
Reduction of Computational Time for Cooperative Sensing Using Reinforcement Learning 
Algorithm 

S.A. Olatunji1, T.O. Fajemilehin2 and J.F. Opadiji1 
1Department of Computer Engineering 

2Department of Electrical and Electronics Engineering, 
University of Ilorin, Ilorin, Nigeria 

olatunji.sa@unilorin.edu.ng, fajemilehin.to@unilorin.edu.ng,jopadiji@unilorin.edu.ng 

Abstract 

Cooperative spectrum sensing in cognitive radio systems is characterized by high computational 
time for decision making due to the fusing of individual decisions of cognitive radios involved in 
the cooperative scheme. This increases the communication overhead of the network. In this 
paper, an adaptive cooperative spectrum sensing algorithm is developed with improved detection 
algorithm. Reinforcement learning is thenincorporated to improve the decision making efficiency 
of the cooperative spectrum sensing such that less time is required to make a decision at the 
fusion centre. Three temporal difference learning techniques were compared in order to select the 
most efficient to reduce sensing and decision delays. Appropriate learning rate was utilized in the 
sensing and decision making algorithm to enhance the performance ofthe adaptive cooperative 
spectrum sensing. Results reveal significant reduction in the computation time required in 
cooperative spectrum sensing and decisions. This permits greater efficiency in dynamic spectrum 
management as the limited electromagnetic spectrum is being utilized for telecommunication 
services.   

Keywords: Cognitive Radio, Cooperative Spectrum Sensing, reinforcement learning, 
computational time. 

1. INTRODUCTION 

Traditional wireless networks use fixed spectrum allocation policies for licensed users. Recent 
studies on the measurement of the spectrum show that by the conventional spectrum allocation 
policy, the average utilization of the spectrum is low [1]. Therefore, the real problem is not the 
spectrum scarcity but the inefficient spectrum usage. This inefficiency results from static 
spectrum allocations which cannot support the recent advancement and growth in wireless 
devices and services. This inevitable increase has therefore limited the suitability of FCA in 
managing the available useable radio spectrum effectively and efficiently. In addition to this, the 
world is advancing towards an era where usersrequire dynamic spectrum usage for optimized 
connectivity and capacity [2]. 

For this purpose, cognitive radio is proposed to efficiently harness spectrum opportunities 
leading to effective spectrum usage while improving the quality and efficiency of newer 
applications and services. Cognitive radio is a software defined radio that can autonomously 
modify the spectrum usage after sensing its operating environment to satisfy user and network 
demands [3]. It therefore provides the opportunity for frequency re-use and a more efficient 
technology to allocate channels and bandwidth for reliable communication [4]. The attention in 
this paper is focused on spectrum sensing function of cognitive radio which is the process of 



detecting unused frequency bands and allocating them intelligently and autonomously without 
interference to needing users. 

Energy Detection among all other spectrum sensing techniques despite its shortcomings under 
low SNR has been observed through research to possess the lowest computational and 
implementation costs which usually makes it the preferred technique. The cooperative sensing 
technique was developed to improve on the single user detection techniques which includesthose 
utilizing energy detection algorithm.Cooperative sensing helps to overcome the severe 
challenges faced by cognitive radios such as multipath fading and shadowing. However, there is 
increased delay incurred through the processing of the information received from the cognitive 
radios that make up the cooperative spectrum sensing scheme. This rise in time consumption is a 
major drawback for the cooperative sensing technique. 

Several research efforts had been channelled to tackle this challenge as seen in [2], [5]–[7], but 
these were implemented using the conventional cognitive radios which perform poorly in low 
SNR conditions. Research efforts made to improve the sensing accuracy imposed further 
computational demands on the system and ultimately increases the overhead in terms of 
processing capacity, speed and memory demands [7]. The proposed method in this study uses an 
improved sensing algorithm. It possesses an adaptive mechanism that places very minimal 
computational demands on the system while increasing the sensing accuracy of the cooperative 
cognitive radios and minimizing the communication delay using reinforcement learning (RL). 
This defines its unique contribution to cognitive radio research. 

The aim of this research, therefore, is to reduce the time consumed during cooperative spectrum 
sensing through the development of an adaptive cooperative spectrum scheme and the 
introduction of reinforcement learning algorithm. This aim is intended to be achieved while 
maintaining accurate spectrum sensing. It begins with the development of an adaptive 
cooperative spectrum scheme which utilizes improved energy detection sensing algorithm. Then 
various temporal difference learning techniques were compared to ascertain the most applicable 
to reduce the delay. Consideration of different learning rates was also done to determine the most 
suitable. The most applicable RL technique along with the most appropriate learning rate were 
then applied to the adaptive cooperative spectrum sensing algorithm initially developed. 

The scope of the work is limited to cooperative spectrum sensing algorithm of cognitive radio 
systems. It is particularly focused on the reduction of time consumed during the processing of the 
multiple data received from the cognitive radios in the cooperative spectrum sensing process.  

