(η1),...,γi(ηN−1)]) ,i = 1,2,3,4,5,6,7,8 

The superscript T means transpose, ”diag” = diagonal matrix and I = identity 
matrix of size (N +1)×(N +1). To implement the boundary conditions, the first, last 
rows and columns of A are deleted during the computational analysis in MATLAB. 
Also, the first and last rows of fl(ξ),Tl(ξ),Cl(ξ) and G are deleted. Furthermore, the 
boundary conditions are imposed on the first and last rows of the matrix M. 

Therefore, the values of fl(ξ0),...,fl(ξN),Tl(ξ0),...,Tl(ξN),Cl(ξ0),...,Cl(ξN) can be 

determined from 

FL = M−1G (3.365) 

Equation (3.365) is the required solution of SHAM which provides the initial approximation. 
Hence, the linear operator is defined as follows to find the SHAM 

solutions to (3.353)-(3.355) 

 

(3.366) 

+β4Tl0 + PrHTl + β5fl00 + DfCl00 + β6fl00 + β7Tl + β9fl00 + β10Cl0 



126 

+β11Tl0 + β12Tl (3.367) 

  (3.368) 

In the above equations, q ∈ [0,1] = embedding parameter and f¯(η;q),T¯(η;q) and 

C¯(η;q) are unknown functions. The zeroth order deformation equation is given by: 

(1 − q)Lf¯[f¯(η;q) − f¯0(η)] = qhf¯Hf¯(η)Nhf[f¯(η;q),T¯(η;q),C¯(η;q)] 
(3.369) 

(1 − q)LT¯[T¯(η;q) − T¯
0(η)] = qhT¯HT¯(η)NhT [f¯(η;q),T¯(η;q),C¯(η;q)] (3.370) 

(1 − q)LC¯[C¯(η;q) − C¯
0(η)] = qhC¯HC¯(η)NhC[f¯(η;q),C¯(η;q),C¯(η;q)] (3.371) 

In the above equations, ~f¯,~T¯ and ~C¯ are nonzero convergence controlling auxiliary 

parameters and Nhf,NhT and NhC are the nonlinear operators defined by 

 

(3.372) 

(3.373) 

NhC[f¯(η;q),T¯(η;q),C¯(η;q)] = Scf¯C¯0 + τC¯T¯00 + τT¯0C¯0 (3.374) 

Differentiating (3.369)-(3.371) m times with respect to q and setting q = 0 and 
finally dividing the resulting equations by m!, we obtain the mth order deformation 
equations: 

 (3.375) 

 (3.376) 

 

subject to: 

(3.377) 

f¯m(−1) = T¯
m(−1) = C¯

m(−1) = 0, f¯0m(1) = T¯
m(1) = C¯

m(1) = 0 (3.378) 
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where 

 

 

 

 

 

Applying the Chebyshev pseudo-spectral transformation on (3.338)-(3.338) gives 

AFm = (χm + ~)AFm−1 −~(1 − χm)G + ~Qm−1 

subject to the boundary conditions 

(3.379) 

N N 

fmξN = 0, XDNkfm(ξk) = 0, XD0kfm(ξk) = 0 

k=0 k=0 

(3.380) 

Tm(ξN) = 0, Tm(ξ0) = 0 (3.381) 

Cm(ξN) = 0, Cm(ξ0) = 0 

where M and G are as defined above 

(3.382) 

Fm = [fm(ξ0),fm(ξ1),...,fm(ξN),Tm(ξ0),Tm(ξ1),...,Tm(ξN),Cm(ξ0),Cm(ξ1),...,Cm(ξN)]T The boundary 
conditions (3.350)-(3.352) are implemented on A on the left hand side of equation 
(3.349) in rows 1,N,N + 1,N + 2,N + 3,2(N + 1) and 3(N + 1) re- 
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spectively as before with initial solution above. The corresponding rows, all column 
of A on the right hand side of (3.349), G, Q1,m−1,Q2,m−1 and Q3,m−1 are all set to 

zero. This results in the following recursive formula 

Fm = (χm + ~)A−1.AF¯ 
m−1 + ~A−1[Qm−1 − (1 − χm)G] (3.383) 

3.10.1 Convergence of SHAM solution 

The convergence of SHAM is subject on the value selection for the auxiliary term 
(~). The term ~ controls the convergence of the SHAM series solution. The numeric 
value of ~ is taken on the horizontal segment of the ~-curves. Sibanda et al. (2012) 
discussed that the peak value of ~ to used is equivalent to the turning point of the 
second order ~- curve. 

CHAPTER FOUR: Results and discussion of find- 

ings 

4.1 Results and discussion of research problem one 

Equations (3.56)-(3.58) subject to (3.59) and (3.60) have been solved using the 
spectral relaxation method (SRM). SRM employs the idea of Gauss-Seidel 
relaxation approach to linearize a decoupled system of nonlinear differential 
equations (Motsa et al., 2012). Using the SRM, numerical computations were 
carried out for the velocity, temperature, concentration, local skin friction, local 
Nusselt number and Sherwood number. Results are presented in tabular and 
graphical forms. All programmes were coded in MATLAB R2012a. The results were 
generated using the scaling parameter L = 15 and it is observed that increase in the 
value of L does not change the result to a reasonable extent. The number of 
collocation point used in generating the results was Nx = 120. The value of Prandtl 
number (Pr) used in this work is (Pr = 0.71) which denotes the Prandtl number for 
air at 1 atm. In the same vein, the value chosen for Schmidt number is (Sc = 0.20) 
which connote the Schmidt number for hydrogen. We have also chosen the value 
for magnetic parameter between 0.1 and 1 and all other parameters were set to be 

Gr = Gm = 2.0,Rr = A = kr = 0.5,t = 1.0,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 

0. 001. Hence, all numerical computations 

correspond to the above stated values unless or otherwise stated. Remarkably, our 
results were compared with existing literature and was found to be in good 
agreement. It worths mentioning that, in a moment we set A1 = 0 in this study, our 
model is categorized as a Newtonian fluid model. 
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Figs. (4.1)-(4.13) illustrates the effects of all the controlling parameters such as 

Prandtl number Pr, thermal radiation parameter Rr, Soret parameter Sr, Dufour parameter Du, 
viscoelastic parameter A1, heat source or sink parameter δ, heat generation/absorption 
coefficient parameter ∆, Schmidt number Sc, chemical reaction parameter kr, Eckert number 
Ec, magnetic parameter M, thermal Grashof number Gr, mass Grashof number Gm. The effect of 
the Prandtl number Pr on the ve- 

locity, temperature and concentration profiles is presented in fig 4.1. It is observed 
that the fluid velocity is reducing with increasing value of Pr. These results are in 
agreement with that of Alao et al. (2016) but it is observed that the presence of 
parameters such as A1,δ,∆ tends to influence the profile the more. From fig. 4.1 , as 
the value of Pr is increasing, it causes reduction in the velocity because higher Pr 
tend to reduce the velocity and the local skin friction. Also, from fig. 4.1, it is 
observed that increase in Pr decreases the temperature profile. It is noted that 
when Pr < 1, the fluid in the hydrodynamics, thermal and concentration boundary 
later is highly conducive. Figure 4.2 presents the influence of thermal radiation 
parameter Rr on the velocity, temperature and concentration profiles is depicted. 
It is noted from the fig. 4.2 that increasing Rr increases the velocity and 
temperature profiles. As a matter of fact, increasing thermal radiation parameter 
enhances the thermal condition of the fluid environment. When Rr is raised the 
temperature of the fluid will increase resulting to an increase in the profile. It is 
noted from fig. 4.2 that Rr does not have any effect on the concentration profile. 
This result is in correlation with that of Idowu and Falodun (2018) and Raju et al. 
(2016) but it is observed that increase in radiation parameter in the present study 
shows more impact on the velocity and temperature profiles compared to the 
work of Raju et al. (2016). Hence, this study conclude that radiation effect is more 
significant when Rr −→ 0 provided Rr 6= 0 and insignificant as Rr − →∞ 

