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Abstract 

 Uncertain process is used in modeling uncertain occurrences that vary with time. The 

uncertain processes was used to study and model a special case of asset management problems. 

Thus, based on some conditions of stability, we herein give some stability theorems of the model. 
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1  Introduction 

Liu (2007) founded uncertainty theory and was refined by Liu (2016) to study uncertainty 

in human behavior. Liu (2009) also developed a canonical process in the concept of uncertainty 

theory which is a type of stationary independent increment process, a counterpart of wiener 

process but the increments are normal uncertain variables and not random variables. In addition, 

virtually all sample paths of canonical process are Lipschitz continuous. 

Based on canonical process, Liu (2008) proposed uncertain differential equation where 

Chen and Liu (2010) gave the existence and uniqueness of solutions for an uncertain differential 

equation and Yao et al gave some stability theorems of uncertain differential equation. So far, 

uncertain differential equation has been used in modeling real life problems like stock model (Liu 

2009; Peng and Yao 2011; Chen 2011) and in optimization method like optimal control (Zhu 

2010; Deng and Zhu 2012; Latunde and Bamigbola 2016). 

In this paper, we state some theorems of stability to the proposed model and optimal 

control of uncertainty in the management of capital asset based on some stability conditions of 

uncertain differential equation. 

 

2  Preliminaries 

 Uncertainty theory is a branch of mathematics for modeling belief degrees. This theory is 

based on some concepts which may be referred to Liu (2016). For easy interpretation, some of the 

concepts are given. 

Let   be a nonempty set and L  a  - algebra over   such that ( L, ) be a measurable 

space. Each element L  is called an event. 

 Definition 2.1 (Liu 2007): A set function M  defined on the  -algebra over L  is 

called an uncertain measure if it satisfies the following axioms: 

Axiom 1. (Normality Axiom): M { } = 1 for the universal set  . 

Axiom 2. (Duality Axiom): M { } + M { c } = 1 for any event  . 

Axiom 3. (Subadditivity Axiom): For every countable sequence of events, ,, 21  , we 

have  
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Axiom 4. (Product Axiom): Let ),,( kkk ML  be uncertainty spaces for 1,2,=k The product 

uncertain measure M  is an uncertain measure satisfying  
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where k  are arbitrarily chosen events from kL  for ,1,2,= k  respectively. 

 Definition 2.2 (Liu 2009): Let ),,( ML  be an uncertainty space and let T  be a totally 

ordered ser (e.g time). An uncertain process is a function )(tX  from ),,( MLT   to the set of 

real numbers such that }{ BX t   is an event for any Borel set B  of real numbers at each time t. 

 Definition 2.3 (Liu 2009): An uncertain process C  is said to be a canonical Liu process 

if 

(i) 0=0C  and almost all sample paths are Lipschitz continuous, 

(ii) C  has stationary and independent increments, 

(iii) every increment ss CC   is a normal uncertain variable with expected value 0 and 

variance 2 . The uncertainty distribution of C  is  
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and the inverse distribution is  
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 Definition 2.3 (Liu 2007): Let   be an uncertain variable. Then the expected value of   is 

defined by  
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provided that at least one of the two integrals is finite 

 Definition 2.4 (Liu 2008): An uncertain process tX  is said to have independent 

increments if  
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are independent uncertain variables where kttt ,,, 21   are any times with kttt <<< 10    

That is, an independent increment process means that its increments are independent 

uncertain variables whenever the time intervals do not overlap. It is noted that the increments are 

also independent of the initial state. 

 Definition 2.5 (Liu 2008): Suppose tC  is a canonical Liu process, and f  and g  are 

two functions. Then  

 tttt dCXtgdtXtfdX ),(),(= 
 (2.6)

 

is called an uncertain differential equation. A solution is a Liu process tX  that satisfies (2.3) and 
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(2.4) identically in t . 

 Definition 2.6 (Liu 2008): Let tX  be an uncertain process. Then for each  , the 

function )(tX is called a sample path of tX . 

 Definition 2.7 (Liu 2016): An uncertain process tX  is said to be sample-continuous if 

almost all sample paths are continuous functions with respect to time t . 

 

3  Uncertain optimal control problem in asset management  

 

Suppose an individual invests his wealth in capital asset of his business tA  from time 0t  

to time nt . He starts with a known net worth 0X . At time t , he must choose what fraction of his 

net worth to utilize on capital asset,   , what fraction of his net worth is incurred on liability of 

the business,   and thus, determine the expected present net asset, E  such that the net worth is 

maximized. 

 Table 3.1 Definition of Parameters  
  

 Parameter   Description 

tX    Net worth at time (state variable) t  

tK    Consumption at time t  

tA    Capital asset at time t  

tI    Investment at time t  

tT    Indirect tax at time t  

tD    Depreciation at time t  

tZ    Net Foreign supply at time t  (less home supply from foreign supply)  

tL    Liability at time t  

tR    Net foreign factor revenue generated at time t  

tb    Return on capital asset at time t   

    Liability ratio (control) 1>   

r    Diffusion volatility of liability (with variance 2

r  per unit time) 

    Capital asset ratio (control) 0>   

b    Diffusion volatility of asset (with variance 2

b  per unit time) 

    Capital gain on asset due to inflation 

p    Diffusion volatility on asset price (with variance 
2

p  per unit time) 

    Mean rate of return on asset 

    Mean interest rate of liability 

tC    Canonical process  

    Consumption level  

f    Investment ratio 

j    Tax ratio  
g    Depreciation ratio  
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h    Net foreign asset ratio 
    discount rate 

    degree of relative risk 

U    Utility function 

E    Expectation operator 

 

Therefore, a dynamic optimization model of the expected present value of asset over a 

given the life cycle is herein presented following the study of portfolio selection by Merton (1971). 