The rest of the paper continues with a summary of the recent researches conducted to implement 
reinforcement learning in cognitive radio systems. Details on the development of the adaptive 
sensing algorithm with improved sensing will be described in the methodology along with the 
reinforcement learning implementation. Simulation conducted and results are then presented, 
followed by discussions, conclusion and suggestions for future work.  

2. RELATED WORKS 

In the quest to improve the detection quality of energy detectors in cognitive radio systems, 
[8]proposed and evaluated an improved version of the energy detection algorithm.It 
outperformed the classical energy detection scheme while preserving a similar level of algorithm 



complexity and computational cost. This reduced the time involved in detection compared to 
other more sophisticated methods of sensing as well as the sensitivity of the cognitive radios. 

Another form of improvement was made for energy detection spectrum sensing by [9]. An 
optimum power operation was chosen to replace the squaring operation in the classical energy 
detector. This provided useful guidance on techniques to improve the performance of energy 
detectors in cognitive radio spectrum sensing. [10] further studied and tested various spectrum 
sensing schemes which included the adaptive threshold energy detector. The results were 
evaluated using several performance metrics and hardware requirements to confirm the 
theoretical basis of these techniques. This provided a solid foundation for the improvements in 
the area of sensitivity improvements and adaptation of the sensing algorithms. 

A similar but improved energy detector was developed for wideband spectrum sensing in 
cognitive radio networks [11] with the aim of determining the detection thresholds for non-
overlapping sub-bands. This improved spectrum sensing and opportunistic access for secondary 
users. It was developed specifically for wideband spectrum sensing and the focus was on 
accurate detection.[12] proposed an augmented spectrum sensing algorithm where the energy 
detector’s detection is augmented by cyclostationary detection. This, however requires some 
information about the primary users’ transmission characteristics which is not always available. 

[13] had earlier discovered a means to improve the performance of the schemes employed for 
sensing using multiple antenna techniques. Several combining techniques for the cognitive radio 
users in cooperative spectrum sensing were considered while utilizing different modulation 
schemes to arrive at the Equal Gain Combining (EGC) which gave the highest gain. This paved 
the way formore efficient cooperative sensing regarding report combining techniques that would 
aid performance. [14] also proposed a scheme to improve the utilization of idle spectrum while 
ensuring fairness in channel selection. Even though, this work did not focus on reduction of time 
spent in sensing, it is worth noting as one of the researches in cognitive radio sensing that solved 
the problem of collision among cognitive radios. 

The improved energy detection technique proposed by [8] was further used by [15]but enhanced 
with a p-norm energy detector to improve the sensing algorithm of individual cognitive radios 
used in cooperative spectrum sensing. This resulted in improved performance gain in fading 
channels when carrying out cooperative spectrum sensing.  The focus was on sensing accuracy 
and learning was not included in the algorithm. 

Distributed algorithms for learning was applied in cognitive radio systems by [16] while [17] 
applied a combinatorial multi-armed bandit formulation as a learning multiuser channel 
allocation technique. Both applied some form of learning in channel allocation and management, 
which aided better spectrum access and management but did not specifically address spectrum 
sensing time. The research to incorporate reinforcement learning algorithm in cognitive radio 
systems was initially carried out by [7]. They examined the use of Q-learning as a fast means of 
allocating channels in a wireless network. [5] further expanded the work by comparing several 
temporal-difference learning methods to minimize the cooperation overhead and improve 
detection performance.This work utilized the conventional spectrum sensing approach where 
learning is incorporated. More recently, [2] proposed a two-stage reinforcement learning 
approach to improve the performance of the cooperative sensing. The method helped minimize 
the number of sensing operations and reduced the energy required for sensing. These papers [2], 
[5], [7] utilized RL to improve the channel sensing and allocation, which demands computational 



resources and learning time. This paper focuses on reducing the learning and sensing time by 
resolving the challenge of accurate sensing particularly during instantaneous signal property 
changes before incorporating learning.Thisimproves the quality of the data utilized for learning 
while ensuring minimal sensing time. This is done by incorporating an adaptive system of 
sensing even in low signal to noise ratio conditions which the RL algorithm can learn to utilize in 
varying channel conditions. 

3. SYSTEM MODEL 

The radio spectrum can be modelled in the form of communication channels with occupancy 
status. A channel will be considered available for transmission if no communication agent is 
transmitting on that channel at that point in time. The channel will be considered unavailable if 
there is ongoing transmission on it. The communication agent could be a licensed user (Primary 
User - PU) or could be an unlicensed user (Secondary User - SU) seeking opportunistic use of 
the channel when available.Spectrum sensing aims to detect these occupancy states and in order 
for the right decision to be taken. The hypothesis testing problem then arises as: 

H0 : ŷ[𝑧] =  ň[𝑧]  z = 0, 1, . . . , Z – 1     (1) 

H1 : ŷ[𝑧] =  ŝ[𝑧] +  ň[𝑧] z = 0, 1, . . . , Z − 1     (2) 

where 
ŷ[𝑧]= sample to be analyzed at each instant z,  
ň[𝑧] = noise (not necessarily white Gaussian noise) of variance σ2,   
ŝ[𝑧] = is the signal the network wants to detect 
H0     = noise-only hypothesis 
H1    =  signal plus noise hypothesis 
z       =  the number of samples collected during the signal observation interval   
 