The effects of Soret parameter Sr and Dufour parameter Du is investigated 
separately in this study. Fig. 4.3 presents the effect of Sr on the velocity, 
temperature and concentration profiles. It is found out from fig. 4.3 that increasing 
the values of Sr increases the velocity profile. This is due to the fact that, when Sr is 
raised, there will be greater thermal diffusion and this results to increase in the 
velocity of the fluid. It is observed from fig. 4.3 that the effect of Sr is negligible on 
the temperature profile while the concentration profile rises when increasing the 
Soret parameter as shown in fig. 4.3. Fig. 4.4 depicts the effect of Dufour parameter 
Du on the velocity, temperature and concentration profiles. An increase in the fluid 
velocity by increasing Du is noticed. From fig. 4.4 it is observed that as Du 
increases it gives a rise in the temperature profile. In fig. 4.4, it is noted that effect 
of Du on the concentration profile is negligible. The results presented in figure 4.3 
and 4.4 of the present study is in excellent agreement with that of Omowaye et al. 
(2015) , Raju et al. (2016), Idowu and Falodun (2018). This shows the correctness 
of the code used in this study. The Soret term is added to the energy equation. Both 
Soret and Dufour term influence the fluid velocity but Soret term alters the fluid 
concentration while Dufour term alters the fluid concentration while Dufour term 
alters the fluid temperature. Fig. 4.5 illustrates the effect of the viscoelastic 
parameter A1 on the velocity, temperature and concentration profiles. The 
viscoelastic parameter A1 illustrates the effect of normal stress coefficient on the 
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flow. Interestingly, very close to the plate the fluid velocity decreases and 
increases far away from the plate. This result is depicted in fig. 4.5. Fig. 4.5 
presents the effect of A1 on the temperature and concentration profiles are 
negligible. This indicates that a hike in the viscoelastic parameter has tendency of 
decreasing the boundary layer thickness, while a hike in the normal stress 
coefficient parameter has an opposing effect on the temperature profile of the 
flowing fluid. The effect of the viscoelastic fluid parameter as shown in figure 4.5 is 
in good agreement with that of Manglesh and Gorla (2012). It is noticed that the 
present result converges than Manglesh and Gorla (2012). The present result 
compared to Ramzan et al. (2016) is also the same but the effect close to the plate 
and far away from the plate differs from the result presented by Ramzan et al. 
(2016). 

Fig. 4.6 illustrates the influence of heat source δ on the velocity, temperature 
and concentration profiles. Heat source add more heat energy into the boundary 
layer flow. It worths mentioning that the generation of heat enhances the velocity 
and temperature field. From fig. 4.6, an increase in the values of δ increases the 
velocity profile. In fig. 4.6, increase in the values of δ brings increase to the 
temperature profile. The effect of δ is negligible on the concentration profile as 
seen in fig. 4.6. The effect of heat generation coefficient parameter ∆ on the 
velocity, temperature and concentration profiles is illustrated in fig. 4.7. Increasing 
the values of heat generation coefficient parameter ∆ increases the velocity profile. 
When ∆ > 0 , the behaviour of the fluid velocity changes and it drastically causes an 
increase. ∆ increases the temperature profile as seen in fig. 4.7 because the thermal 
boundary layer gets thicker and resulted to the particles of the fluid getting 
warmer. From fig. 4.7 ∆ does not have any effect on the concentration profile. Fig. 
4.8 depicts the effect of the Schmidt number Sc on the velocity, temperature and 
concentration profiles. It is obvious from fig. 4.8 that increasing Sc retards the 
velocity profile. Clearly from fig. 4.8 Sc does not have any effect on the temperature 
profile. Fig. 4.8 shows that increase in the values of Sc drastically reduces the 
concentration profile. Fig. 4.9 shows the effect of the chemical reaction parameter 
kr on the velocity, temperature and concentration profiles. It is observed that there 
is a reduction in the velocity profile with increasing value of kr. From the fig. 4.9 
effect of kr is negligible on the temperature profile while in fig. 4.9 the 
concentration profile decreases with increasing values of kr. The fluid motion is 
retarded on the account of chemical reaction destructive nature. When kr > 0 it 
brings a decrease in the concentration field which weakens the buoyancy effects 
due to concentration gradients. Thus, as the chemical reaction reduces the 
concentration thereby increasing its concentration gradient and concentration 
flux. The destructive nature of chemical reaction parameter on the velocity, 
temperature and concentration profiles in this study is noted to be in good 
agreement with that of Chamkha (2003) and Mahanthesh et al. 

(2016). 

Fig. 4.10 depicts the influence of Eckert number Ec on the velocity, temperature 
and concentration profiles. Ec is the relationship between the kinetic energy in the 
flow and enthalpy. As shown in figure 4.10, the velocity profile increases with 
increase in the values of Eckert number. Also, the temperature profile increases 
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with increase in the values of Ec. Scientifically, Ec add more energy to the 
hydrodynamics and thermal boundary layer. When the values of Ec increases, it 
accelerate both velocity and temperature profiles. The result in fig. 4.10 is true 
because at higher viscous dissipative energy, the velocity and temperature 
increases. It is seen from the fig. 4.10 that Ec is negligible or has no effect on the 
concentration profile. It is seen from the figure 4.10 that Ec is negligible or has no 
effect on the concentration profile. This result is in excellent agreement with the 
existing work of Mondal et al. (2018). The variation of different values of magnetic 
parameter M on the velocity, temperature and concentration profiles are shown in 
fig. 4.11. It is evident that, the applied magnetic field strength B0 gives rise to a 
resistive force called Lorentz force. This force reduces the motion of an electrically 
conducting fluid. It is clearly seen in fig. 4.11 that, increasing the magnetic 
parameter causes a reduction in the velocity profile. Obviously, from fig. 4.11, the 
effect of M is negligible on both temperature and concentration profiles. The result 
as shown in figure 4.11 is in excellent agreement with the recent work of Liaquat 
et al. (2019) and Shah et al. (2019). Fig. 4.12 depicts the effect of thermal Grashof 
number Gr on the velocity, temperature and concentration profiles. Gr is the ratio 
of buoyancy to the viscous acting on the fluid. When the values of Gr increases, the 
velocity profile increases rapidly close to the plate and decreases to the free 
stream velocity. This graphical illustration is shown in fig. 4.12. It is obvious from 
the fig. 4.12 that the thermal Grashof number does not have any effect on the 
temperature and concentration. Fig. 4.13 illustrate the influence of mass Grashof 
number Gm on the velocity, temperature and concentration profiles. Obviously 
from the fig. 4.13, increasing the values of Gm intensifies the velocity profile. It is 
seen from the fig. 4.13 that Gm does not have any effect on both the temperature 
and concentration profiles respectively. 