It is assumed that the goal of the asset management is to choose the optimal utilization and asset 

allocation policies for maximizing a value function which discounts exponentially future uncertain 

values of Hyperbolic Absolute Risk Aversion (HARA) utility function over a given time horizon 

with net worth of tangible assets as the state variable. 

The risky asset is assumed to earn an uncertain return and an uncertain gain with mean rate 

of return and capital gain. Furthermore, we express the change in liability as sum of liability 

service with an assumption of uncertainty, consumptions, investment and net foreign supply, less 

taxation, depreciation and revenue over a period of time. Thus, we have 
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subject to  

ttrbptt dCXdtXgjhfdX 1)]([)]1)(()[(=    

Latunde and Bamigbola (2016)   (3.2) 

4  Stability analysis 

 We prove the stability of the model by showing that the constraint (4.19) is stable using 

the following conditions: 

  

    1.  Suppose the coefficients ),( xtf  and ),( xtg  of dCxtgdtxtfdX t ),(),(=   are 

continuous on )[0, . Then the solution of an uncertain differential equation tX  is said to be 

stable if for any 0>  and 0> ,   a 0>),(=   such that for any solution tY  with 

 |<| 00 XY , we have  

   Gao(2010)1>|<|sup 0   ttt XYM  

 

    2.  An uncertain differential equation is said to be stable if for any two solutions tX  

and tY , we have  

 1=0}forall|<{|lim 0|
00

|  tYXM ttYX   

for any given number 0> . Liu (2009)  

 Theorem 4.1 (Extreme Value Theorem, Liu 2013): Let tX  be a sample-space 

continuous independent increment process with uncertainty distribution )(x . Then the 

supremum  

 tst X0sup  
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has an uncertain distribution  

 )(inf=)( 0 xx st    

and the infimum  

 tst X0inf  

has an uncertain distribution  

 )(sup=)( 0 xx st    

Theorem 4.2: Suppose the coefficients tagjhf 1=)]1)(()[(    and 

trbp a2=1)]([    satisfy  
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then every solution of constraint (3.2) is bounded. 

Proof: 

Suppose tX  is the solution to the constraint (3.2) with initial value 0X . Therefore, from  
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Thus,   a positive number   for any 0>  such that for any 0>t , we have  
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Putting )(exp(B)exp|=| 0 X , we have  

    1>|<|sup 0 tt XM  
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which implies that every solution of the systems (3.1) and (3.2) is bounded 

Theorem 4.3: The zero solution of the system (3.1) and (3.2) is stable, if and only if every 

solution of constraint (3.2) is bounded. 

Proof: 

Since every solution of the constraint (3.2) is bounded. Let tX  be a solution with initial 

value 00 X . 

Boundedness implies for any 0> ,   an 0)>,(= tX  such that 

  .1>|<|sup 0  tt XM  

For any 0>  and 0> , let 



||
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. 

We therefore assume tY  to be another solution with initial value 0Y , where |<0| 0 Y . 

From  
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we have  
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which implies that the zero solution is stable. 

Suppose the zero solution of the systems (3.1) and (3.2) is stable. Let tX  be the solution to 

the uncertain equation with initial value 0>0X . According to the stability condition, for any 

0>  and 0> ,   an 0>),(=   such that whenever |<| 0X , we have 

  .1>|<|sup 0   tt XM  

Let 
0
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X
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  for a solution tY . Therefore,  

    








  1>|<|sup=
||

||
|<|sup=}|<|sup{ 0

0

0
00 tttttt XM

Y

X
XMYM  

which implies that every solution of the system is bounded. Hence the completion of the proof. 

Theorem 4.4 (Yao et al.,2013): Let tC  be a canonical process on an uncertain space 

),,( ML  and )(k  be the least Lipschitz constant of sample path )(tC . Then  

 1=}<{ kM  

Theorem 4.5 (Yao et al.,2013): The uncertain differential equation 

tttt dCXtgdtXtfdX ),(),(=   is stable if the coefficients ),( xtf  and ),( xtg  satisfy the linear 

condition  

 0,|),|(1|),(||),(|  txxKxtgxtf  

for some constant K and strong Lipschitz condition  

 0,,|,|)(|),(||),(||),(||),(|  tyxyxtLytgxtgytfxtf  

for some bounded and integrable function )(tL  on )[0,  
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Theorem 4.6: The systems (3.1) and (3.2) is stable if the coefficients ),( xtf  and ),( xtg  

satisfy the linear condition  

 0,|),|(1|),(||),(|  txxKxtgxtf  

for some constant K and strong Lipschitz condition  

 0,,|,|)(|),(||),(||),(||),(|  tyxyxtLytgxtgytfxtf  

for some bounded and integrable function )(tL  on time interval nttt <<0 . 

Proof: 

Let 0X  and 0Y  represent two solutions with 0X  and 0Y  as initial values respectively. 

Thus for each  , we have  
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where k  represents the Lipschitz constant on the sample path )(tC . Thereafter, by the 

Grownwall’s equality, we have  
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By theorem (4.4), we get  
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Thus, as 0|| 00 YX  we obtain  

 1=0}|<{|lim 0|
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Hence, the proof. 

 

5  Conclusion 

 Uncertain differential equation was used to model a type of asset management problem 

where an investor is interested in determining the expected present net asset such that the net worth 

is maximized. 

This paper gave some stability theorems and proofs of uncertain optimal control model of 

management of net risky capital asset based on the necessary and sufficient conditions for 

uncertain differential equations being stable. 
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