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ABSTRACT

The contemporary textile washing machines do nethhe features for temperature regulation and tada for
different textile materials, and for the machingtdtage input regulation. This can be seen as dnth® causes of the fast
deterioration of new textiles and increase in theniber of rags; which in turn causes the expendibfrenore income in the
purchase of textile materials.

The concern of this research is on the use of thezy Logic Control (FLC) methodology in the desafnan
automatic and dynamic voltage and temperature r@gul controller for the textile washing machine. eTfuzzy based
controller for the washing machine will be able aatomatically regulate the voltage and temperatim® the machine
washing tank. The best fit temperature for washdifferent clothing shall be automatically used f@rious washings and
hence prolong the life-span of textiles as agdimstincreasing trend in possession of rags duenfiréper washing mode.

1 INTRODUCTION.

Fuzzy Logic Control (FLC) methodology is a contsyistem methodology that is applicable in the design
systems that requires the regulation and contraoofie parameters for effective and/or efficientfiqpenance of the
system.

Fuzzy logic is basically a multi-valued logic tllbws intermediate value to be defined betweerventional
evaluations like Yes/No, true/false, etc. Notioike |“rather warm”, “pretty cold” and the likes cdre formulated
mathematically and processed by Computers.

Fuzzy expert systems incorporates an IF-THEN r@pproach to solving control problem rather than
attempting to model a system mathematically asdnv@ntional Control System. For example rather tiealing with
temperature control in terms such as *SP = 500RJOOOF" or 210C<TEMP<220C, terms like "IF (prosds too
cool) AND (process is getting colder) THEN (add themthe process)" or "IF (process is too hot) A{bocess is
heating rapidly) THEN (cool the process quicklyg aised. These terms are imprecise and yet deseriptiwhat must
actually happen

More and more incomes are expended in the purcbfsextiles as a result of the increasing trendha
deterioration of new textiles. And the more newtitex we buy, the more rags we have as well. Thieamality is as a
result of the mode of washing of these textilessMeashing machines do not have features like testyre regulation
and selection for different textile and cannot aisatrol its input voltage. This research elimisatieese shortcomings
of washing machines.

2. RELATED WORK
Fuzzy Logic has been employed as a methodologyhfodesign of Control Systems. It has served as a
good (if not better) alternative methodology forn@oller designs. Some of the related works ideadifin the
course of this research work are:

e The Reactor Temperature Controller as reported.), [where a product of Aptronix called FIDE was
used to design fuzzy Controller for the controthef temperature in a Reactor.

e Temperature Control: PID vs Fuzzy Logic as repoimej@] where a Fuzzy Logic version of a PID Home
Temperature Control System was reported designddtarmdvantage over the conventional PID system
was highlighted.

» Balancing of an inverted pendulum in a verticalipos on a Cart using Fuzzy Control as reportePin
where a PD Fuzzy Control system was designed.dit®pnance evaluation was reported done using a
simulation of the control system.

» Others as reported in [2] are: Vibration Damping # Flexible-Link Robot, Rotationally inverted
Pendulum, Machine Scheduling and A Fault Detec@gstem for Aircraft. Also reported in [5] is a Fyzz
logic Speed Control which can also be referredst@alise Control.

* Reported in [15] is A Fuzzy Logic Temperature Colér for Preterm Neonate Incubator designed and
simulated for the control of the incubator tempeamatin order to attain a thermoneutral condition fo
neonates.
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Washing machines can be automated further thanateygurrently. This can be achieved by automatieg
washing machine process through the use of setsastect parameters including volume of clothegrde and type
of dirt and so on. The wash time and other measimaeshen be determined from these parameters.

3. DEFINITION OF TERMS
3.1 Fuzzy Logic

Fuzzy Logic is a form of logic used in artificialtelligence applications in which variables canehdegrees
of truthfulness or falsehood represented by a rafigalues between 1 (true) and 0 (false). It piesia simple way to
arrive at a definite conclusion based upon vagoegrécise, or noisy input information. Fuzzy Logispeoach to
control problems mimics how a person would makesitets.