The comparison between the present study and existing literatures are 
presented in Table 4.1-4.3 while Table 4.4 shows the results of the present study. In 
table 4.1 , comparison of computational values for Sherwood number with the work 
of Chandra et al. (2015) and Mishra et al. (2013) with the present work in the 
absence of radiation parameter Rr, Eckert number Ec, Dufour parameter Du, heat 
generation/absorption parameter ∆, chemical reaction parameter kr, and Soret 
parameter (i.eDu = Sr = R = Ec = ∆ = kr = 0). From table 4.1 the present result is in 

good agreement which shows the correctness of the code used in the present 
study. Table 4.2 and Table 4.3 shows the comparison between the present work 
for values of skin friction, Nusselt number and sherwood number with the work of 
Rao et al. (2013) by setting A1 = Du = δ = ∆ = Sr = 0 and that of Alao et al. (2016) by 
setting A1 = δ = ∆ = 0. Clearly, the results in table 4.2 and table 4.3 are in good 
agreement with that of Rao et al. (2013) and Alao et al. (2016). Table 4.4 presents 
the result obtained by varying different parameters for values of skin friction 
coefficient, Nusselt number, and Sherwood number. It is shown in table 4.4 that as 
Gr increases, there is a hike in the skin friction coefficient. A hike in the Prandtl 
number also gives a decrease to both the skin friction coefficient and Nusselt 
number. It is seen from the table 4.4 that a rise in the radiation parameter results 
to a hike in the skin friction and Nusselt number. Radiation parameter enhances 
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convective flow because increase in Rr improves the thermal condition of the fluid 
environment. From table 4.4, increase in the values of Dufour number Du increases 
the Nusselt number (Nu) while increase in the values of Soret number increases 
the Sherwood number (Sh). Increase in the values of Soret number and Dufour 
number brought increase to the skin friction coefficient.It is noticed in table 4.4 
that increase in the values of the viscous dissipative term (Eckert number) 
enhances the hydrodynamics and thermal boundary layer thickness by increasing 
the coefficient of skin friction and the Nusselt number. 

 

(c) concentration profile 

Figure 4.1: Effect of Prandtl number Pr on the (a) velocity (b) temperature and ( c ) 
concentration profiles when M = 1.0,Sc = 0.61,Gr = Gm = 2.0,Rr = A = kr = 

0.5,t = 1,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 0.02 and 

 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.2: Effect of radiation parameter Rr on the (a) velocity (b) temperature and (c) 
concentration profiles when M = 1.0,Sc = 0.61,Gr = Gm = 2.0,A = kr = 

0.5,t = 1,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 0.02,Pr = 

0.71 and  

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.3: Effect of Soret number Sr on the (a) velocity (b) temperature and ( c ) 
concentration profiles when M = 1.0,Sc = 0.61,Gr = Gm = 2.0,A = kr = 0.5,t = 1,n = 
0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 0.02,Pr = 0.71 and  

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.4: Effect of Dufour number Du on the (a) velocity (b) temperature and ( c ) 
concentration profiles when M = 1.0,Sc = 0.61,Gr = Gm = 2.0,A = kr = 0.5,t = 1,n = 
0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 0.02,Pr = 0.71 and  

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.5: Effect of viscoelastic parameter α on the (a) velocity (b) temperature and 
(c) concentration profiles when M = 1.0,Sc = 0.61,Gr = Gm = 2.0,A = kr = 

0.5,t = 1,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 0.02,Pr = 

0.71 and  

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.6: Effect of heat source/sink parameter δ on the (a) velocity (b) 
temperature and (c) concentration profiles when M = 1.0,Sc = 0.61,Gr = Gm = 2.0,A 
= kr = 0.5,t = 1,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 

0.02,Pr = 0.71 and  

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.7: Effect of heat generation/absorption parameter ∆ on the (a) velocity ( b ) 
temperature and (c) concentration profiles when M = 1.0,Sc = 0.61,Gr = Gm = 

2.0,A = kr = 0.5,t = 1,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 

0.3,∆ = 0.02,Pr = 0.71 and  

( a ) velocity profile ( b ) temperature profile  



139 

 

(c) concentration profile 

Figure 4.8: Effect of Schmidt number Sc on the (a) velocity (b) temperature and ( c 
) concentration profiles when M = 1.0,Sc = 0.61,Gr = Gm = 2.0,A = kr = 0.5,t = 1,n = 
0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 0.02,Pr = 0.71 and  

( a ) velocity profile ( b ) temperature profile  



140 

 

(c) concentration profile 

Figure 4.9: Effect of chemical reaction parameter kr on the (a) velocity (b) 
temperature and (c) concentration profiles when M = 1.0,Sc = 0.61,Gr = Gm = 2.0,A 
= kr = 0.5,t = 1,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 

0.02,Pr = 0.71 and  

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.10: Effect of Eckert number Ec on the velocity, temperature and concentration 
profiles when M = 1.0,Sc = 0.61,Gr = Gm = 2.0,A = kr = 0.5,t = 1,n = 

0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 0.02,Pr = 0.71 and 

 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.11: Effect of Magnetic parameter M on the (a) velocity (b) temperature 
and (c) concentration profiles when Pr = 0.71,Sc = 0.61,Gr = Gm = 2.0,Rr = A = kr = 
0.5,t = 1,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 0.02 and  

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.12: Effect of thermal Grashof number Gr on the (a) velocity (b) temperature 
and (c) concentration profiles when M = 1.0,Sc = 0.61,Gm = 2.0,Pr = 

0.71,Rr = A = kr = 0.5,t = 1,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 

1.0,δ = 0.3,∆ = 0.02 and  

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.13: Effect of mass Grashof number Gm on the (a) velocity (b) temperature and 
(c) concentration profiles when M = 1.0,Sc = 0.61,Pr = 0.71,Gr = 2.0,Rr = 

A = kr = 0.5,t = 1,n = 0.5,Du = 0.2,Sr = 0.5,Ec = 0.01,A1 = 1.0,δ = 0.3,∆ = 

0.02 and  
Table 4.1: Comparison of computational values for Sherwood number (Sh) for dif- 

ferent values of Sc when R = Ec = Du = ∆ = kr = Sr = 0,Gr = 2.0,Gm = 

2.0,M = 1.0,Pr = 0.71,δ = 0.1,A1 = 0.1. 

for validation of present work 

Present Study Chandra et al. (2015) Mishra et al. (2013) 

Sc Sh Sh Sh 

0.22 0.2202 0.2201 0.219095 

0.3 0.3002 0.3001 0.298966 

0.66 0.6602 0.6601 0.658814 

0.78 0.7804 0.7802 0.776574 

( a ) velocity profile ( b ) temperature profile  
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Table 4.2: Computation values for skin-friction coefficient Cf and Sherwood number 
for various values of thermal radiation parameter compared with Rao et al. (2013) 

when A1 = Du = δ = ∆ = Sr = 0 

for validation of the present work. 

Present Study Rao et al. (2013) 

Sc Cf Sh Cf Sh 

0.22 3.1066 0.4512 3.1068 0.4515 

0.60 2.4546 0.8429 2.4548 0.8431 

0.78 2.2763 1.0211 2.2767 1.0214 

0.94 2.1538 1.1742 2.1540 1.1745 
Table 4.3: Computation values for skin-friction coefficient Cf and Nusselt number for 
various values of thermal radiation parameter compared with Alao et al. (2016) 

when A1 = δ = ∆ = 0 

Present Study Alao et al. (2016) 

R Cf θ0(0) Cf θ0(0) 

0.0 2.1692 0.8291 2.1693 0.8291 

0.5 2.4656 0.6154 2.4657 0.6154 

1.0 2.6545 0.5087 2.6546 0.5087 

2.0 2.9038 0.4019 2.9039 0.4019 
Table 4.4: Computational values for skin friction coefficient (Cf), Nusselt number 

(Nu), and sherwood number (Sh) for different values of Gr,Rr,Pr,Ec,Du and Sr 

 Parameters     Present Work   

Gr Pr Rr Ec Du Sr Cf Nh Sh 

0.0 0.71 0.5 0.01 0.2 0.3 1.4626 0.6332 0.6993 

0.5 0.71 0.5 0.01 0.2 0.3 1.4888 0.6332 0.6993 

1.0 0.71 0.5 0.01 0.2 0.3 1.5151 0.6332 0.6993 

2.0 0.71 0.5 0.01 0.2 0.3 2.9082 0.3527 0.6993 

2.0 1.00 0.5 0.01 0.2 0.3 2.0129 0.7245 0.6993 

2.0 3.00 0.5 0.01 0.2 0.3 1.5806 0.6377 0.6993 

2.0 0.71 0.0 0.01 0.2 0.3 1.1436 0.5886 0.6993 

2.0 0.71 0.5 0.01 0.2 0.3 1.5806 0.6377 0.6993 
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2.0 0.71 1.0 0.01 0.2 0.3 2.0831 0.7445 0.6993 

