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ABSTRACT 
 
A theory concerning the dynamic response of two 
identical simply supported Rayleigh beams 
viscoelastically connected together by a flexible 
core and traversed by a concentrated moving 
load is developed in this paper. The solution 
technique employed is based on finite Fourier and 
Laplace integral transformations. It is observed 
that the maximum amplitude of the deflection of 
the upper beam increases with an increase in the 
value of the rotatory inertia while the maximum 
amplitude of deflection of the lower beam 
decreases with increasing values of rotatory 
inertia. 

 
 (Keywords: viscoelastically connected Rayleigh 

beams, dynamic response, moving load) 
 
 
INTRODUCTION 
 
The behavior of elastic structures such as beams 
under moving loads is of great theoretical and 
practical importance. The problem of analyzing 
the behavior of a single beam under the influence 
of a moving load has been studied in various 
fields of engineering, applied mathematics, as 
well as applied physics. For over three decades 
ago, this moving load problem has attracted much 
attention of a large number of investigators. [3 –
13].  As a matter of fact, there are many designs 
involving moving loads in one form or the other. 
An extensive review on moving load problems 
has been reported by Fryba [3] in his excellent 
monograph. However, work on the dynamic 
response of two elastically connected beams 
under moving load is scanty. This is perhaps due 
to the fact that, unlike the case of a single beam, 
the governing equation is made up of two coupled 
partial differential equations. Nonetheless, the 
vibration of problem of double beams is of 
practical importance. For instance, the dynamic 

behavior of composite material has been studied 
by modeling the latter by elastically connected 
beams [14 – 16].  
 
Furthermore, Gbolagade et al. [9] carried out a 
study on the response of two Euler-Bernoulli 
beams elastically connected together by a flexible 
core with an attached dash-pot and traversed by 
a concentrated force moving with a constant 
velocity. In their work, the inertia effects of the 
beams and the moving load were neglected. Two 
years later, Gbadeyan et al. [5] investigated the 
problem of the dynamic response of two identical 
thin beams which are viscoelastically connected 
and subjected to uniform partially distributed 
moving force. The work paid special attention on 
the effects of uniform partially distributed moving 
forces on viscoelastically connected Bernoulli-
Euler beams. It is found that, for various values of 
the speed of the moving force considered, the 
amplitude of the transverse deflection of the 
primary beam increases with the speed.  
 
Oniszczuk [12] presented exact theoretical 
general solutions of undamped forced vibrations 
for a simply supported Euler-Bernoulli double-
beam system. Several cases of particularly 
interesting excitation loadings, the moving 
concentrated force in particular, are investigated. 
The steady-state dynamic response of an 
embedded railway track to a moving train is 
investigated in [13]. The model of the railway is 
made up of a flexible plate performing vertical 
vibrations, two beams that are connected to the 
plate by continuous viscoelastic elements and an 
elastic foundation which supports the plate. The 
dynamic behavior of a double-beam system 
traversed by a constant moving load is also 
studied in [1]. The system is composed of two 
simply supported Euler-Bernoulli beams 
connected continuously by a viscoelastic layer.  
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This paper is concerned with the development of 
dynamic analysis of a double Rayleigh beam 
system traversed by a concentrated moving load. 
The system consists of two identical, uniform, 
elastic homogeneous isotropic simply-supported 
beams. The beams are (i) arranged horizontally, 
one upon the other and (ii) continuously and 
visco-elastically connected together by a 
distributed spring-damper layer. In essence, the 
main focus of this study is to assess the effect of 
rotatory inertia, which is neglected in Euler-
Bernoulli beams, on the dynamic response of the 
said Rayleigh beams.  
 
 
MATHEMATICAL FORMULATION OF THE 
PROBLEM 
 
Consider two identical finite Rayleigh beams (with 
small deflections) attached together by a flexible 
core as shown Figure 1. 
      
 
  
 
 
 
 
 
 
 
 
 
 

Figure 1: Two Viscoelastically Connected 
Rayleigh Beams. 

 
The x -coordinate is along the upper beam and 

the y -coordinate is normal to x -axis. Thus, we 

consider a one–dimensional elastic system where 
bending moment and rotatory inertia effects are 
not neglected.  The index j is attached to the 
variables associated with the two beams such 
that with the upper beam, j = 1 and lower beam, j 
=2. 
 
The displacement (transverse deflection) of the 
beam in the y –direction denotes and measures 

the deflection of the middle plane of the beam.  If 
the core medium is represented by a viscoelastic 

(Kelvin) model with stiffness k  and damping 

coefficient 0 , the restoring forces from the core 

are expressed as:  
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for the upper and lower beams, respectively. 
 
In the formulation of the governing equation of the 
two viscoelastically connected beams, the 
following assumptions are adopted. Firstly, the 
beams are assumed to be of constant cross-
section with uniform mass distribution. Secondly, 
the effects of rotatory inertia and the gravitational 
effect of load are taken into account. Thirdly, the 
load moves with a uniform velocity and is guided 
in such a way that it keeps contact with the beam 
at all times. Fourthly, the beams are assumed to 
be simply supported and consequently the 
computations are performed for simply supported 
end conditions. 
 