An energy detector is proposed as the cognitive radio sensing system due to its low 
computational complexity and operational demands which lowers the overall communication 
overhead. It simply measures the energy on a particular channel on a narrowband portion of the 
spectrum and compares it to a pre-set threshold to determine the presence of the primary user in 
the channel [4]. This is premised on the assumption that the energy of a signal is usually higher 
than background noise. It usually does not require prior knowledge of the primary user’s 
transmission characteristics to detect which makes it less computationally demanding compared 
to other methods. If the measured energy exceeds the threshold set, the channel is declared busy 
which means that the primary user is occupying the channel at that instance. Energy measured 
which falls below the threshold indicates a spectrum opportunity for a secondary user to harness. 
The normalized test (decision) statistic for this detector is formulated similar to [18]as: 
 
 

𝑇 = ∫ 𝑦 (𝑡)𝑑𝑡    (3) 

Where:  
𝑇 = test statistic in during sensing session  
𝑦= received signal input 
𝑇= sampling instant 



𝑁  = two-sided noise power density spectrum 
 
H1hypothesis results if the test statistics exceeds a fixed decision threshold while H0hypothesis occurs 
when the test statistics is less than the decision threshold. This is the conventional sensing algorithm of 
energy detectors which would be referred to in this paper as the Conventional Energy Detection (CED). It 
is the modelused in conventional cooperative sensing schemes. The improved cooperative sensing 
algorithm, which has an adaptive mechanism is developed to enhance the detection sensitivity of the 
multiple sensors. 
 
Modelling the Adaptive Sensing Algorithm using Improved Energy Detection. 

The Improved Energy Detection (IED) proposed in [8], is developed as an improvement over the CED. 
The rationale for this improvement is to forestall the misdetections which could occur due to 
instantaneous deviation in the power received fromaPrimary or secondary user transmitting on a 
channel.The CED algorithmmayraise false alarms and may also cause interferences if it gives a wrong 
sensing report due to such instantaneous deviations which are not uncommon with energy detectors. The 
improved scheme is proposed to manage such errors. This is doneby computing two additional checks if 
the test statistics indicates a value less than the threshold value. The first check, presented in (4) and 
(5)begins with computing the average signal energy over a certain period of time indicated as p during the 
ith sensing interval: 

𝑇 (𝑇 ) =  ∑ 𝑇 (𝑥 )    (4) 

𝑇 = (𝑇 (𝑥 ), (𝑇 (𝑥 ), … , (𝑇 (𝑥 , ), 𝑇 (𝑥 ))    (5) 

where  

Ti
avg(Ti) =  average test statistic in the i-th sensing event  

Ti =  test statistic vector  
P =  number of previous sensing events. 
 
The firstcheck is to examine if 𝑇 (𝑇 ) > 𝜆 to determine if the PU is using the channel or not duringa 
series of pastsensing sessions. Thesecond check to ensure accurate detection is tocheck the immediate 
past sensing session Ti-1(xi-1) to determinethe duration for which the channel has been vacant. This check, 
Ti-1(xi-1)> 𝜆, is to confirm the viability of the channel for allocation and is referred to as an Improved 
Energy Detection (IED) technique.𝜆 is the decision threshold which in the number of samples 𝑁 ≫ 1, can 
be expressed as a Gaussian distribution as proposed in [8]: 

𝜆 = (𝑃 + 1)        (6) 

where: 

𝑃 = 𝑄      (7) 

𝑃 = 𝑄
( )

( )
     (8) 



𝛾 =       (9) 

𝜎  is the received average primary signal power and 𝜎  is the noise variance.  

𝑇 (𝑇 )is normally distributed as an average of independent and identically distributed Gaussian random 
variables. It can be expressed as [15]: 

𝑇 (𝑇 )~𝑁 𝜇 , 𝜎      (10) 

𝜇 = (1 + 𝛾) +       (11) 

𝜎 = (1 + 𝛾) +      (12) 

The probability of detection, probability of false alarm and threshold for the IED can therefore be 
modified as[8]: 

𝑃 = 𝑃 + 𝑃 1 − 𝑃 𝑄     (13) 

𝑃 = 𝑃 + 𝑃 1 − 𝑃 𝑄     (14) 

𝜆 =  𝑄 𝑃 , √2𝑁 + 𝑁 𝜎      (15) 

 

Adaptive Cooperative Spectrum Sensing using IED algorithm 

The sensitivity of the individual cognitive radios is first enhanced using the IED algorithm described 
previously. This makes the cooperating sensing different from the conventional methods. It ensures 
accurate detection at the individual CR units before being organized into a cooperative network.Each CR 
user orthogonally sends its report to the fusion center which adaptively uses OR fusion rule (hard fusion 
rule) when the SNR status of the channel is reliable and equal gain combining (soft fusion rule) when the 
SNR status is unreliable. The rationale for this is to ensure that onlyvery minimal cognitive radios are 
involved in the sensing when the SNR is reliable. These cognitive radios use the IED algorithm which is 
sensitive enough to detect accurately while the OR fusion technique further helps to prevent interference. 
Research in energy detection based sensing reveals that energy detectors perform reliably when the SNR 
status of the channel is good. When OR fusion rule is used, the IED threshold is utilized as follows when 
there are m cooperative cognitive radios: 