2.0 0.71 0.5 0.01 0.2 0.3 1.3570 0.5092 0.6993 

2.0 0.71 0.5 0.6 0.2 0.3 1.4465 0.5607 0.6993 

2.0 0.71 0.5 1.0 0.2 0.3 1.5584 0.6250 0.6993 

2.0 0.71 0.5 0.01 0.0 0.3 0.9572 0.4174 0.6993 

2.0 0.71 0.5 0.01 0.5 0.3 1.3468 0.5551 0.6993 

2.0 0.71 0.5 0.01 1.0 0.3 1.7364 0.6928 0.6993 

2.0 0.71 0.5 0.01 0.2 0.0 1.2097 0.6377 0.5353 

2.0 0.71 0.5 0.01 0.2 0.5 1.5806 0.6377 0.6993 

2.0 0.71 0.5 0.01 0.2 1.0 1.9514 0.6377 0.8633 

4.2 Results and discussion of research problem two 

The set of coupled fourth order total differential equations (3.205)-(3.207) along 
with the constraints (3.208) and (3.209) have been profound solution numerically 
by utilizing SHAM. The contribution of changing the pertinent parameters on 

concentration (φ(η)), velocity  and temperature θ(η) plots are 

depicted 

using diagrams while Sherwood, Nusselt and coefficient of skin friction are 
tabulated. The impact of Casson liquid term on concentration, temperature and 
velocity are illustrated in figure 4.14. The physics of the problem for a case of 
constant thermal conductivity and viscosity, that is γ = ξ = 0, an increment in the 
fluid viscosity near to the plate owing to higher Casson liquid term (β) and lessens 
far from the plate. Too much of viscosity leads to degeneration in velocity. The 
outcome in figure 4.14 is for higher injection of thermal conductivity and viscosity 
to the motion of fluid, that is, γ = ξ = 3.0. However, raising β resist the fluid motion 
owing to the fact that, increase in β lead to reduction in the yield stress Py of the 
Casson term degenerates and hereby leads to enhancement in the plastic dynamic 
viscosity. It is detected in figure 4.14 that the injected temperature owing to γ = ξ = 
3.0 enhances the velocity near the plate alongside temperature of the thermal and 
hydrodynamic layer. Figure 4.14 illustrate the increment in the Casson term is 
negligible on the concentration plot. Figure 4.15 depicts the contribution of 
Walters-B term (Weissenberg number) on plots of concentration, velocity and 
temperature. The viscoelastic term A2 connotes the contribution of normal stress 
on the flow. At a level in the flow domain, an increment in the velocity near the 
plate at the ambient vicinity for a case of varying thermal conductivity and 
viscosity. Physically, an increment in Walters-B term (A2) contributes to the flow 
by enhancing the temperature plot but enhances the temperature, variable 
viscosity, thermal layer and variable thermal conductivity when the value of A2 

increases. Viscoelasticity portrays viscous and elastic features when there is 
occurrence of deformation. It worth noting that viscosity brings resistance to flow, 
hence properties of viscous in viscoelastic term tends to lessen the hydrodynamic 
layer for a constant thermal conductivity and viscosity. In otherwords, the varied 
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viscosity γ = 3.0 assist the fluid flow to posses the loss energy and enhances the 
velocity. The thermal conductivity was injected ξ = 3.0 added more energy to the 
fluid temperature and thereby increase the thermal layer thickness by boasting the 
temperature plot as depicted in figure 4.15. The moment Casson and Walters-B 
liquid are mixed together and motion into the thermal and hydrodynamics layer 
over the penetrable wall, the Walters-B liquid will lessens the temperature and 
concentration. In addition, an enhancement in fluid velocity is noticeable as the 
two fluids mixed together. The proportion of Casson liquid term is more than 
Walters-B liquid. 

The contribution of the two non-Newtonian liquid term explored in this 
research are plotted in figures 4.14 and 4.15. the variable conductivity and 
viscosity added to the energy and momentum equations (3.157 and (3.158) 
accelerate the velocities close to the plate and lessens the temperature plots and 
the whole thermal layer as illustrated in figures 4.14 and 4.15. Higher Casson 
liquid term in the hydrodynamic boundary layer becomes more than the Walters-B 
liquid term near the plate as illustrated in figure 4.14 and 4.15 due to γ = ξ = 3.0, 
the plastic dynamic viscosity lessens and lead to fluid motion enhancement. The 
thickness of thermal layers increases owing to elasticity stress term enhancement. 
In figures 4.14 and 4.15, the concentration plots are observed to slightly enhance 
far from the plate because of higher β and A2. The concentration of fluid at the 
ambient vicinity where there is hotness as depicted in figure 3.1 enhances owing 
to the heat in this vicinity. The Casson and the Walters-B (tomato sauce and 
concentrated fruit juice) liquid lessens concentration at this hot vicinity. The 
contribution of Dufour-Soret are explored separately in this research. They 
portrays the diffusion-thermal and thermal-diffusion contribution in the research. 
The plots of concentration, temperature and velocity for distinct values of the 
Soret term (So) are illustrated in figure 4.16. The Soret phenomenon explains the 
temperature gradient contribution while varying concentration. Obviously, the 
entire hydrodynamic layer and velocity degenerates while raising So. This is owing 
to the variation of thermal conductivity which lowers the amount of thermal 
diffusion. In addition, the concentration as illustrated in figure 4.16 enhances near 
the plate but lessens far away from the plate. So is detected to be negligible on the 
entire thermal layer and temperature. The physics of the thermal layer posses high 
temperature owing to the hotness of the vicinity at the ambient. Hence, the 
concentrated fruit hereby mixed with Walters-B liquid at the layer and moves 
faster at the ambient boundary layer. 

The variation of Dufour term (Df) on the temperature, velocity and 
concentration distribution is depicted in figure 4.17. The Dufour phenomenon 
explains the impact of concentration gradients on the temperature as seen in 
equation (3.158). It acts as an assistance to the flow and capable of enhancing the 
thermal energy within the layers. This is illustrated in figure 4.17 for higher value 
of Df, the temperature plot accelerates. It was detected that the contribution of 
Dufour ( diffusion-thermo ) greatly impacted the fluid temperature. Near the plate, 
higher Df decreases the velocity. It was detected that higher temperature at the 
ambient vicinity raises the fluid velocity. Figure 4.18 illustrate the contribution of 
the permeability term (Ps) on the concentration, velocity and temperature plots. It 
is observed that the velocity plot degenerates as the porosity term increases. This 
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is correct because an additional resistance to the wall is owing to fluid motion and 
hereby retardate the hydrodynamic boundary layer. It hereby brings enhancement 
to the thermal layer as depicted in figure 4.18. this outcome is in excellent 
agreement with Salawu and Dada (2016). Experimentally, as the porosity term 
increases, it gives rooms for motion of the Walters-B and Casson liquids. The heat 
keeps rising at the free stream where there is hotness, the contribution of the 
varied thermal conductivity alters the temperature distribution. It hereby lowers 
the velocity and brings enhancement to the fluid temperature. After, the fluid 
moves over the penetrable vertical plate, the liquid becomes concentrated and the 
boundary layer becomes very thick. This is because the proportion of the Casson 
liquid term is more than the Walters-B liquid. 
The concentration of the Casson liquids degenerates as it mixed together with the 
Walters-B liquid which is in the form of Water. Also, the thermal conductivity and 
viscosity varying on the boundary layer in correlation with the hot vicinity. 