Under the above assumptions, the problem of 
interest is described by the partial differential 
equation of the form: 
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where, EI =flexural rigidity of the beam (Nm
2
) 

 

 txw j , = j
th
 beam deflection at point x and time t, 

measured form the equilibrium position when 
beam is loaded with its own weight (s) 
 
x = length (axial) co-ordinate with the origin at the 

left-hand end of the beam 
 
t = time coordinate with the origin at the instant of 

the load arriving on the beam 
 
 = constant mass per unit length of the beam 

(kgm
-1

) 
 

b = circular frequency of the damping of the 

beam 
r =radius of gyration of beam cross-section (m) 
 

Upper beam 

with transverse 

displacement w1 
Upper beam 

j=1 

Lower beam 

j=2 

Flexible core 

beam j=1 

Dash pot 

Lower beam 

with transverse 
displacement w2 



The Pacific Journal of Science and Technology                –7– 
http://www.akamaiuniversity.us/PJST.htm                                                Volume 12.  Number 1.  May 2011 (Spring) 

 txi ,  is the applied force defined by, 

 

 txi ,  = 
 



 

otherwise,0

1, jvtxP
 

 
such that, 

 

 vtx  = Dirac delta function (or unit impulse 

function) at point vtx  

 
v = constant velocity of the load’s motion (ms

-1
) 

 
P=concentrated moving force of constant 
magnitude (N). 
 
The boundary conditions associated with the set 
of equations (1) are: 
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where, l =length of the beam (m) 

(since the displacement and the bending moment 
vanish at a simply supported end) and the initial 
conditions are: 
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SOLUTION OF THE MATHEMATICAL 
PROBLEM 
 
In this section, we proceed to solve the initial 
boundary value problem (IBVP) described by 
Equations (1) – (3). We remark that the integral 
transform techniques have been proved suitable 
and effectively applicable to solving moving load 
problems such as the one under investigation [3]. 
Therefore, this method is adopted in the solution 
of the IBVP. Specifically, the Fourier 
transformation for the length coordinates and the 
Laplace transformation for the time coordinate 
with boundary and initial conditions are used in 
this work. 
 
 
 
 

Finite Fourier Transformed Governing 
Equations 
 
The set of Governing Equations (1) for the 
deflections of the two beams may be rewritten as: 
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and  
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respectively. Equations (4) and (5) are fourth 
order partial differential equations with respect to 
the variables x and t. 
  
Next, Fourier transform of each of the governing 
partial differential Equations (4) and (5) is taken. 
We find, however, that the boundary conditions in 
Equation (2) may be accommodated only by 
using a finite Fourier sine transform, so we shall 
apply the Fourier finite sine integral 
transformation for the length coordinate and this 
is defined as: 
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with the inverse transform defined as: 
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Thus, by invoking Equation (6) on Equations (4) 
and (5), we have: 
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respectively. We can conveniently write 
Equations (8) and (9) respectively as: 
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Equations (10) and (11) represent the finite 
Fourier transformed governing equations of the 
two Rayleigh beams viscoelastically connected 
together and subjected to a load moving with a 
constant velocity. 
 
 
Laplace Transformed Solutions 
 
To solve Equations (10) and (11), we apply the 
method of the Laplace integral transformation for 

the time coordinate between 0 and . The 
operation of Laplace transform is here indicated 
by the notation: 
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where,  L=Laplace transform operator 
 s=Laplace transform variable. 
 
In particular, we use: 
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Using the transformation (14) on Equation (10), 
we have: 
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On evaluating each term of Equation (15) by 
method of integration by parts and using the set 
of initial conditions (3), we obtain: 
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Similarly, equation (11) reduces to: 
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Substituting Equation (18) into (16), we obtain: 
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Equations (18) and (19) may be expressed as: 
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The Inverse Integral Transformation 
We proceed in this section to obtain the inverse 
transformation of the solutions obtained in the 
previous section. To this effect, equations (20) 
and (21) are resolved into partial fractions and 
inverted as follows: 
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Thus, taking inverse Laplace transform of 
equations (23) and (30), we have: 
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where, 
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and 
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Finally, Fourier sine inverses of  
 

   tnwandtnw ,, 21  

 
are obtained as: 
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and    
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2
, 2
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2 




          (44) 

 
respectively. Conclusively, Equation (43) 
represents the transverse displacement of the 
upper beam relative to the lower one while the 
corresponding transverse displacement of the 
lower beam is given by Equation (44). 
 
 
NUMERICAL ANALYSIS AND DISCUSSION OF 
RESULTS 
 
As earlier remarked, the numerical results that 
follow are for two identical Rayleigh beams that 
are elastically connected together by a flexible   
core and subjected to a concentrated moving 
load. In order to illustrate the theory described in 
this paper numerically, the following values of the 
physical constants and parameters are 

considered.
7

22
 ,

216000NmEI  , NP 20 ,

075.0 , 15.00  , 2.0k , 

ml 0.6 , 0b , 1n ,
2

1
x and 1)2.0(0.0t .  