𝜆 , = 𝑄 1 − 1 − 𝑃 + 1     (16) 

While the probability of detection becomes: 

𝑃 , = 1 − 1 − 𝑄 ,

( )
    (17) 



The aim of the adaptive scheme is to ensure that reliable detection is carried out at every session with 
minimal cognitive radios which would minimize the time required to collate sensing reports and take 
spectrum allocation decision. Reinforcement learning is then applied to the adaptive cooperative sensing 
algorithm to further reduce time consumed during cooperative sensing.  

Reinforcement Learning Model for Cooperative Sensing 

Reinforcement Learning (RL) is a type of machine learning technique that is usually utilized in systems 
that need to make decisions in unpredictable environments such as the spectrum sensing environment. RL 
is particularly included in this research work to minimize the processing time which is the time it takes for 
each of the cognitive radios to report to the fusion center. This cost (processing time) is particularly high 
due to the sensitivity enhancement and adaptation to SNR that had been initially done. The additional 
verification carried out by each of the cognitive radios consumes a lot time thereby increasing the 
processing time before decision is made. Since some spectrum opportunities are just short-lived, a fast 
detecting system is therefore required which would process the multiple reports speedily and exploit 
spectrum holes maximally. This is what inspired the inclusion of reinforcement learning in this work to 
cut down on the delay involved. 

In this research, the fusion center acts as the learning agent which takes the speed of reports from each of 
the cognitive radios as input and learns over time the category of cognitive users which carry out speedy 
and accurate sensing in specific parts of the spectrum. It then categorizes each of the cognitive radios and 
labels each one in line with the aspect of the spectrum where it senses best since each of the cognitive 
radios are located differently. This therefore implies a virtual categorization different spectrum sections to 
reveal the cognitive radios performing optimally in specific portions of the radio environment [13] and 
also to learn optimal spectrum sensing decisions. 

Reinforcement Learning Model in the Adaptive Cooperative Sensing 

The model used is premised on Markov Decision Process (MDP) where the learning agent takes actions at 
each given state and improves its next action at the next state based on the reward obtained from the 
present state. A simplified form of the RL model in spectrum sensing is presented in Figure 1. 

 

 

 

 

 

 

 

Figure 1: Reinforcement Learning Model in Spectrum sensing 

Reinforcement learning was used for the cooperative spectrum sensing in [2], [5], [7], [14]. However, the 
conventional cooperative spectrum sensing technique was used. This paper differs from the cited papers 
due to the incorporation of reinforcement learning technique in an adaptive cooperative sensing scheme. 
In this scheme, each of the cognitive radios are embedded with the IED algorithm. This therefore 
improves the overall efficiency of the system. 
 



Components of the RL model  
Temporal difference prediction techniques are explored in this paper for the RL which consists of pairs of 
states and actions. The aim is to estimate the function that can represent the behavior policy of the 
cognitive radios during sensing. A representative series of state-action pairs and the rewards are presented 
in Figure 2. 
 

 
 

Figure 2: Representative model of state-action pairs with accompanying reward 
 
The components of the RL model as are follows [19]: 

State: this refers to the condition of a channel at every point in time. It would be denoted with 

𝑠 ∈ 𝑆 = {1,2, … , 𝑚}     (18) 

where 𝑚 represents the total number of channels available for transmission. 
The value of the state of SUi may be represented as: 

𝑠 , ∈  0 ≤ 𝑝 , ≤ 1     (19) 

This denotes the probability that the channel is idle PU is absent. A channel state could deteriorate by a 
value 𝛿 = 0.01 if it has not been sensed recently. At each time stamp, each channel status should be 
updated as follows:  

𝑠 , = 𝑠 , − 𝛿     (20) 
 
Action: this represents every step 𝑎  taken out of a possible set of actions Ain each state. 

𝑎 ∈ 𝐴 = {1,2, … , 𝑚}     (21) 

The actions that can be taken are: transmit, idle, sleep and sense 
 
Delayed Reward: cost values received at time 𝑡 + 1for each action taken at time 𝑡 

𝑟 𝑎 ∈ 𝑅 = {1, −1}    (22) 

Every successful transmission gets 1 while unsuccessful transmission gets a cost of -1. 
 