Figure 4.19 illustrate the concentration, velocity and temperature plots with 
distinct values of radiation term (Ra). Radiation term enhances convective motion 
(Idowu and Falodun; 2018). As the intensity of Ra rises, it is detected that velocity 
field and the who hydrodynamic boundary layer enhances. This outcome is in 
excellent agreement with the outcomes of Arifuzzaman et al. (2018). Because the 
thermal conductivity and viscosity varies coupled with the hot vicinity in this 
research, the velocity degenerates at the ambient environment. The temperature 
depicted in figure 4.19 enhances owing to the double non-Newtonian liquids 
explored in this research cooled down both the thermal layer and temperature at 
the wall but greatly affect the free stream. Practically, it implies the thermal energy 
has great impact on the flow regime. Owing to this fact, it is finalized that the 
contribution of radiation is importance as Ra 6= 0 and Ra −→∞. The contribution 
of Ra on 

the concentration plot is observed to slightly degenerate as illustrated in figure 
4.19. The contribution of (Pr) on the concentration, velocity and temperature is 
shown in figure 4.20. Pr explains the relationship existing with thermal 
conductivity and kinematic viscosity. It portrays the momentum diffusivity divided 
by the thermal diffusivity. The Pr manage the thickening of the momentum as well 
as thermal layers in the phenomena of heat transport. Practically, any liquid with 
higher Prandtl number resulted to greater viscosities. Hence, it serves to 
degenerate the velocity and the entire hydrodynamic layer. However, liquids with 
lower Pr posses greater thermal conductivities and hereby thickening the 
structures of the thermal layer. This give chance for heat to diffuse very fast 
compare to higher Pr. Furthermore, Pr can served as a term for enhancing the 
cooling rate in a flow. Higher Pr leads to degeneration in the velocity plot. In 
addition, higher values of Pr lowers the temperature plot because as Pr < 1, the 
liquid is highly conducive. In figure 4.20 , a high values of Pr is observed to slightly 
raise the concentration plot near the plate and lessens far away from the plate. 
Varying the magnetic field term (Mp) on concentration, velocity, temperature field 
are plotted in figure 4.21. The imposed magnetism to an electrically conducting 
liquids originates is a drag-like Lorentz force. The Lorentz force causes the fluid 
velocity to degenerate within the boundary immediately the magnetism opposes 
the phenomena of flow. The opposing force produced by the imposed magnetism, a 
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higher values of Mp is observed to slow down the velocity plot and enhances the 
temperature plot owing to the generated friction by Lorentz force. This friction 
with variable thermal conductivity and viscosity lessens the heat energy and 
hereby enhances the temperature field in the flow. It is seen from figure 4.21 that 
Mp does not alter the concentration plot. Figure 4.22 illustrate the contribution of 
thermal buoyancy force term (Gr) on concentration, temperature and velocity 
field. The dimensionless Gr number which explains the division of buoyancy to the 
viscous force acting on fluid particles (Alao et al.; 2016). The hydrodynamic layer 
and fluid velocity accelerated upward because Gr behaves like a force exerted by 
the fluid owing to the placement of an object. Hence, the pressure exerted 
increases the depth. The pressure felt at the bottom is much than the force at the 
top. The temperature plot is detected to degenerate owing to increase in the values 
of thermal buoyancy term (Gr). Thus, an upward net force which accelerate the 
entire hydrodynamic layer and velocity but degenerates the thermal layer and 
temperature of fluid. The contribution of Schmidt term (Sc) on the concentration, 
velocity and temperature plots are illustrated in figure 4.23. Sc means the division 
of kinematic viscosity to the mass diffusivity of the liquid, meaning . Practically, ν 

> D means that Sc is high and vice versa. On the other hand, concentration 
buoyancy contribution lessens the rate of mass transport and hereby decreases the 
concentration plot near the plate and increases far from the plate. The outcomes in 
figure 4.23 portrays that the fluid viscosity is higher than the mass diffusivity. This 
is owing to the variable viscosity resulting to an enhancement in the velocity plot 
far from the plate. With higher values of Sc, no contribution is observed on the 
temperature plot. 

Table 4.5 illustrated the contribution of controlling terms Sc, Mp, A2, Ra and Pr 
on the wall coefficient of skin friction (Cf), Nusselt (nu) and Sherwood (Sh). It is 
observed from table 4.5 that the skin friction enhances with higher Schmidt 
number. Also, a higher Schmidt term degenerates Sherwood and Nusselt number. 
In table 4.5, a higher magnetic term (Mp) shows degeneration in the wall skin 
friction coefficient and the Nusselt number while an enhancement in the Sherwood 
number is noticeable. Furthermore, a higher Walters-B term degenerates 
coefficient of skin friction but simultaneously enhances both the Sherwood and 
Nusselt number. In table 4.5, a higher thermal radiation term degenerates the 
Sherwood number and coefficient of skin friction. The radiation term is observed 
to accelerate the Nusselt number and hereby enhances the heat transport of the 
thermal layer shown in 4.5. Increase in the Prandtl term is detected to lessen the 
coefficient of skin friction and the Nusselt number shown in table 4.5. A higher 
values of Pr is observed to accelerate the Sherwood number in table 4.5. In table 
4.6, the numerical calculations of numeric values of skin friction (Cf), Sherwood 
(Sh) and Nusselt number (Nu) for distinct values by varying thermal conductivity 
and viscosity. A higher values of varied conductivity (ξ = 3.0) shows degeneration 
in the skin friction and Nuseelt values. Also, fixing γ = 3.0 and raising the numeric 
values of ξ lead to skin friction degeneration alongside Sherwood number. A higher 
values of ξ with γ = 3.0 is detected to upsurge the Nusselt number in table 4.6. 
Table 4.7 indicates the presents outcomes in comparison to the work of 
Animasaun (2015) by setting δx = So = A2 = 0. The outcomes were in good 
correlation. This implies that the present outcomes is very correct. The 
contribution of Eckert number (Ec) on concentration, velocity, and temperature 
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plots is illustrated in figure 4.24. The outcomes shows that a higher numeric value 
of Ec lessens velocity alongside temperature plots. Physically, Ec is derived from 
the simplification of viscous dissipation term added to the energy equation of 
motion. Ec symbolizes the relationship existing within kinetic energy as well as the 
enthalpy in the fluid motion (Idowu and Falodun, 2018). Higher values of Ec 
results to accelerated shear forces in the liquid. Owing to this increment in Ec 
alongside the varied thermal conductivity and viscosity, an elevation in velocity 
alongside temperature plots is noticed in figure 4.24. This is due to the fact that 
heat energy is gathered in the liquid owing to the frictional heating and resulted to 
elevation of the entire hydrodynamic and thickness of thermal layer. Furthermore, 
a higher values of Ec depicted in figure 4.24 degenerates the concentration plot 
near the plate and accelerates far from the plate. The contribution of 
thermophoretic term (τ) on the concentration, velocity and temperature plots is 
depicted in figure 4.25. In figure 4.25, the velocity plot degenerates close to the 
plate and accelerate far from the plate because of higher values of thermophoretic 
term has no contribution on the liquid temperature. Figure 4.25 implies that the 
concentration plot degenerates close to the plate and accelerate drastically at a far 
distance from the plate. Physically, an increment in thermophoresis, the solutal 
layer thickness elevates but degenerates the mass transport rate with the entire 
boundary layer thickness.  
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(c) concentration profile 

Figure 4.14: Effect of β on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.15: Effect of α on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.16: Effect of So on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.17: Effect of Df on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

( a ) velocity profile ( b ) temperature profile  
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Figure 4.18: Effect of Ps on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.19: Effect of Ra on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

 

Figure 4.20: Effect of Pr on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 
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(c) concentration profile 

Figure 4.21: Effect of Mp on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

( a ) velocity profile ( b ) temperature profile  



158 

 

(c) concentration profile 

Figure 4.22: Effect of Gr on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.23: Effect of Sc on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

( a ) velocity profile ( b ) temperature profile  



160 

 