3.2 Fuzzy sets

The input variables in a fuzzy control system argéneral mapped into sets known as "fuzzy setshégns
of Membership Functions,. The process of converdngrisp input value to a fuzzy value is calledzZdication".
Strictly speaking, a fuzzy set A is a collectioroofiered pairs:

A={(x, 1)} ®
Item x belongs to the universe and p(x) is its graimembership in A. A single pair (X, p(x)) ifuazy singleton
3.3 Fuzzy Controller
The structure of a Fuzzy Controller is shown in bieck diagram in Fig. 4. The controller is betwesn
preprocessing block and a post-processing bloaitid®®es 3.3.1, 3.3.2, 3.3.3, 3.3.8 and 3.3.12 erplaé¢ diagram block
by block.

Fuzzy controller
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Figure 4: Blocks of a fuzzy controller

3.3.1 Preprocessing

The inputs are most often CRISP measurements faome aneasuring equipment. A preprocessor, the first
block in Fig. 4, conditions the measurements befbey enter the controller. A quantiser is necessarconvert the
incoming values in order to find the best levehidiscrete universe. Assume, for instance, thatdhniable error has the
value 4.5, but the universe is U= (-5, -4... 0... 4%, The quantiser rounds to 5 to fit it to the nesa level.
Quantisation is a means to reduce data, but ifgtentisation is too coarse the controller may &eilaround the
reference or even become unstable.

When the input to the controller is error, the cohstrategy is a static mapping between input ematrol
signal. A dynamic controller would have additiomaputs, for example derivatives, integrals, or jwasg values of
measurements backwards in time. These are craatib@ ipreprocessor thus making the controller rditttiensional,
which requires many rules and makes it more diffitor design. The preprocessor then passes the atata the
controller.[4]

3.3.2  Fuzzification
The first block inside the controller is fuzzifi@a, which converts each piece of input data toreeg of
membership by a lookup in one or several memberinptions. The fuzzification block thus matches thput data
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with the conditions of the rules to determine howllthe condition of each rule matches that paldicinput instance.
There is a degree of membership for each linguistim that applies to that input variable.[1,2,4,5]

3.3.3 Rule Base

Basically a linguistic controller contains rulesthe IF - THEN format, but they can be presentedifferent
formats. In many systems, the rules are presentdtetend-user in a format similar to the one below

If error is Neg and change in error is Neg therpouis NB

If error is Zero and change in error is Neg thetpouis NM

If error is Pos and change in error is Neg thepuatis Zero

The names zero, pos, neg are labels of fuzzy setgell as NB, NM, PB and PM (Negative Big, Negative

Medium, Positive Big, and Positive Medium respesiiyy. [1,2,4,5,8]

3.3.4  Universe

Elements of a fuzzy set are taken from a univefsdistourse or just universe. The universe contaihs
elements that can come into consideration. Befeegtiing the membership functions it is necessargonsider the
universes for the inputs and outputs.

Take for example the rule

If error is Neg and change in error is Pos thepuatis O.
Naturally, the membership functions for Neg and Russt be defined for all possible values of ernod @hange in
error and a standard universe may be conveniemheSmmmercial controllers use standard universescdy the
choice of data types may govern the choice of usezeFor example, the voltage range [-5, 5] codddpresented as
an integer range [-50, 50] or as a floating poartge [-5.0, 5.0]. A way to exploit the range of timéverses better is
scaling. If a controller input mostly uses just desem, the scaling factor can be turned up suchtiiewhole range is
used. An advantage is that this allows a standanigetse and it eliminates the need for adding mizmns.
[1,2,4,5,6,8,9,10,11,12,13]

3.3.5 Membership Functions

Every element in the universe of discourse is a benof a fuzzy set to some grade, maybe even Zév®.
grade of membership for all its members describdszay set. In fuzzy sets elements are assignedadegof
membership such that the transition from membershipon-membership is gradual rather than abrupe 3et of
elements that have a non-zero membership is cieedupport of the fuzzy set. The function that #enumber to each
element x of the universe is called the member&hiption, p(x).
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Figure 6: Examples of membership functions. Read from top to bottom. left to right: (a)
s— function. (b) 7 fonction, (c) z— function. (d-f) triangular versions. (g-i) trapezoidal
versions. (j) flat 7 — function. (k) rectangle. (1) singleton