Discounted Reward: This is a function of the discount factor 𝛾which reflects the reliance of the cognitive 
radio agent on the discounted future reward compared to the delayed reward. It is the representation of Q-
values to determine future rewards. A Q-function can be presented as follows: 

𝑄 𝑎 ← (1 − 𝛼)𝑄 𝑎 + 𝛼. 𝑟 𝑎    (23) 

The Q-function is used to update the Q-values in the network. It is a function of a state-action pair value 
computation 𝑓 𝑠 , 𝑎 . Higher values of the function 𝑓 𝑠 , 𝑎  indicates desirable actions 𝑎  of the 



cognitive radio at specific state 𝑠 . Lower values of the function indicate the converse. Learning the right 
values occurs as a product of the linear function 𝑓 𝑠 , 𝑎  and matching values 𝜃 𝑠 , 𝑎 :  
 

𝑄 𝑠 , 𝑎 = 𝜃 𝑠 , 𝑎  . 𝑓 𝑠 , 𝑎     (24) 
 
The values of the state-action matching pair 𝜃 𝑠 , 𝑎  is updated as: 
 

𝜃 𝑠 , 𝑎 = 𝜃 𝑠 , 𝑎 + 𝛼 𝑟 𝑠 + 𝛾 . 𝑄 𝑠 , 𝑎 − 𝑄 𝑠 , 𝑎  . 𝑓 𝑠 , 𝑎  (25) 
 
 
Algorithm Description of Proposed Approach 
This is the proposed procedure ofincorporating reinforcement learning process in the adaptive cooperative 
sensing.Action is taken at the fusion center. This action is to request for local sensing decisions from the 
cooperating secondary users. The approach for action selection is based on Boltzmann distribution for 
action selection which aids the utilization of all sensing information present. This approach has also been 
explored alongside other action selection strategies and has been proved efficient [20]. This action 
selection approach is a softmax approach which chooses an action 𝑎  in state 𝑠 based on weighted 
probabilities. It is presented as: 
 

    𝑝(𝑠 , 𝑎 = 𝑖) =
( , )/

∑
( , )/      (26) 

where 

𝑖 = 1, … … , 𝑁  

(𝑠n, 𝑎n= 𝑖) =  state-action value function that evaluates the quality of choosing action 𝑎n= 𝑖in state 𝑠n,  

𝑁𝑎=   number of actions, |A| 

𝜏 = temperaturewhich is a time varying parameter that affects the trade-off between 
exploration and exploitation.  

The assumption made in Boltzmann action selection strategy is that the softmax over the output of the 
network is a measure of the learning agent’s reliance on each action. Actions are selected based on the 
relativevalue of the sensing information. Actions that are therefore suboptimal are not considered. As 
more sensing sessions occur, the temperature parameter is reduced, intentionally to enable more 
exploitation of the spectrum holes already explored. The linear function to achieve this as used by [5] in is 
given as:  

𝜏𝑛= −(𝜏0− 𝜏𝑁)(𝑛/𝑁+ 𝜏0)     (27) 

where  

𝑁= total number of episodes,  

𝜏0 = initial value of temperature 

𝜏𝑁= last value of the temperature. 

The decisions sent back by each of the cooperating CR users are utilized to obtain the optimal decisions 
and to calculate the response of the action take as a function of time. The fusion point now selects an 
optimal set of cooperating users based on the speed of their response while sensing in specific areas and 



attaches location tags such that the optimal group can be used in subsequent events that requires sensing 
in such areas. The cumulative reward is a function of the cumulative delay which is the fraction of time it 
takes each state to give its full report. This is presented given as [5]: 
 

𝐶 =  
∑ ,  ( , )

∑ ( , )
     (28) 

 

where 

𝐶 = delay cost factor 

𝑡 = delay in report. 

The cumulative delay can be modelled into a cost function which would be minimized as follows: 

𝐶 , =  
Aa 

min  (𝐶 , (𝑠 , 𝑎 ))     (29) 

This constitutes the reward obtained for each action taken in each state. The aim is to maximize this 
reward by taking actions that give sensing report in a reduced time span. The goal is learning a policy that 
would achieve this aim. 

 This is achieved through the learning of the policy presented as: 

𝑊 ∗ = 𝐸 𝐶 ,
∗ (𝑠 , 𝑎 )       (30) 

 where  

𝑊 ∗= Optimal policy to maximize the cumulative reward after all sensing episodes 

𝐶 ,
∗ = cumulative rewardof the optimal cooperating CR users. 

Three major temporal difference techniques are considered: Q-learning, Sarsa and Actor-Critic [19]. 
Utilizing decision epochs 𝑡 ∈ 𝑇 = {1,2, … , 𝑛}, the knowledge gained by a cognitive radio 𝑖 based on 
sensing operations related to action 𝑎   in state 𝑠  at time 𝑡 represented by Q-function is derived as 
follows: 
 

𝑄 𝑠 , 𝑎 ← (1 − 𝛼)𝑄 + 𝛼 𝑟 𝑠 + 𝛾
Aa

max 𝑄 𝑠 , 𝑎   (31) 

where 

𝛾
Aa

max 𝑄 𝑠 , 𝑎  represents the discounted future reward 

 
𝛼 is the learning rate which could be between 0 and 1. 
 