(c) concentration profile 

Figure 4.24: Effect of Ec on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profiles 

Figure 4.25: Effect of τ on the (a) velocity (b) temperature and (c) concentration 

profiles when β = γ = ξ = 3.0,Gr = Gm = 2.0,Mp = τ = fw = 1.0,Ps = 0.6,A2 = 0.1,Pr = 0.71,Ra = 
Cr = 0.5,Du = 0.3,Ec = 0.01,Sc = 0.61 and Sr = 0.2 
Table 4.5: Computational values for skin friction coefficient (Cf), Nusselt number 

(Nu), and sherwood number (Sh) for different values of Sc, Mp, A2, Ra and Pr 

 Parameters     Present Work  

Sc Mp A2 Ra Pr Cf Nh Sh 

0.61 1.00 0.10 0.50 0.71 1.82684215 1.25970112 0.04107226 

1.00 1.00 0.10 0.50 0.71 1.83278163 1.22150067 0.04019208 

2.00 1.00 0.10 0.50 0.71 1.83680754 1.19318509 0.03836566 

0.61 0.00 0.10 0.50 0.71 1.82838919 1.184009703 0.03753980 

0.61 0.51 0.10 0.50 0.71 1.72143962 1.18387211 0.03762533 

0.61 1.00 0.10 0.50 0.71 1.63487194 1.18365490 0.03770776 

0.61 1.00 0.10 0.50 0.71 1.98857346 1.18000334 0.03999742 

0.61 1.00 0.30 0.50 0.71 1.57852676 1.17537798 0.04193522 

( a ) velocity profile ( b ) temperature profile  
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0.61 1.00 0.50 0.50 0.71 1.41854012 1.16937701 0.04445257 

0.61 1.00 0.10 0.50 0.71 1.83709818 1.14481507 0.09418621 

0.61 1.00 0.10 1.00 0.71 1.83742769 1.15751245 0.07588727 

0.61 1.00 0.10 2.00 0.71 1.68617411 1.18474433 0.03400623 

0.61 1.00 0.10 0.50 0.20 1.71018187 0.12205103 1.52846420 

0.61 1.00 0.10 0.50 0.40 1.68436341 0.02477757 1.69314037 

0.61 1.00 0.10 0.50 0.71 1.63902616 0.01839299 1.90178334 

Table 4.6: Computational values for skin friction coefficient (Cf), Nusselt number 

(Nu), and sherwood number (Sh) for different values of γ and ξ γ ξ 
Cf Nh Sh 

0.3 3.0 1.81056406 1.18653737 0.03808702 

0.9 3.0 1.48607432 1.17522966 0.04233343 

1.3 3.0 1.07528692 1.17458078 0.04245124 

3.0 0.5 1.84218412 1.13768490 0.10847605 

3.0 1.0 1.84093374 1.15266546 0.08561126 

3.0 1.5 1.83955706 1.16811347 0.06198417 
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4.3 Results and discussion of the research problem three 

The transformed governing equations (3.317)-(3.319) subject to the constraints 
(3.320) and (3.321) are coupled set of highly non-linear total differential equations. 
The coupled set of equations were numerically solved by utilizing SHAM. To explore 
the contribution of various key parameters such as radiation, Soret-Dufour, 
chemical reaction, heat generation, Casson parameter etc, a rigorous computation 
were carried out numerically. 

Figure 4.26 depicts the contribution of Casson fluid term (β) on the 
concentration, temperature and velocity plots. With a high value of β, it is detected 
in figure 4.26 that rate of transportation is lessens within the thermal layer. A 
slight degeneration in the temperature plot is detected as the value of β is raised. It 
worth noting that an increment in Casson term close to infinity, the fluid acts like a 
Newtonian. Owing to increment in the elasticity stress term, a thick nature of the 
thermal layer is detected. Figure 4.27 explains the contribution of Dufour term (Df) 
on the concentration, velocity and temperature plots. It is detected that a higher 
values of Df elevate the thermal boundary layer, temperature, velocity and 
hydrodynamics layer. A higher values of Df is discovered to be negligible on the 
concentration plot. The diffusion-thermal in the analysis contributes greatly to the 
temperature plot and thermal boundary layer. 

Figure 4.28 explains the contribution of Eckert number on the concentration, 
velocity and temperature plots. The flow term is derived from the viscous 
dissipation term added to the energy equation of motion. It contributes more heat 
energy to the flow due to frictional heating and hence enhanced the flow existing 
in the thermal and hydrodynamics boundary layer. En describe the relationship 
that occurs between the enthalpy and kinetic energy in the flow. A higher values of 
En is observed to be negligible on the concentration plot. The contribution of heat 
generation parameter (H) on the concentration, velocity and temperature is 
illustrated in figure 4.29. Figure 4.29 shows an increment in the fluid temperature 
and velocity because of increment in the values of heat generation term indicating 
that more heat is added to the temperature as the heat generation terms increases. 
An increment in the values of H has no contribution on the concentration plot. This 
is due to the heat added to the nanoliquid concentration in the solutal layer. Figure 
4.30 explains the contribution of the Lewis number (Ln) on the concentration, 
velocity and temperature plots. The Lewis number connotes the division of 
thermal diffusivity to mass diffusivity. Hence, more Lewis numeric is as a result of 
large thermal diffusivity than mass diffusivity. From figure 4.30, the dimensionless 
wall velocity gradually decreases with a higher values of the Lewis number. The 
fluid temperature is observed to upsurge with a higher Lewis number. In addition, 
the concentration plot close to the plate is noticed to increase because of raising 
the values of Lewis number but decreases far from the plate because of the 
nanoparticles in the porous boundary layer region. 

The contribution of magnetic term (M) is illustrated in figure 4.31. In figure 
4.31, an increment in the values of magnetic term gives a damping impact on the 
velocity plot by originating a drag-like force refers to as Lorentz force. The force 
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behaves in the reverse direction and leads to degeneration in the motion of an 
electrically conducting liquid. By raising the value of the magnetic term, the 
momentum layer thickness degenerates while the thermal layer elevate slightly far 
from the plate as depicted in figure 4.31. In addition, an increment in the values of 
M has no contribution on the concentration plot. Figure 4.32 explains the 
contribution of the 

Brownian motion term (Nb) on the concentration, velocity and temperature plots. 
Incremental values of Brownian motion term existing in the hydrodynamic layer 
brings more fast movement of nanoparticles within the surrounding of the porous 
medium. An incremental values of Nb in figure 4.32 is detected to degenerate the 
concentration and velocity plots of the fluid nanoparticles. This is because of the 
random collision of fluid particles leading to fluid velocity degeneration. Obviously, 
figure 4.32 shows that higher values of Nb upsurge the thermal layer and 
temperature slightly owing to the nanofluid permeability. In addition, increment in 
Nb lessens the solutal concentration. Figure 4.33 shows the contribution of 
permeability term (Ps) on the concentration, velocity and temperature plots. An 
increment in the porosity add more holes and passage of nanoparticles within the 
thermal and hydrodynamics boundary layer. An increment in the value of porosity 
term Ps leads to degeneration on the momentum layer thickness and thereby 
lessens the fluid velocity as depicted in figure 4.33. owing to higher porosity term, 
an upsurge in the thickness of thermal boundary layer is noticeable. The 
contribution of Ps is noticed to be negligible on concentration plot. Figure 4.32 
explains the contribution of radiation term (Rp) on the concentration, velocity and 
temperature plots. An incremental value of radiation term gives an increment to 
the fluid temperature plot. Owing to this fact, both thermal and hydrodynamics 
boundary layer elevates. Physically, a higher Rp added heat energy to the entire 
thermal layer. Hence, more temperature is added and the temperature plot hereby 
increases. The temperature plot as illustrated in figure 4.34 elevates at the whole 
thermal layer. An increment in Rp is noticed to lessen the nanoliquid concentration 
plot at the wall. Figure 4.35 shows the contribution of Soret term (So) on the 
temperature, concentration and velocity plots. An incremental values of So is 
detected to upsurge the velocity alongside the momentum boundary layer 
thickness in figure 4.35. In the same vein, incremental values of Soret term 
accelerates the concentration plots close to the plate and neglected at the ambient 
vicinity. The contribution of the Schmidt number (Sc) on the temperature, 
concentration and velocity plots is depicted in figure 4.36. The Schmidt number is 
a dimensionless number which connotes the division of the fluid viscosity to mass 
diffusivity. Therefore, if viscosity is more than mass diffusivity, Schmidt number 
becomes very large within the whole boundary layer. It is detected that higher Sc 
drastically lessens the velocity and concentration plot owing to the nanoliquid 
permeability within the solutal and hydrodynamic layer. A higher values of Sc 
results to an elevation in the solutal boundary layer. The contribution of the 
Grashof number (Oa) on the concentration, temperature and velocity plots is 