Fig. 6 shows some typical shapes of membershigtifume Fuzzy controllers use a variety of membgrstinctions. A
common example of a function that produces curve is

gaussialfx:c,o) = E_E(%) (2)

This is the Gaussian type of MF, whe€erepresents the MF center agll is the MF’s width.[1,3,5]The designed
fuzzy logic controller uses the equation

H(X) =1-ex -(XU J 3)
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The extra parameter controls the gradient of the sloping sides. lalso possible to use other functions, for example
the sigmoid known from neural networks.

Figure 7: Graphical construction of the control signal in a fuzzy PD controler (generated
in the Matlab Fuzzy Logic Toolbox).

3.3.6  Inference Engine
Figures 7 is a graphical construction of the akhoniin the core of the controller. Each of the nioass refers

to one rule. For example, the first row says thahé error is negative (row 1, column 1) and tharge in error is
negative (rowl, column 2) then the output shoulahégative big (row 1, column 3). The picture copasls to the rule
base in (2). The rules reflect the strategy thatabntrol signal should be a combination of thensice error and the
change in error, a fuzzy proportional-derivativentroller. We shall refer to that figure in the folNing. The instances
of the error and the change in error are indicaétethe vertical lines on the first and second calarof the chart. For
each rule, the inference engine looks up the meshijeralues in the condition of the rule.

3.3.7  Aggregation

The aggregation operation is used when calculatiegdegree of fulfillment or firing strengtik of the
condition of a rule k. A rule, say rule 1, will gaate a fuzzy membership value pel coming frometiner and a
membership value pu cel coming from the changeror eneasurement. The aggregation is their comhnati

:uel and :ucd (4)

Similarly for the other rules, Aggregation is eclant to fuzzification, when there is only one ihpa the
controller. Aggregation is sometimes also calldilfnent of the rule or firing strength.
3.3.8  Activation

The activation of a rule is the deduction of th@aasion, possibly reduced by its firing strengfhickened
lines in the third column indicate the firing stgéin of each rule. Only the thickened part of thegkgtons are activated,
and min or product (*) is used as the activatiorerafor. It makes no difference in this case, sitle output
membership functions are singletons, but in theegdncase of <7-, and z- functions in the third column, the
multiplication scales the membership curves, thiesgrving the initial shape, rather than clippihgm as the min
operation does. Both methods work well in geneathough the multiplication results in a slightljmaother control
signal. In Fig.7, only rules four and five are aeti

A rule k can be weighted a priori by a weightingt(n,w‘" €.l , Which is its degree of confidence. In
that case the firing strength is modified to
a,=w.*a, (5)

The degree of confidence is determined by the desigr a learning program trying to adapt the rttesome
input-output relationship.
3.3.9  Accumulation

All activated conclusions are accumulated, ushmy ax operation, to the final graph on the bottaght
(Fig. 7). Singleton output (Fig. 7) and sum accuatiah results in the simple output

a,*s ta,*s, +..+a,*s, (6)
The alphas are the firing strengths from the nsraled s1...sn are the output singletons. Since émde computed as a

vector product, this type of inference is relativst in a matrix oriented language.
3.3.10 Defuzzification
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The resulting fuzzy set (Fig. 7, bottom right) mhstconverted to a number that can be sent tortieegs as a
control signal. This operation is called defuzafion. The resulting fuzzy set is thus defuzzifieth a crisp control
signal. There are several defuzzification methods:

Centre of Gravity (COG): The crisp output valur is the abscissa under the centre of gravity ofubey set.

[1,2,4,5]
Zi H(%)%,
S A(x) )

Here xi is a running point in a discrete univer@eag u(xi) is its membership value in the membershigtion. The
expression can be interpreted as the weighted geesf the elements in the support set. For theirmamis case,
replace the summations by integrals. It is a muddunethod although its computational complexitselatively high.
This method is also called centroid of area.