 
The cases when the velocities (v) of the moving 
load are 3.3ms

-1
, 6.3ms

-1
, 9.3ms

-1
, and 12.3ms

-1
 

for the following values of r
2 

(rotatory inertia 
effect):  4.0, 8.0 and 10.0 are considered. 
 
The responses of the upper beam relative to the 
lower beam and that of the lower beam for 
various values of velocity, rotatory inertia, 
stiffness coefficient and damping coefficient are 
shown in the following figures (Figures 1 – 8). 
 
 



The Pacific Journal of Science and Technology               –11– 
http://www.akamaiuniversity.us/PJST.htm                                                Volume 12.  Number 1.  May 2011 (Spring) 

 

 
 

Figure 1: The Response of the Upper Beam Relative to the Lower Beam for Various Values of the 
Velocity of the Moving Load at a Fixed Value of r

2
 (rotatory inertia), i.e., r

2
=4. 

 
 

 
 

Figure 2: The Response of the Lower Beam for Various Values of the Velocity of the Moving Load at a 
Fixed Value of r

2
 (rotatory inertia), i.e., r

2
=4. 
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Figure 3: The Response of the Upper Beam Relative to the Lower Beam for Various Values of r
2
 (r sq.) 

when the Load Moves at v = 3.3 m/s 
 
 
 

 
 

Figure 4: The Response of the Lower Beam for Various Values of r
2
 (r sq.) when the Load Moves  

at v = 3.3 m/s 
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Figure 5: The Response of the Upper Beam Relative to the Lower Beam for Various Values of k 
(stiffness coefficient). 

 
 

 
 

Figure 6: The Response of the Lower Beam for Various Values of k (stiffness coefficient) 
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Figure 7: The Response of the Upper Beam Relative to the Lower Beam for Various Values of  

(damping coefficient). 
 
 
 

 
 

Figure 8: The Response of the Lower Beam for Various Values of  (damping coefficient). 
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The response of the upper beam relative to the 
lower beam for various values of the velocity of 
the moving load at a fixed value of r

2
 (rotatory 

inertia) is shown in Figure 1 while the 
corresponding one for the lower beam is shown in 
Figure 2. It is observed that response amplitude of 
both upper and lower beams increase with 
increase in the velocity of the moving load at a 
fixed value of rotatory inertia (r

2
=4).  

 
The result of the investigation of the effect of the 
rotatory inertia on the dynamic response of the 
system is shown in Figures 3 and 4. Figure 3 
indicates that the maximum response amplitude of 
the upper beam increases with increasing values 
of rotatory inertia. Contrarily, the maximum 
response amplitude of the lower beam decreases 
with increasing values of rotatory inertia (Figure 
4). 
 
Figure 5 shows the deflections for the upper beam 
for a velocity of v = 3.3 m/s and different values of 
stiffness coefficient k. From the Figure, it is 
observed that increasing the values of the 
stiffness coefficient has irrelevant influence on the 
response amplitude of the upper beam. On the 
other hand, as revealed in Figure 6, it is observed 
that increasing the values of the stiffness 
coefficient k lead to an increase in the maximum 
response amplitude of the lower beam. 
 
In the last part of the analysis carried out, we 
study the dynamic behavior of the beams for 
various values of damping coefficient as shown in 
Figures 7 and 8 for the upper and lower beams 
respectively. Figure 7 shows that increasing the 

value of the damping coefficient  decreases the 

maximum response amplitude of the upper beam. 
The reverse is the case with the lower beam as 
depicted by Figure 8. 
 
 
CONCLUSION 
 
The dynamic response of two identical Rayleigh 
beams elastically connected together by a flexible 
core with an attached dash-pot and traversed by a 
concentrated moving load has been studied in this 
paper.  The governing differential equations of the 
problem have been solved by using the finite 
Fourier Integral and Laplace transformation 
techniques and the prescribed initial and 
boundary conditions.  It is assumed that the 
beams are of uniform cross-section and of 

constant mass. Several plots of the response 
amplitudes of the beams are given. The effects of 
the velocity of the moving load, rotatory inertia of 
the beam, stiffness coefficient and damping 
coefficient of the joining layer on the deflections 
of the beams are also highlighted. It is found that 
the amplitude of the deflection of both the upper 
and lower beams increases with increasing 
values of velocity of the moving load. 
Furthermore, it is found that increasing the values 
of the rotatory inertia leads to an increase in the 
maximum response amplitude of the upper beam 
but decreases that of the lower beam. However, 
the stiffness coefficient has negligible effect on 
the response amplitude of the upper beam 
whereas increasing the values of the stiffness 
coefficient k lead to an increase in the maximum 
response amplitude of the lower beam. 
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