shown in figure 4.37. The force of buoyant behaves as favourable pressure 
gradient on the liquid motion and accelerates the nanoliquid existing in the 
boundary layers. This is depicted in figure 4.37 as increment in the Grashof 
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number (Oa) elevates the momentum layer and lessens the mass and thermal layer 
slightly. 

Figure 4.38 shows the contribution of mass Grashof (4b) on the temperature, 
concentration and velocity plots. With increase in the values of 4b, velocity and the 
entire thickness of hydrodynamic accelerates. An incremental values of 4b 

decreases the temperature plot while contribution of 4b was found to be negligible 
on the concentration plot. Figure 4.39 shows the contribution of Prandtl number 
(Pr) on the concentration, temperature and velocity plots. The velocity plot is 
detected to lessens with an incremental values of the Prandtl number (Pr). This is 
true because liquids with much Pr has too much viscosities which lessens the 
liquid velocities and degenerate the coefficient of wall skin friction. In addition, a 
higher numeric vale of Pr leads to degeneration in the liquid temperature and 
thickness of thermal layer. When the value of Pr is small, (Pr < 1) the liquid 
becomes very conducive. A higher value of Pr is detected to elevate liquid 
concentration at the wall. 

From table 4.8, a higher Lewis number elevates the coefficient of skin friction 
alongside Sherwood number whereas it degenerates the Nusselt number. In the 
table 4.8, a higher magnetic term (M) degenerates the three physical quantities of 
engineering interest (that is, Sherwood, Nusselt and coefficient of skin friction). In 
table 4.9, a higher Lewis number accelerates the transportation of heat by 
elevating the Nusselt number and lower the hydrodynamic and solutal layer by 
degenerating the skin friction and Sherwood number. In table 4.9, an incremental 
values of Brownian motion term (Nb) degenerates the coefficient of skin friction, 
Sherwood and Nusselt number. From table 4.9, an incremental values of Schmidt 
number lessens coefficient of wall skin friction alongside the Nusselt number while 
an elevation in Sherwood number is detected. In table 4.9, it is detected that the 
non-Newtonian liquid term (β) accelerates the Sherwood and Nusselt number but 
degenerates the skin friction. The implementation of all the results above are done 
in 
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(c) concentration profile 

Figure 4.26: Effect of Casson parameter on the (a) velocity (b) temperature and 

(c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.27: Effect of Dufour parameter on the (a) velocity (b) temperature and 

(c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.28: Effect of Eckert number on the (a) velocity (b) temperature and ( c ) 

concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.29: Effect of heat generation parameter on the (a) velocity (b) temperature 

and (c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.30: Effect of dimensionless Lewis number on the (a) velocity (b) temperature 
and (c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 

2.0, Φ = 30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 

0.71, Rp = 0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.31: Effect of magnetic parameter on the (a) velocity (b) temperature and 

(c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.32: Effect of Brownian motion parameter on the (a) velocity (b) temperature 
and (c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 

2.0, Φ = 30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 

0.71, Rp = 0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.33: Effect of porosity parameter on the (a) velocity (b) temperature and 

(c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.34: Effect of radiation parameter on the (a) velocity (b) temperature and 

(c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.35: Effect of Soret parameter on the (a) velocity (b) temperature and ( c ) 

concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.36: Effect of Schmidt number on the (a) velocity (b) temperature and 

(c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.37: Effect of thermal Grashof number on the (a) velocity (b) temperature and 
(c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.38: Effect of mass Grashof number on the (a) velocity (b) temperature and 

(c) concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.39: Effect of Prandtl number on the (a) velocity (b) temperature and ( c ) 

concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 

( a ) velocity profile ( b ) temperature profile  
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(c) concentration profile 

Figure 4.40: Effect of suction velocity on the (a) velocity (b) temperature and ( c ) 

concentration profiles when β = Oa = δy = 3.0, 4a = 4b = H = 2.0, Φ = 

30deg, M = En = Nb = Cp = Nt = Ln = τ = 1.0, Po = 0.5, Pr = 0.71, Rp = 

0.6, Df = 2.0, Sc = 0.61, So = 3.0 
Table 4.8: Computational values for skin friction coefficient (Cf), Nusselt number 

(−T 0(0)), and sherwood number (−C0(0)) for different values of Ln and M 

Ln M Cf Nh Sh 

0.0 1.0 1.08233781 0.72334184 1.02490066 

0.5 1.0 1.14285394 0.35872612 1.08228644 

1.0 1.0 1.20739181 0.22940864 1.14323113 

2.0 1.0 1.34923800 0.18349278 1.27658671 

0.1 0.4 1.45926666 0.83996184 1.09810897 

0.1 0.6 1.31269481 0.79692501 1.05550050 

0.1 0.8 1.20198770 0.75406987 1.04802955 

( a ) velocity profile ( b ) temperature profile  
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0.1 1.0 1.06855863 0.72694283 1.00977521 

MATLAB language programming. During the implementation, a higher value of ~ is 
seen to give a spontaneous results. Hence, the maximum value of ~ used in this 
thesis is ~ = 0.1,L = 12 and N = 100. 
Table 4.9: Computational values for skin friction coefficient (Cf), Nusselt number 

(Nu), and sherwood number (−C0(0)) for different values of Ln, Nb, Sc and β 

 Parameters   Present Work   

Ln Nb Sc β Cf Nh Sh 

0.2 1.0 0.61 3.0 0.13265182 0.88477929 0.78652409 

0.4 1.0 0.61 3.00 0.12774386 0.90996351 0.58398366 

0.6 1.0 0.61 3.0 0.12488548 0.93522964 0.38152589 

0.8 1.0 0.61 3.0 0.12289942 0.96147715 0.17200602 

1.0 0.0 0.61 3.0 0.08967359 0.94746978 0.34074944 

1.0 1.0 0.61 3.0 0.12519871 0.92975180 0.42525615 

1.0 2.0 0.61 3.0 0.12488548 0.93522964 0.38152589 

1.0 3.0 0.61 3.0 0.12448055 0.94174484 0.32969808 

1.0 1.0 0.3 3.0 1.04462222 0.78476059 0.67090855 

1.0 1.0 0.6 3.0 0.97607905 0.73329484 0.94697241 

1.0 1.0 0.9 3.0 0.93182279 0.69528927 1.15619714 

1.0 1.0 1.2 3.0 0.89901583 0.66435691 1.33199172 

1.0 1.0 0.61 0.0 0.95154181 0.73022820 0.95324841 

1.0 1.0 0.61 0.2 1.77694769 0.78778324 1.00573400 

1.0 1.0 0.61 0.3 1.57443332 0.88549205 1.09642636 

1.0 1.0 0.61 0.4 1.55314440 0.77899759 1.07697499 

CHAPTER FIVE: SUMMARY, CONCLUSION 

AND RECOMMENDATIONS 

5.1 Summary 

The effort of this study is on mixed convective heat and mass transfer flow of 
nonNewtonian fluids through vertical plate. The study uses similarity variables to 
transform the system of partial differential equations into coupled nonlinear 
ordinary differential equations. All flow parameters such as radiation parameter, 
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heat generation parameter, Soret-Dufour parameter, magnetic parameter, thermal 
and mass Grashof number were discussed using graphs. The effects of both 
constant and variable viscosity and thermal conductivity through a porous 
medium on the non-Newtonian fluids is extensively discussed. This study analyzed 
three problems and solved the three problems numerically. 