Other defuzzification methods are Centre of GraMigthod for Singleton (COGS), Bisector Of Area (BRA
Mean Of Maxima (Mom), Leftmost maximum (LM) and Ritghost maximum (RM),

3.3.11 Post-Processing:

Output scaling is also relevant. In case the outputefined on a standard universe this must beedda
engineering unit, for instance, volts, meters,omstper hour. An example is the scaling from tla@dard universe [-1,
1] to the physical units [-10, 10] volts. The ppsbcessing block often contains an output gain ¢aatbe tuned, and
sometimes also an integrator.

u=

4, THE DESIGN
4.1 Linguistic Variables for the Intelligent Washing Machine

Linguistic variables are used to represent a fuagic system's operating parameters. The linguisiitables
for this design include the following: "wash-timétemperature" and "voltage". and variables like thrbidity rate and
the spin rate shall be determined by the machinthesnachine is put to operation. These linguigtidables shall be
analyzed explicitly using the fuzzy-based rulese Tiezy variables themselves are adjectives thalifjnthe variable
(e.g. "large positive" error, "small positive" errézero" error, "small negative" error, and "langegative" error). As a

minimum, one could simply have "positive", "zerahd "negative" variables for each of the parameters
4.2 Mode of operation of the Intelligent, Fuzzy-Basd Washing Machine
The automatic fuzzy based dynamic voltage and tesye regulatory controller for an intelligent wawy

machine is designed and operates as follows: Ttedligient washing machine has within it the followi which are
required for the its operation;

1) A textile quality feeler to determine different djtyaof clothing to be washed

2) A temperature controller tank with thermostat famperature measurement.

3) A conductivity sensor to measure detergent lewehfthe ions present in the wash.

4) A turbidity sensor to read the spin rate.

5) A voltage controller that controls the input vokaig the temperature sensor tank.-designed
6) A wash-time determinant sensor.

The intelligent washing machine is designed andtfons such that when a cloth of any texture isppenl
into the washing dish inside the washing machihe, textile quality feeler which will be made of &ea plate and
which will form the base of the washing dish, vidkl or test the texture and thickness of the ahgtmaterial and
determine from the result of the test, the appedpriemperature which is best suitable to wash sextile material.
This is then sent in a form of a transient sigoahie temperature sensor tank. For instance Bri¢féhickness > 1.0)
AND (heating-process is getting colder) THEN (a@atto the process)" or "IF (fabric-thickness < JAQID (heating-
process is heating rapidly) THEN (cool the proapsskly)" are used.

When the temperature controller receives the sjgnehecks for the type of signal received socaeddtermine
the kind of signal to be sent to the voltage cdi@gravhich controls the input voltage to the tengiare sensor tank.
This in turn, returns the appropriate voltage vdhrethe type of signal received and sends it eotdmperature sensor.
For example, if (signal = 1) then ((voltage =higimd (temp = Hot)). The conductivity sensor measthesdetergent
level from the ions present in the wash. The teatpee controller in the washing tank increases enrehses the
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temperature of water in the tank depending on igr@asreceived. Sensors and controllers are use@tect parameters
including volume of clothes, degree and type dof, dinitable wash temperature, input voltage andrsarhe wash time
is then determined from this data using few line$uazy rules that relate some of the parameter&lbkes together.
Once this is determined, it is sent as an eledtimpulse to the washing-time determinant sensdre Thachine
determines the optimum wash cycle for any load gusite washing-time determinant sensor. When thehwiase
reaches the magnitude of the signal sent to thehingdime determinant sensor, then, the washingsstdhe
conductivity sensor is used to obtain the bestlresith the least amount of energy, detergent aradew It then
estimates the number of cloth washed by the nurbdimmes the intelligent washing machine door waered.
The diagram below is for the process blocks offtizzy-based washing-machine, with each block pariiag

a special role towards a successful operationefibzy-based washing machine. The controlled dudtpm a network
of sensors and linguistic variables controllersadtice the self-learning and tuning ability to tieshing machine. The
controlled output includes a controlled temperatareontrolled voltage, a controlled wash-timepatwmlled detergent
level suitable for the washing.