The algorithms the temporal difference learning as well as the overall proposed approach is presented as 
follows: 
 
 
 
 
 



Algorithm 1: Q-learning 
1: Initialize Q(s,a) = 0 ∀(𝒔, 𝒂) ∈ 𝑺 × 𝑨 
2: for each episode t, do 
3:          choose action 𝒂in state 𝒔 using policy based on Q-values in that state 

4:                           𝒂 =
Aa

maxarg 𝑸𝒕
𝒊 𝒔𝒕 𝟏

𝒊 , 𝒂𝒕 𝟏
𝒊  

 
5:          Take action 𝒂, receive accompanying reward 𝒓, proceed to next state 𝒔𝒕 𝟏

𝒊  
6:          Update Q-value for action 𝒂at state 𝒔 

7:          𝑸𝒕 𝟏
𝒊 𝒔𝒕

𝒊 , 𝒂𝒕
𝒊 ← (𝟏 − 𝜶)𝑸𝒕

𝒊 + 𝜶 𝒓𝒕 𝟏
𝒊 𝒔𝒕 𝟏

𝒊 + 𝜸
Aa

max 𝑸𝒕
𝒊 𝒔𝒕 𝟏

𝒊 , 𝒂𝒕 𝟏
𝒊  

8: 𝒔𝒕
𝒊  ←  𝒔𝒕 𝟏

𝒊  
9: until end of the states 
 
 
Algorithm 2: Sarsa 
1: Initialize Q(s,a) = 0 ∀(𝒔, 𝒂) ∈ 𝑺 × 𝑨 
2: for each episode t, do 
3:          choose action 𝒂in state 𝒔 using policy based on Q-values in that state 

4:                           𝒂 =
Aa

maxarg 𝑸𝒕
𝒊 𝒔𝒕 𝟏

𝒊 , 𝒂𝒕 𝟏
𝒊  

 
5:          Take action 𝒂, receive accompanying reward 𝒓, proceed to next state 𝒔𝒕 𝟏

𝒊  
6:          Update Q-value for action 𝒂at state 𝒔 

7:          𝑸𝒕 𝟏
𝒊 𝒔𝒕

𝒊 , 𝒂𝒕
𝒊 ← 𝑸𝒕 𝟏

𝒊 𝒔𝒕
𝒊 , 𝒂𝒕

𝒊 + 𝜶 𝒓𝒕 𝟏
𝒊 𝒔𝒕 𝟏

𝒊 + 𝜸
Aa

max 𝑸𝒕
𝒊 𝒔𝒕 𝟏

𝒊 , 𝒂𝒕 𝟏
𝒊 − 𝑸𝒕 𝟏

𝒊 𝒔𝒕
𝒊 , 𝒂𝒕

𝒊  

8: 𝒔𝒕
𝒊  ←  𝒔𝒕 𝟏

𝒊 ; 𝒂𝒕
𝒊  ←  𝒂𝒕 𝟏

𝒊  
9: until end of the states 
 
 
 
Algorithm 3: Actor-Critic 
1: Initialize Q(s,a) = 0 ∀(𝒔, 𝒂) ∈ 𝑺 × 𝑨 
2: for each episode t, do 
3:          choose action 𝒂in state 𝒔 using policy based on Q-values in that state 

4:                           𝒂 =
Aa

maxarg 𝑸𝒕
𝒊 𝒔𝒕 𝟏

𝒊 , 𝒂𝒕 𝟏
𝒊  

5:          Take action 𝒂, receive accompanying reward 𝒓, proceed to next state 𝒔𝒕 𝟏
𝒊  

6:          Update critic parameters 

7:                𝜴𝒕 𝟏 ← 𝜴𝒕 + 𝜶 𝒓𝒕 𝟏
𝒊 𝒔𝒕 𝟏

𝒊 − 𝝆 + 𝜸
Aa

max 𝑸𝒕
𝒊 𝒔𝒕 𝟏

𝒊 , 𝒂𝒕 𝟏
𝒊 ; 𝜴𝒕 − 𝑸𝒕 𝟏

𝒊 𝒔𝒕
𝒊 , 𝒂𝒕

𝒊; 𝜴𝒕 𝒆𝒕 

8:          Update average reward estimate 
9:          𝝆𝒕 𝟏 = 𝝆𝒕 +  𝜶𝒕(𝒓𝒕 𝟏

𝒊 − 𝝆𝒕) 
10:          Update actor parameters 
11:              𝜣𝒕 𝟏 = 𝜣𝒕 + 𝜷𝒕𝚪(𝜴𝒕)𝑸𝒕

𝒊 𝒔𝒕 𝟏
𝒊 , 𝒂𝒕 𝟏

𝒊 ; 𝜴𝒕  
12:          where 𝜷𝒕 is positive step size parameter and 𝚪(𝜴𝒕) is a normalization factor 
13: 𝒔𝒕