The research problem one examined the effects of thermo-physical parameters 
on MHD heat and mass transfer of a viscoelastic fluid past a semi-infinite moving 
vertical plate using SRM. In the analysis, the plate moves towards the y0- direction 
and the term,  was neglected in the continuity equation. The magnetic field 

strength is applied opposite to the semi-infinite moving vertical plate (see figure 
3.1). The problem assumed the magnetic Reynolds number to be small so that the 
induced magnetic field is neglected. The Roseland approximation were used 
because the fluid considered is optically thick. 

The research problem two examined the effects of variable thermal 
conductivity and viscosity on non-Newtonian fluids flow through a vertical porous 
plate under Soret-Dufour influence. The two non-Newtonian fluids consider in the 
study are Casson and Walters’-B viscoelastic fluid. The vertical plate is porous and 
thereby allows the flow of both Casson and Walters’-B liquid (see figure 3.2). The 
magnetic field strength (B0) is applied opposite to the flow of the fluid. At the 
boundary layer, Casson and Walters’-B liquid are mixed together and both have 
the same flow behaviour. It worths mentioning that as the Casson non-Newtonian 
fluid parameter approaches infinity, it behaves like a Newtonian fluid (that is, it 
obeys the Newton’s law of viscosity). Furthermore, the fluid surroundings at the 
free stream is considered to be hot (see figure 3.2). At this environment, flow 
parameters such as radiation, heat generation, Eckert number, heat source/sink, 
Prandt number are very significant within the boundary layer 

The research problem three examined the effects of thermophoresis, Soret-
Dufour on mixed convective flow of MHD non-Newtonian nanofluid over an 
inclined plate embedded in a porous medium (see figure 3.3). A variable viscosity 
and thermal conductivity is considered in the problem. Similarity variables were 
used to reduce the governing partial differential equations into coupled ordinary 
differential equations. 

All the problems solved in this study were found to be useful in many industrial 
applications such as geophysics, drying process and in the design of many 
advanced energy conversion system operating at higher temperature. 

5.2 Conclusion 

This study utilized SRM to solve the coupled third order PDEs that governs the 
thermo-physical contributions on MHD heat and mass transport of a viscoelastic 
liquid past a half-infinte vertical plate. The broad explanation on SRM was 
extensively explored in the previous section. Validation of the present outcomes 
was obtained with published works and was in good correlation. The present 
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outcomes will be useful in understanding problems of complex nature of thermo-
physical effects on MHD viscoelastic liquid past a half-infinite vertical plate. The 
SRM was found accurate and efficient as compared to other numerical techniques 
used in the discussed literature. 

Dynamics of varying viscosity alongside thermal conductivity on a 
characterized Walters-B and Casson liquid (concentrated fruit juice and jelly). In 
figure 3.1, both fluids moves into the three layers from the vertical penetrable 
plate. In the boundary layer, the viscosity as well as thermal conductivity varies as 
the free stream vicinity is considered to be hot. The outcomes in the present study 
deduced that by varying viscosity and thermal conductivity accelerate the 
temperature and velocity plots for a higher Casson term and Walters-B viscoelastic 
term. 

Owing to the hotness at the ambient environment, increment in radiation 
parameter degenerates the velocity existing in the free stream vicinity. As depicted 
in figure 3.1, the imposed magnetism strength (B0) originate Lorentz force which 
causes opposition to the direction of flow and thereby degenerates the fluid 
velocity. A higher permeability term allows the entrance of more Casson and 
Walters-B liquid flow. The intensity of fluid flow increases the moment the 
permeability term is raised. Owing to this, more heat is generated at the boundary 
layer because of heat at the free stream which keeps increasing because of the 
hotness. 

The outcomes of this research can be found significant in bioengineering, food 
processing and drilling operations. The practical usefulness are mainly in cooling 
system, oil-pipeline friction reduction and surfactant applications converted to 
large-scale heating. It is also found significant in the application of higher-polymer 
additives to enhance motion in petroleum pipe-lines that are useful for commercial 
purposes. Soret-Dufour contributions on the liquid flow is significant and hereby 
finds application in engineering such as separation of isotope. The present 
exploration acts a predominant role in the field of science and technology. The 
examples of Walters-B liquid considered in this research are industrial polymers 
namely ceramic processing liquid, chromatography liquid and polymethly 
methacrylate. These type of fluid are mainly used in bio-medical applications, 
communication, hardware appliances and agricultural activities. Also, jelly and 
concentrated fruit juice are the type of Casson fluid considered in this research. 
Hence, the present outcomes is of great interest in polymer engineering, 
manufacturing of ceramics, polymer production, particle deposition onto wafers in 
the microelectronics industry, metallurgy, magnetically controlled metal welding, 
magnetically monitored coating of metals. 

From our numerical computations, we deduced the following: 
• When Dufour parameter is increased, the velocity profile as well as the temperature 

profiles increases. 

• Increasing the Soret parameter increases both the velocity and concentration 
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profiles. 

• It is found out that the Soret term alters the concentration profile while Dufour term 
alters the temperature profile. 

• It is found out that as the viscoelastic parameter increases, the velocity profile close 
to the plate decreases while far away from the plate, it increases slightly. 

• The thermal Grashof number increases the hydrodynamic boundary layer thickness 
when it is increased. 

5.3 Contribution to knowledge 

This study explains the concept of non-Newtonian fluid flow with both constant 
and variable viscosity and thermal conductivity on mixed convective heat and 
mass transfer through a vertical plate which will guide scientists and 
experimentalists on the physics of pertinent flow parameters such as thermal 
Grashof number, permeability parameter, radiation parameter, heat generation 
parameter, Eckert number, Soret parameter, Dufour parameter, Casson and 
viscoelastic non-Newtonian parameter in food processing, drilling operations and 
bioengineering. The outcome of study will be useful in high-polymer additives to 
enhance flow in pipe-lines which is very useful for commercial purposes. The 
numerical methods used in this study is a useful tools for scientists and engineers 
in solving highly nonlinear differential equations. 

5.4 Recommendations 

Real life problems in sciences and engineering generally involve nonlinear 
differential equations. Also, problems on non-Newtonian fluids are generally 
complex due to their constitutive equations. The momentum boundary layer 
becomes coupled and highly nonlinear. SRM and SHAM are very good solution 
technique in solving governing equations of high complexity and nonlinearity. The 
methods of solution in this study is hereby recommended for the solutions of non-
Newtonian fluids. Also, the results of this study is recommended for use in polymer 
industry for a perfect flow of fluid parameters such as heat generation parameter, 
radiation parameter, Eckert number, variable viscosity and thermal conductivity. 
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5.5 Suggestions for further studies 

The study of MHD heat and mass transfer non-Newtonian fluids flow is of practical 
importance in real life situations. Thus, the following are suggestions for further 

studies: 

(i) Analyzing the problem of MHD heat and mass transfer non-Newtonian fluids 
through a stretching sheet. 

(ii) Examining the problem of MHD heat and mass transfer non-Newtonian fluids 
through porous media flow in fuel cells. 

(iii) Chaotic mixing in air filtration devices. 

(iv) The use of spectral methods in solving more complex non-Newtonian fluids. (v) 
Examining a Newtonian model by setting the Casson and Walters’-B viscoelastic parameter 
to be zero. 
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