Rulebase
prepr ” Postproc
| ocessi [P fuzzific % > defuzzifi I—> essine
o atior Inference Fmbim
inpy engine — Controlled outpt
Fuzzy Controlle

Figure 2: Blocks of the fuzzy-based washing machiroller

The preprocessor conditions the measurement akfheence input before it enters the fuzzy corgroll his
includes filtering of the input to remove noise amahverting the incoming value in order to find thest level in a
discrete universe.

The fuzzification block matches the input data witle conditions of the rules to determine how vileé
condition of each rule matches that particular tripatance. There is a degree of membership fdn &aguistic term
that applies to th#t input variable.

Rule base may use several variables both in thdittam and the conclusion of the rules. The mainction is
to regulate a control signal based on an errorasigtor each rule, the inference engine looks epntembership values
in the condition of the rule. The resulting fuzat sust be converted to a number that can be sahetprocess as a
control signal. This operation is called defuzafion where the resulting fuzzy set is thus defiexziinto a crisp
control signal.

4.3 Fuzzy Logic Wash-Time Determinant Controller-Irput/Output of the fuzzy logic wash-time determinant
controller

Figure 3 shows a diagram of the wash-time fuzzyclegntroller. There are two inputs: ( 1) the degoé dirt
on the clothes and (2) the type of dirt ond¢hlghes. These two inputs can be obtained fronmglesioptical sensor.
The degree of dirt is determined by the transparesicthe wash water. The dirtier the clothes, tbavdr the
transparency for a fixed amount of water. On theohand, the type of dirt is determined from thwisation time, the
time it takes to reach saturation. Saturation ésgint at which the change in water transpares@dse to zero (that
is, below a given number). Greasy clothes, for gdamtake longer for water transparency to reaeh dhturation
because grease is less water soluble than othasfof dirt. Thus, a fairly straightforward sensgstem can provide
the necessary inputs for our fuzzy controller.

dirfiness

Furzy
Controller

wash_fime

frpe_of dirt
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Figure 3:Fuzzy logic wash-time determinant Controller
4.4 Definition of Input/Output Variables

Before designing the controller, we must deterntime range of possible values for the input and wutp
variables. These are the membership functions tesédhnslate real world values to fuzzy values badk. Figure 4
shows the labels of input and output variablesthri associated membership functions. ValuesHeritiput variables
dirtiness and type_of dirt are normalized (rangé® db 100) over the domain of optical sensor valu#gash_time
membership functions are singletons (crisp numbkasgjescribed in this design. We can use fuzzyosetimgletons for
output variables. Singletons are simpler than fusstg. They need less memory space and work faster.

4.5 Defining the Membership Functions

grade[of membership]

1.0 Ismal Lafak
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dirtiness
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a
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Figure 4a Labels and Membership Functions of IMartable dirtiness
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Figure 4b Labels and Membership Functions of Infariable type_of_dirt

grade [of membership)
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Medium Weryliong
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wash_time
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T
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Figure 4c Labels and Membership Functions of OuYfartable wash_time

4.6 Rules

The decision making capabilities of a fuzzy conémokre codified in a set of rules. Rules for owshing machine
controller are derived from common sense, datantdkem typical home use, and experimentation inoatwlled

environment. A typical intuitive rule is as follow§ saturation time is longnd transparency is baithen wash time
should be long. From different combinations of thasd other conditions, we derive the rules necgdsabuild our

washing machine wash-time controller.
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4.7 Controlling the Temperature Using the Temperatuoe Controller

The variable "temperature” in this system can Hmlsided into a range of states: "cold", "cool",dderate",

"warm", "hot", "very hot". The sensor input is ttemperature. We start by defining the input temjpeeastates using
Membership Functions:

cCoLD COO0OL HMOMINAL wWaAaRM HOT

Figure 5: membership functions of the input tempeeastates

With this scheme, the input variable's state ngdéojumps abruptly from one state to the next.dadt as the
temperature changes, it loses value in one membpefishction while gaining value in the next. In ethwords, its
ranking in the category of cold decreases as ibimes more highly ranked in the warmer category.