𝒊  ←  𝒔𝒕 𝟏
𝒊 ; 𝒂𝒕

𝒊  ←  𝒂𝒕 𝟏
𝒊  

14: until end of the states 
 



 
Algorithm 4: Algorithm of the Proposed Approach 
1: Initialize 𝜶, 𝜷, 𝝀, 𝑷 ∈ N, 𝒕, 𝒊 = 𝟎, 𝒎 = 𝟏𝟎, Q(s,a) = 0 ∀(𝒔, 𝒂) ∈ 𝑺 × 𝑨 
2: for each episode t, do 
3:          𝐭 ← 𝐭 + 𝟏 
4:          𝑻 (𝒚𝒊) ← test statistics of channel 
5.          compute 𝑻𝒊

𝒂𝒗𝒈
(𝑻𝒊) =  

𝟏

𝑷
∑ 𝑻𝒊 𝑷 𝒍(𝒙𝒊 𝑷 𝒍)𝑷

𝒍 𝟏  

6.compute 𝝀𝑰𝑬𝑫 =  𝑸 𝟏 𝑷𝒇𝒂,𝒕𝒂𝒓𝒈𝒆𝒕
𝑰𝑬𝑫 √𝟐𝑵 + 𝑵 𝝈𝒘

𝟐  
7.          if SNR>reliable thresholdthen 
8. 𝝀𝑰𝑬𝑫 ← 𝝀𝑰𝑬𝑫,𝑶𝑹 
9.          else 
10. 𝝀𝑰𝑬𝑫 ← 𝝀𝑰𝑬𝑫,𝑬𝑮𝑪 
11.          end if 
12:          IED sensing report 𝑹𝒊 ∈ {𝑯𝟏, 𝑯𝟎} 
13:          select TD technique 
14:          choose action 𝒂in state 𝒔 using policy based on Q-values in that state 

15:                           𝒂 =
Aa

maxarg 𝑸𝒕
𝒊 𝒔𝒕 𝟏

𝒊 , 𝒂𝒕 𝟏
𝒊  

16:          Take action 𝒂, receive accompanying reward 𝒓, proceed to next state 𝒔𝒕 𝟏
𝒊  

17:          Update learning parameters𝜶, 𝝉𝒏, 𝜸, and policy 𝑾𝝅∗based on TD technique selected 
14: until end of the states 
 
 

4. SIMULATION AND RESULTS 

Simulation Setup 

The cooperative spectrum sensing technique using RL will utilize the IED –based adaptive cooperative 
spectrum sensing technique described earlier in the paper.The network configuration consisting of PUs 
and SUs is presented in  

 
 

 
 

Figure 3. There 10 CRs which are 
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Figure 3: Network configuration 
 
Simulation parameters 
Parameter Value 
Discount Factor 0.8 
Actions  2 
Simulation replications 30 
Iterations for learning 
SNR variation 
Pf 
No. of agents 
Operating Frequency of PU 
Observation time  
Variance of the noise (σ2n)  
Variance of the received signal (σ2s)  
 

106 

-15dB – 15dB 
0.05 
10 
1 x 109Hz  
1 x 10-4 

1 x 10-12 

(σ2nx 10-1)2 

 
 
The number of cooperating CR users denoted nis selected from the total number of agents (m). The 
learning agent therefore can select a course of action in cooperation with other CR users from the states: 

𝑠 ∈ S, 0 ≤n≤ m + 1        (32) 
where 
sn= number of states 
n = number of cooperating CR users 

The action and response of the starting and ending states are already predetermined as ‘Begin’ and ‘Stop’, 
respectively. The actual learning process therefore is within the other states where the actions are not 
predetermined but depends on the rewards obtained from previous actions. This invariably means the 
action can change and the sum total of all the actions and rewards in the cooperative sensing period forms 
the learning experience. MATLAB software was used as the is simulation tool. The IED algorithm, 
adaptation and RL incorporation was coded on the editor page of MATLAB software due easier 
implementation of the functions involved in the proposed algorithm. 

Simulations were carried out using the aforementioned parameters to explore the performance of the 
energy detection –based sensing in various SNRs. This is to determine a reliable SNR threshold where the 
limited number of CRs can be utilized for sensing and reliable sensing results can still be obtained. The 
result of the performance of the improved energy detection algorithm across several SNRs is presented in 
Figure 4. This aided the selection of the threshold where the adaptive procedure could be implemented to 
minimize time for sensing report. In order to verify the reliability of the threshold which the adaptive 
cooperative scheme will utilize, a single energy detection procedure was compared with cooperative 
sensing. A receiver operations characteristics curve to compare the sensitivity performance of both 
algorithms is presented in Figure 5. 
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Figure 4: Performance of Cooperative Sensing using IED Scheme 
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Figure 5: Comparison of Cooperative and Non-Cooperative Spectrum Sensing 

The results comparing the various learning rates and the time consumption improvement is presented in 
Figure 6and Figure 7 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:Results to Compare the Two Learning Rates Explored 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 7: Comparison of Time Consumption for the Adaptive Cooperating Sensing Algorithm with 
Conventional Cooperating Sensing without RL 

5. DISCUSSION 

Performance of the IED-based cooperative sensing under varying SNR conditions 

The result presented above in Figure 4shows the performance of the Improved Energy Detection (IED) 
scheme when several CRs are employed in sensing under varying SNR conditions. This is a 
scenariorepresenting a very noisy environment where with a high noise level. Yet, it is observed from the 
result that detections commence from about 13.6dB and increases rapidly to maximum detection 
probability within a range of about 1dB. This confirms the sensitivity of the IED-based cooperative 
sensing scheme. 