4.8 System Operating Rules

Linguistic rules describing the control system ésinef two parts; an antecedent block (betweenlfhand
THEN) and a consequent block (following THEN). Degimg on the system, it may not be necessary tlhuateaevery
possible input combination (for 5-by-5 & up matsfeince some may rarely or never occur. By makig type of
evaluation, fewer rules can be evaluated, thus Ifiying the processing logic and perhaps even inaprg the fuzzy
logic system performance.

It is necessary to establish a meaningful systemrépresenting the linguistic variables in the imatr
Therefore, the following will be used:
“N” = “negative” error or error-dot input level, “Z= “zero” error or error-dot input level, “P” = ‘gsitive” error or
error-dot input level, “H” = “Heat” output responsg” = “No Change” to current output, and “C” = @I output
response.

RULE STRUCTURE 8 RULE MATRIX

Consequert
I Antecedent Block I |I Block
IF Crmd-Temp=>r AMND diCmd-Termpddi=r THEMN Output=C
IF Crrd-Temp=< ARD  diamd-Termpiidi=n THER Output=H
IF Crrd-Termp=P ARD d{Crmd-Tempidt=r THEMN Output=H
IF Crmd-Temp=n ARD d{Crmd-Termpaidi== THERM Output=C
IF Crrd-Termp=< ARD diCrmd-Termpiidi== THEMN Output=rc
IF Crmd-Temp=F AMND diC
IF Cmd-Temp=h ARD diCmd-Termpirdi=F THEMN Cutput==C
IF Cmd-Temp=< ARD diCrmd-Tempidi=F THEMN Output=C
IF Cmd-Temp=F AMND KCmd-Tempidt=F THEMN Sutput=H

mo-Tempidi== THER Output=H

CoHEMALN=

Errar - {Crmod-Termpl

= r = -
E 1 = =

farss N c H H
=

= a = 5

< =z c NC H
= T = =]

= =] c [ H
s

Figures 6: The rule structure.
After transferring the conclusions from the ninéesuto the matrix there is a noticeable symmetrtheomatrix. This
guarantees a reasonably well-behaved linear sygieditional degrees of error and error-dot may hauded if the

desired system response calls for this. This witkéase the rule base size and complexity but nsayiacrease the
quality of the control. Figure 6 also shows thenmulatrix derived from the rules.

4.9 Error & Error-DOot Memebership Function

There is a unique membership function associatetl e@ch input parameter. The membership functions
associate a weighting factor with values of eagiutrand the effective rules. These weighting factetermine the
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degree of influence or degree of membership (DO&bBheactive rule has. By computing the logical paidef the

membership weights for each active rule, a setnfyf output response magnitudes are producedhatlremains is to
combine and defuzzify these output responses. npsts are received by the system, the rule basgahkiated. The
antecedent (IF X AND Y) blocks test the inputs gmdduce conclusions. The consequent (THEN Z) blafksome

rules are satisfied while others are not. The agichs are combined to form logical sums. Theselosions feed into
the inference process where each response outpobendunction’s firing strength (0 to 1) is detenmdl.

INPUT DEGREE OF MEMBERSHIP:“error” = -1.0: “nega¢i¥= 0.5 and “zero” = 0.5 “error-dot” = +2.5: “zére 0.5
and “positive” = 0.5. ANTECEDENT & CONSEQUENT BLOCXK(e = error, er = error-dot or error-rate). Now
referring back to the rules, plug in the membergbition weights from above. “Error” selects ruleg,4,5,7,8 while
“error-dot” selects rules 4 through 9. “Error” atetror-dot” for all rules are combined to a logigadoduct (LP or
AND, that is the minimum of either term). Of thenairules selected, only four (rules 4,5,7,8) firechave non-zero
results. This leaves fuzzy output response magestudr only “Cooling” and “No Change” which must beerred,
combined, and defuzzified to return the actualpciésitput. In the rule list below, the following dgfions apply:

(e)=error, (er)=error-dot

If (e < 0) AND (er < 0) then Cool 0.5 & 0.0 00

If (¢ = 0) AND (er < 0) then Heat 0.5 & 0.0 60

If (e > 0) AND (er < 0) then Heat 0.0 & 0.0 60

If (e < 0) AND (er = 0) then Cool 0.5 & 0.5 50

If (e = 0) AND (er = 0) then No_Chng 0.5 & 0.5

If (e > 0) AND (er = 0) then Heat 0.0 & 0.5 60

If (e < 0) AND (er > 0) then Cool 0.5 & 0.5 50

If (e = 0) AND (er > 0) then Cool 0.5 & 0.5 50

If (e > 0) AND (er > 0) then Heat 0.0 & 0.5 90

The inputs are combined logically using the AND mper to produce output response values for albetqd inputs.
The active conclusions are then combined into &,ddgum for each membership function. A firingesigth for each
output membership function is computed. All thahaéns is to combine these logical sums in a defieation process
to produce the crisp output.

CoNooA~WNE

411 The “Fuzzy Centroid” Algorithm

The defuzzification of the data into a crisp outpuaccomplished by combining the results of tHergnce
process and then computing the “fuzzy centroidthef area. The weighted strengths of each outputbeefunction
are multiplied by their respective output membgrshinction center points and summed. Finally, #iesa is divided by
the sum of the weighted member function strengtitsthe result is taken as the crisp output. Oneufedo note is that
since the zero center is at zero, any zero streniftfautomatically compute to zero. If the centdrthe zero function
happened to be offset from zero (which is likelyaimeal system where heating and cooling effeasnat perfectly
equal), then this factor would have an influence.
(neg_center * neg_strength + zero center * zeength + pos_center * pos_strength) = OUTPUT
(neg_strength + zero strength + pos_strength)
(-100 * 0.866 + 0 * 0.500 + 100 * 0.000) = 63.4%
(0.866 + 0.500 + 0.000)

OUTPUT MEMBERSHIP FUNCTION

™,

.
Fositive \
-

DegregofMemberchip
o
a

50 [=] +50 +100
ce5.5 W
Fercent Cutput-(-100 to 0=Cooling, 0 to+100=Heating)

Figurem o)

Figure 9 — The horizontal coordinate of the ceultisitaken as the crisp output

The horizontal coordinate of the centroid of theaamarked in Figure 9 is taken as the normalizedp c
output. This value of -63.4% (63.4% Cooling) sedogical since the particular input conditions (Errel, Error-
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dot=+2.5) indicate that the feedback has excedueddammand and is still increasing therefore cgolénthe expected
and required system response.

5 IMPLEMENTATION OF THE INTELLIGENT, FUZZY-BASED WA  SHING MACHINE

The potential considerations introduced in the anpéntation of the intelligent, fuzzy-based washimachine
are concerned with the machine’s sensitivity adahms slope of the ground, automatic temperatucevattage control,
the minimization of rinsing water sloshing and lé tminor friction forces at the base standing suppearings. The
machine controllers and sensors would check tdeeemuch soap or detergent it needs, how much atadd, how
fast and which direction it should spin, the waistet the regulated voltage and temperature forrgegiewash

6. DISCUSSION OF RESULT, CONCLUSION & RECOMMENDATION

The fuzzy based controller for the washing machiees able to automatically regulate the voltage and
temperature into the machine washing tank. The fitetemperature wash different clothing is autoicelty used for
various washings and hence prolongs the life-spaextiles as against the increasing trend in pesse of rags due to
improper washing mode. The contributions of thsesech are:

Automatically regulate the voltage

Automatically regulate the temperature of water

Reduce costs or expenses on clothing mbteria

Automatically detect the texture of the miale

Assist improves or prolongs the life-span afites.

The application of fuzzy control system makes thteliigent washing machine robust with several munt
abilities. The use of this machine is recommenaedHe washing of different fabric textures. Allportant parameters
needed to be catered for have been handled diméndesign phase of the machine.
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