It is also observed that the performance improves with increase in the number of cooperative cognitive 
radios. This reveals that multiple sensors give a more accurate result since the individual reports of each 
of the cognitive radios are collated before the final decision is taken. Hence, cooperative sensing done 
with more number of cognitive radios had more accurate detections than those with less cooperating 
users.However, as observed in Figure 5, both cooperative and non-cooperative sensing performed 
satisfactorily at about 15.5dB. This is therefore, used as a threshold for the adaptive cooperative spectrum 
sensing where the number of cooperating CRs could be reduced in order to minimize time spent on 
sensing reports.  

Effects of the Various Temporal Difference (TD) learning techniques on performance of the 
Adaptive Cooperative Spectrum Sensing Scheme. 

Three different Temporal Difference (TD) learning algorithms were considered namely: actor-critic, 
SARSA and Q-learning techniques. The learning time for the three TD techniques varied during the 
simulation trials conducted, but Q-learning constantly had higher cumulative reward each time and 
produced results at an average of 3% faster than SARSA and actor-critic. Previous researches such as 
[2][5], [7] also point to Q-learning in cooperative sensing as a technique with higher cumulative rewards. 
Q-Learning was therefore selected for the further simulations carried out in this research. 

Comparison of Returns Obtained Using Different Learning Rates 

Two learning rates were explored while the reinforcement learning was being developed for the adaptive 
cooperative sensing scheme. These are the normal learning rate 𝛼  and the logarithmic learning 
rate𝛼  given by the equations 7 and 8 respectively. 

   𝛼 = 1
𝑚       (33) 

𝛼 =
log (𝑚 + 1)

(𝑚 + 1)     (34) 

where: 
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The result comparing both learning rates with respect to the returns (Q-values) obtained as presented in 
Figure 6shows that the logarithmic learning rate gave much higher Q-values than the conventional 
learning rate. The higher Q-values seen could be explained to be a difference resulting from the rate of 
convergence of the learning. A learning rate which results in higher Q-values is often synonymous with 
more exploration than exploitation of rewards which implies slower convergence. It can therefore be 
deduced that the algorithmic learning rate 𝛼  which gave higher returns in terms of Q-values converged 
slower than the 𝛼 . This implies opportunity for more exploration than exploitation to produce better 
outcome. This result provided the basis for the use of the logarithmic learning rate in the process of 
reinforcement learning.  

Optimal Outcome Using Proposed Approach 

After employing Q-learning along with the logarithmic learning rate, a major difference in sensing report 
time was observed. It was observed in simulations of 1000 sensing episodes that the cooperative sensing 
delay time which initially hovered around a mean of 10msgradually dropped to a mean of 1ms after about 
10 sensing sessions. This is the period it took the fusion point (learning agent) to learn the sensing report 
characteristics of the individual CRs.This is observed in Figure 7. This is simulated with reference to a 
conventional cooperative spectrum sensing algorithm where all 10 cooperative users are constantly in use. 

This translates to a reduction in time by about 60 percent compared to the time spent by all the CR users 
in a conventional cooperative spectrum sensing technique which is assumed to utilized all 10 CRs during 
sensing. This is seen in Figure 8.This is an interesting result which fulfils the objective of this research - 
to cut down on the cumulative time consumed for individual sensing report and processing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Percentage Time Consumption for the Adaptive Cooperating Sensing Algorithm and 
Conventional Cooperative Sensing Algorithm 

6. CONCLUSION 



In this paper, the sensitivity of energy detection based spectrum sensing was increased using Improved 
Energy Detection (IED) algorithm. This was then utilized in an Adaptive Cooperative spectrum scheme 
which was aimed at reducing the time consumed during the processing of spectrum sensing reports. The 
adaptive spectrum sensing scheme made it possible to utilize a few cognitive radios for sensing when the 
SNR status of the channel was reliable. This reduced the number of reports that needed to be processed 
during cooperative sensing. It also reduced the delay involved in report processing time.  Reinforcement 
learning was incorporated in the adaptive spectrum sensing algorithm in order to further reduce sensing 
report collation delay. The introduction of reinforcement learning aided the decision of the fusion point 
which was the learning agent to learn the policy of selecting an optimal set of cognitive radios for 
cooperative decision. This further reduced the number of cooperative users that need to be considered 
when cooperative sensing reports need to be made. It alsominimized the time delay that would have been 
incurred when all the cognitive radios were required to give their sensing report irrespective of the quality 
and promptness of their report. This technique introduced helped improve on the time lapse between 
sensing and decision making in cognitive radio systems.This provides a solution to one of the major open 
issues in cooperative spectrum sensing using RL where the network performance has been improved at 
the expense of higher amount of control overhead[6]. This technique provides an effective solution to 
reduce the overhead of the cooperative sensing while preserving the simplicity of the network. 
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